We have that the power of the compressor is
[tex]H_p=24.242hp[/tex]
From the question we are told that:
Flow rate [tex]W=1kg/s[/tex]
inlet Pressure [tex]P_1=1 bar[/tex]
inlet Temperature [tex]T_1= 288k[/tex]
Outlet Temperature [tex]T_2= 370k[/tex]
Outlet Pressure [tex]P_2=200 kN/m^2=2bars[/tex]
[tex]Cp = 1.103 kJ[/tex]
[tex]R = 287 kJ (kg.k)[/tex]
Generally, the equation for Adiabatic head is mathematically given by
[tex]H=\frac{ZRT_1}{Cp-1/K}[\frac{P_2}{P_1}^{(Cp-1)/Cp}-1][/tex]
Where
[tex]Z=Compressibility\ factor[/tex]
[tex]Z=0.99[/tex]
Therefore
[tex]H=\frac{(0.99)(287)(288)}{(1.103)-1/(1.103)}[\frac{(200)}{(1)}^{((1.103)-1)/(1.103)}-1][/tex]
[tex]H=560925.5958 J/kg[/tex]
[tex]H=5.6*10^5J/kg[/tex]
Generally, the equation for centrifugal compressor power is mathematically given by
[tex]H_p=\frac{WH}{E*33000}[/tex]
Where
E is efficiency (adiabatic)
[tex]E=70\%=0.7[/tex]
Therefore
[tex]H_p=\frac{(1)(5.6*10^5)}{0.7*33000}[/tex]
[tex]H_p=24.242hp[/tex]
In conclusion
The power of the compressor is
[tex]H_p=24.242hp[/tex]
For more information on this visit
https://brainly.com/question/13389697
What is the volume of a metal block 3cm long by 2cm wide by 4cm high? What would be the volume of a block twice as long, wide, and high?
Answer:
Volume of a metal block = 24 cm^3
Volume of a block twice as long, wide and high = 192 cm^3
Explanation:
Volume of a block is measured in l*w*h and in the first block, the sides are 3, 2 and 4 and 3*2*4 = 24
Second block, just double each of the lengths to get 6*4*8 = 192
During World War II, mass spectrometers were used to separate the radioactive uranium isotope U-235 from its far more common isotope, U-238. Estimate the radius of the circle traced out by a singly ionized lead atom moving at the same speed.
Answer:
21.55 m
Explanation:
Define wave length as applied to wave motion
Answer: Wavelength can be defined as the distance between two successive crests or troughs of a wave. It is measured in the direction of the wave.
Explanation:
Wavelength refers to the length or distance between two identical points of neighboring cycles of a wave signal traveling in space or in any physical medium. ... The wavelength of a signal is inversely proportional to its frequency, that is, the higher the frequency, the shorter the wavelength.
If the mass of an object is 10 kg and the
velocity is -4 m/s, what is the momentum?
A. 4 kgm/s
B. -40 kgm/s
C.-4 kgm/s
D. 40 kgm/s
Answer:
B. -40 kgm/s is the answer
Which was a major effect of Pope Leo III crowning Charlemagne emperor of the Romans ?
Answer:
The crowning of Charlemagne by Pope Leo III was significant in a number of ways. For Charlemagne, it was necessary because it encouraged to give him higher reliability. It gave him the rank of a dictator, giving him the only ruler in Europe west of the Byzantine emperor in Constantinople.
The armature of an AC generator has 200 turns, which are rectangular loops measuring 5 cm by 10 cm. The generator has a sinusoidal voltage output with an amplitude of 18 V. If the magnetic field of the generator is 300 mT, with what frequency does the armature turn
Answer:
[tex]f=9.55Hz[/tex]
Explanation:
From the question we are told that:
Number of Turns [tex]N=200[/tex]
Length [tex]l=5cm to 10cm[/tex]
Voltage [tex]V=18V[/tex]
Magnetic field [tex]B=300mT[/tex]
Generally, the equation for Frequncy of an amarture is mathematically given by
[tex]f =\frac{ V}{(N B A * 2 pi )}[/tex]
[tex]f =\frac{ 18}{(200 300*10^{-3} (10*10^-2)(5*10^{-2}) * 2 *3.142 )}[/tex]
[tex]f=9.55Hz[/tex]
If ∆H = + VE , THEN WHAT REACTION IT IS
1) exothermic
2) endothermic
Answer:
endothermic
Explanation:
An endothermic is any process with an increase in the enthalpy H (or internal energy U) of the system. In such a process, a closed system usually absorbs thermal energy from its surroundings, which is heat transfer into the system.
A 0.160 kg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.710 m/s. It has a head-on collision with a 0.296 kg glider that is moving to the left with a speed of 2.23 m/s. Suppose the collision is elastic.
Required:
a. Find the magnitude of the final velocity of the 0.157kg glider.
b. Find the magnitude of the final velocity of the 0.306kg glider.
The masses of the gliders provided in the question differ from the masses mentioned in the "Required" section. I'll use the first masses throughout.
Momentum is conserved, so the total momentum of the system is the same before and after the collision:
m₁ v₁ + m₂ v₂ = m₁ v₁' + m₂ v₂'
==>
(0.160 kg) (0.710 m/s) + (0.296 kg) (-2.23 m/s) = (0.160 kg) v₁' + (0.296 kg) v₂'
==>
-0.546 kg•m/s ≈ (0.160 kg) v₁' + (0.296 kg) v₂'
where v₁' and v₂' are the gliders' respective final velocities. Notice that we take rightward to be positive and leftward to be negative.
Kinetic energy is also conserved, so that
1/2 m₁ v₁² + 1/2 m₂ v₂² = 1/2 m₁ (v₁' )² + 1/2 m₂ (v₂' )²
or
m₁ v₁² + m₂ v₂² = m₁ (v₁' )² + m₂ (v₂' )²
==>
(0.160 kg) (0.710 m/s)² + (0.296 kg) (-2.23 m/s)² = (0.160 kg) (v₁' )² + (0.296 kg) (v₂' )²
==>
1.55 kg•m²/s² ≈ (0.160 kg) (v₁' )² + (0.296 kg) (v₂' )²
Solve for v₁' and v₂'. Using a calculator, you would find two solutions, one of which we throw out because it corresponds exactly to the initial velocities. The desired solution is
v₁' ≈ -3.11 m/s
v₂' ≈ -0.167 m/s
and take the absolute values to get the magnitudes.
If you want to instead use the masses from the "Required" section, you would end up with
v₁' ≈ -3.18 m/s
v₂' ≈ -0.236 m/s
A spring whose stiffness is 3500 N/m is used to launch a 4 kg block straight up in the classroom. The spring is initially compressed 0.2 m, and the block is initially at rest when it is released. When the block is 1.3 m above its starting position, what is its speed
Answer:
the speed of the block at the given position is 21.33 m/s.
Explanation:
Given;
spring constant, k = 3500 N/m
mass of the block, m = 4 kg
extension of the spring, x = 0.2 m
initial velocity of the block, u = 0
displacement of the block, d =1.3 m
The force applied to the block by the spring is calculated as;
F = ma = kx
where;
a is the acceleration of the block
[tex]a = \frac{kx}{m} \\\\a = \frac{(3500) \times (0.2)}{4} \\\\a = 175 \ m/s^2[/tex]
The final velocity of the block at 1.3 m is calculated as;
v² = u² + 2ad
v² = 0 + 2ad
v² = 2ad
v = √2ad
v = √(2 x 175 x 1.3)
v = 21.33 m/s
Therefore, the speed of the block at the given position is 21.33 m/s.
The speed of the block at a height of 1.3 m above the starting position is 21.33 m/s
To solve this question, we'll begin by calculating the acceleration of the block.
How to determine the acceleration Spring constant (K) = 3500 N/m Mass (m) = 4 KgCompression (e) = 0.2 mAcceleration (a) =?F = Ke
Also,
F = ma
Thus,
ma = Ke
Divide both side by m
a = Ke / m
a = (3500 × 0.2) / 4
a = 175 m/s²
How to determine the speed Initial velocity (u) = 0 m/sAcceleration (a) = 175 m/s²Distance (s) = 1.3 mFinal velocity (v) =?v² = u² + 2as
v² = 0² + (2 × 175 × 1.3)
v² = 455
Take the square root of both side
v = √455
v = 21.33 m/s
Learn more about spring constant:
https://brainly.com/question/9199238
Choose the appropriate explanation how such a low value is possible given Saturn's large mass - 100 times that of Earth.
a. This low value is possible because the magnetic field of Saturn is so strong.
b. This low value is possible because the magnetic field of Saturn is so weak.
c. This low value is possible because the density of Saturn is so high.
d. This low value is possible because the density of Saturn is so low.
Answer:
Explanation:
That is an amazing fact.
The minus sign is what you have to pay attention to. The earth has a mass of 100 times that of Saturn. As someone on here once noted, Saturn has such a low density that it would float in water.
The answer is D
You are to connect resistors R1 andR2, with R1 >R2, to a battery, first individually, then inseries, and then in parallel. Rank those arrangements according tothe amount of current through the battery, greatest first. (Useonly the symbols > or =, for exampleseries>R1=R2>parallel.)
Answer:
The current is more in the parallel combination than in the series combination.
Explanation:
two resistances, R1 and R2 are connected to a battery of voltage V.
When they are in series,
R = R1 + R2
In series combination, the current is same in both the resistors, and it is given by Ohm's law.
V = I (R1 + R2)
[tex]I = \frac{V}{R_1 + R_2}[/tex]..... (1)
When they are connected in parallel.
the voltage is same in each resistor.
The effective resistance is R.
[tex]R = \frac{R_1R_2}{R_1 + R_2}[/tex]
So, the current is
[tex]I = \frac{V(R_1+R_2)}{R_1 R_2}[/tex]..... (2)
So, the current is more is the parallel combination.
Joule is a SI unit of power
Measuring cylinder is used to measure the volume of a liquid
Answer:
The SI unit of power is watt
What is the magnitude of the force between a 25μC charge exerts on a -10μC charge 8.5cm away?
Answer:
Force,
[tex]F = \frac{kQ_{1} Q_{2} }{ {r}^{2} } \\ F = \frac{(9 \times {10}^{9}) \times (25 \times {10}^{ - 6}) \times (10 \times {10}^{ - 6} ) }{ {(0.85)}^{2} } \\ \\ F = 3.114 \: newtons[/tex]
The magnitude of the force between a 25μC charge exerts on a -10μC charge 8.5cm away would be 311.4 N.
What is Coulomb's Law?Coulomb's law can be stated as the product of the charges and the square of the distance between them determine the force of attraction or repulsion acting in a straight line between two electric charges.
The math mathematical expression for the coulomb's law given as
F= k Q₁Q₂/r²
where F is the force between two charges
k is the electrostatic constant which is also known as the coulomb constant,it has a value of 9×10⁹
Q₁ and Q₂ are the electric charges
r is the distance between the charges
As given in the problem two charges a 25μC charge exerts on a -10μC charge 8.5cm away
By substituting the respective values in the above formula of Coulomb law
F =9×10⁹×(25×10⁻⁶)×(-10×10⁻⁶)/(8.5×10⁻²)²
F= -311.4 N
A negative sign represents that the force is attractive in nature
Thus, the magnitude of the force is 311.4 N.
Learn more about Coulomb's law from here
https://brainly.com/question/506926
#SPJ2
A cylindrical swimming pool has a radius 2m and depth 1.3m .it is completely filled with salt water of specific gravity 1.03.The atmospheric preassure is 1.013 x 10^5 Pa.
a.calculate the density of salt water.
Answer:
the density of the salt water is 1030 kg/m³
Explanation:
Given;
radius of the cylindrical pool, r = 2 m
depth of the pool, h = 1.3 m
specific gravity of the salt water, γ = 1.03
The atmospheric pressure, P₀ = 1.013 x 10⁵ Pa
Density of fresh water, [tex]\rho _w[/tex] = 1000 kg/m³
The density of the salt water is calculated as;
[tex]Specific \ gravity \ of \ salt\ water \ (\gamma _s_w) = \frac{density \ of \ salt \ water \ (\rho_{sw})}{density \ of \ fresh \ water \ (\rho_{w})} \\\\1.03 = \frac{\rho_{sw}}{1000 \ kg/m^3}\\\\\rho_{sw} = 1.03 \times 1000 \ kg/m^3\\\\\rho_{sw} = 1030 \ kg/m^3[/tex]
Therefore, the density of the salt water is 1030 kg/m³
If a jet travels 350 m/s, how far will it travel each second?
Answer:
It will travel 350 meters each second.
Explanation:
The unit rate, 350 m/s, tells us that the jet will travel 350 meters per every second elapsed.
Answer:
5.83 seconds
Explanation:
60 seconds in 1 minute
350 meters per second
350/60
=5.83
In a photoelectric effect experiment, it is observed that violet light does not eject electrons from a particular metal. Next, red light with the same intensity is incident on the same metal. Which result is possible
Answer:
No ejection of photo electron takes place.
Explanation:
When a photon of suitable energy falls on cathode, then the photoelectrons is emitted from the cathode. This phenomenon is called photo electric effect.
The minimum energy required to just eject an electron is called work function.
The photo electric equation is
E = W + KE
where, E is the incident energy, W is the work function and KE is the kinetic energy.
W = h f
where. h is the Plank's constant and f is the threshold frequency.
Now, when the violet light is falling, no electrons is ejected. When the red light is falling, whose frequency is less than the violet light, then again no photo electron is ejected from the metal surface.
S.I unit for distance =______
(A) m (B)cm
(c) km (d) mm
Answer:
opinion a
Explanation:
the si units of distance is metre (m)
Answer:
A
Explanation:
A 700N marine in basic training climbs a 10m vertical rope at constant speed in 8sec. what is power put
Answer:
875 Watts
Explanation:
P = W/t = mgh/t = 700(10)/8 = 875 Watts
Electromagnetic radiation with a wavelength of 525 nm appears as green light to the human eye. Calculate the frequency of this light. Be sure to include units in your answer.
Answer:
5.71×10¹⁴ Hz
Explanation:
Applying,
v = λf................. Equation 1
Where v = speed of the electromagnetic radiation, λ = wavelength of the electromagnetic radiation, f = frequency
make f the subject of the equation
f = v/λ............. Equation 2
From the question,
Given: λ = 525 nm = 5.25×10⁻⁷ m,
Constant: Speed of electromagnetic wave (v) = 3.0×10⁸ m/s
Substitute these values into equation 2
f = (3.0×10⁸)/(5.25×10⁻⁷)
f = 5.71×10¹⁴ Hz
Hence the frequency of light is 5.71×10¹⁴ Hz
A object of mass 3.00 kg is subject to a force Fx that varies with position as in the figure below. A coordinate plane has a horizontal axis labeled x (m) and a vertical axis labeled Fx (N). There are three line segments. The first segment runs from the origin to (4,3). The second segment runs from (4,3) to (11,3). The third segment runs from (11,3) to (17,0). (a) Find the work done by the force on the object as it moves from x = 0 to x = 4.00 m. J (b) Find the work done by the force on the object as it moves from x = 4.00 m to x = 11.0 m. J (c) Find the work done by the force on the object as it moves from x = 11.0 m to x = 17.0 m. J (d) If the object has a speed of 0.450 m/s at x = 0, find its speed at x = 4.00 m and its speed at x = 17.0 m.
Answer:
Explanation:
An impulse results in a change of momentum.
The impulse is the product of a force and a distance. This will be represented by the area under the curve
a) W = ½(4.00)(3.00) = 6.00 J
b) W = (11.0 - 4.00)(3.00) = 21.0 J
c) W = ½(17.0 - 11.0)(3.00) = 9.00 J
d) ASSUMING the speed at x = 0 is in the direction of applied force
½(3.00)(v₄²) = ½(3.00)(0.450²) + 6.00
v₄ = 2.05 m/s
½(3.00)(v₁₇²) = ½(3.00)(0.450²) + 6.00 + 21.0 + 9.00
v₁₇ = 4.92 m/s
If the initial speed is NOT in the direction of applied force, the final speed will be slightly less in both cases.
A block of mass 0.260 kg is placed on top of a light, vertical spring of force constant 5 200 N/m and pushed downward so that the spring is compressed by 0.090 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise
After being released, the restoring force exerted by the spring performs
1/2 (5200 N/m) (0.090 m)² = 12.06 J
of work on the block. At the same time, the block's weight performs
- (0.260 kg) g (0.090 m) ≈ -0.229 J
of work. Then the total work done on the block is about
W ≈ 11.83 J
The block accelerates to a speed v such that, by the work-energy theorem,
W = ∆K ==> 11.83 J = 1/2 (0.260 kg) v ² ==> v ≈ 9.54 m/s
Past the equilibrium point, the spring no longer exerts a force on the block, and the only force acting on it is due to its weight, hence it has a downward acceleration of magnitude g. At its highest point, the block has zero velocity, so that
0² - v ² = -2gy
where y is the maximum height. Solving for y gives
y = v ²/(2g) ≈ 4.64 m
A man standing in an elevator holds a spring scale with a load of 5 kg suspended from it. What would be the reading of the scale, if the elevator is accelerating downward with an acceleration 3.8 m/s?.
Answer:
3.1 kg
Explanation:
Applying,
R = m(g-a)..................... Equation 1
Where R = weight of the scale when the elevator is coming down, a = acceleration of the elevator, g = acceleration due to gravith.
From the question,
Given: m = 5 kg, a = 3.8 m/s²
Constant: g = 9.8 m/s²
Substitute these values into equation 1
R = 5(9.8-3.8)
R = 5(6)
R = 30 N
Hence the spring scale is
m' = R/g
m' = 30/9.8
m' = 3.1 kg
An electron is moving at speed of 6.3 x 10^4 m/s in a circular path of radius of 1.7 cm inside a solenoid the magnetic field of the solenoid is perpendicular to the plane of the electron's path. Find its relevatn motion.
Answer:
Here, m=9×10
−31
kg,
q=1.6×10
−19
C,v=3×10
7
ms
−1
,
b=6×10
−4
T
r=
qB
mv
=
(1.6×10
−19
)(6×10
−4
)
(9×10
−31
)×(3×10
7
)
=0.28m
v=
2πr
v
=
2πm
Bq
=
2×(22/7)×9×10
−31
(6×10
−4
)×(1.6×10
−19
)
=1.7×10
7
Hz
Ek=
2
1
mv
2
=
2
1
×(9×10
−31
)×(3×10
7
)
2
J
=40.5×10
−17
J=
1.6×10
−16
40.5×10
−17
keV
=2.53keV
Chameleons catch insects with their tongues, which they can rapidly extend to great lengths. In a typical strike, the chameleon's tongue accelerates at a remarkable 220 m/s^2 for 20 msms, then travels at constant speed for another 30 ms.
Required:
During this total time of 50 ms, 1/20 of a second, how far does the tongue reach?
Solution :
We know,
Distance,
[tex]$S=ut+\frac{1}{2}at^2$[/tex]
[tex]$S=ut+0.5(a)(t)^2$[/tex]
For the first 20 ms,
[tex]$S=0+0.5(220)(0.020)^2$[/tex]
S = 0.044 m
In the remaining 30 ms, it has constant velocity.
[tex]$v=u+at$[/tex]
[tex]$v=0+(220)(0.020)[/tex]
v = 4.4 m/s
Therefore,
[tex]$S=ut+0.5(a)(t)^2$[/tex]
[tex]$S'=4.4 \times 0.030[/tex]
S' = 0.132 m
So, the required distance is = S + S'
= 0.044 + 0.132
= 0.176 m
Therefore, the tongue can reach = 0.176 m or 17.6 cm
Answer:
The total distance is 0.176 m.
Explanation:
For t = 0 s to t = 20 ms
initial velocity, u = 0
acceleration, a = 220 m/s^2
time, t = 20 ms
Let the final speed is v.
Use first equation of motion
v = u + at
v = 0 + 220 x 0.02 = 4.4 m/s
Let the distance is s.
Use second equation of motion
[tex]s = u t + 0.5 at^2\\\\s = 0 + 0.5 \times 220 \times 0.02\times 0.02\\\\s = 0.044 m[/tex]
Now the distance is
s' = v x t
s' = 4.4 x 0.03 = 0.132 m
The total distance is
S = s + s' = 0.044 + 0.132 = 0.176 m
12. A concave lens has a focal length of 10 cm. An object 2.5 cm high is placed 30 cm from the lens. Determine the position and size of the image. (3)
Answer:
I think 9.5
Explanation:
............
a point object is 10 cm away from a plane mirror while the eye of an observer(pupil diameter is 5.0 mm) is 28 cm a way assuming both eye and the point to be on the same line perpendicular to the surface find the area of the mirror used in observing the reflection of the point
Answer:
1.37 mm²
Explanation:
From the image attached below:
Let's take a look at the two rays r and r' hitting the same mirror from two different positions.
Let x be the distance between these rays.
[tex]d_o =[/tex] distance between object as well as the mirror
[tex]d_{eye}[/tex] = distance between mirror as well as the eye
Thus, the formula for determining the distance between these rays can be expressed as:
[tex]x = 2d_o tan \theta[/tex]
where; the distance between the eye of the observer and the image is:
[tex]s = d_o + d_{eye}[/tex]
Then, the tangent of the angle θ is:
[tex]tan \theta = \dfrac{R}{d_o+d_{eye}}[/tex]
replacing [tex]tan \theta = \dfrac{R}{d_o+d_{eye}}[/tex] into [tex]x = 2d_o tan \theta[/tex], we have:
[tex]x = 2d_o \Big( \dfrac{R}{d_o+d_{eye}}\Big)[/tex]
[tex]x = 2(10) \Big( \dfrac{0.25}{10+28}\Big)[/tex]
[tex]x = 20\Big( \dfrac{0.25}{38}\Big) cm[/tex]
x = (0.13157 × 10) mm
x = 1.32 mm
Finally, the area A = π r²
[tex]A = \pi(\frac{x}{2})^2[/tex]
[tex]A = \pi(\frac{1.32}{2})^2[/tex]
A = 1.37 mm²
An electron is released from rest at a distance of 9.00 cm from a fixed proton. How fast will the electron be moving when it is 3.00 cm from the proton
Answer:
the speed of the electron at the given position is 106.2 m/s
Explanation:
Given;
initial position of the electron, r = 9 cm = 0.09 m
final position of the electron, r₂ = 3 cm = 0.03 m
let the speed of the electron at the given position = v
The initial potential energy of the electron is calculated as;
[tex]U_i = Fr = \frac{kq^2}{r^2} \times r = \frac{kq^2}{r} \\\\U_i = \frac{(9\times 10^9)(1.602\times 10^{-19})^2}{0.09} \\\\U_i = 2.566 \times 10^{-27} \ J[/tex]
When the electron is 3 cm from the proton, the final potential energy of the electron is calculated as;
[tex]U_f = \frac{kq^2}{r_2} \\\\U_f = [\frac{(9\times 10^9)\times (1.602 \times 10^{-19})^2}{0.03} ]\\\\U_f = 7.669 \times 10^{-27} \ J \\\\\Delta U = U_f -U_i\\\\\Delta U = (7.699\times 10^{-27} \ J ) - (2.566 \times 10^{-27} \ J)\\\\\Delta U = 5.133 \times 10^{-27} \ J[/tex]
Apply the principle of conservation of energy;
ΔK.E = ΔU
[tex]K.E_f -K.E_i = \Delta U\\\\initial \ velocity \ of \ the \ electron = 0\\\\K.E_f - 0 = \Delta U\\\\K.E_f = \Delta U\\\\\frac{1}{2} mv^2 = \Delta U\\\\where;\\\\m \ is \ the \ mass \ of\ the \ electron = 9.1 1 \times 10^{-31} \ kg\\\\v^2 = \frac{ 2 \Delta U}{m} \\\\v = \sqrt{\frac{ 2 \Delta U}{m}} \\\\v = \sqrt{\frac{ 2 (5.133\times 10^{-27})}{9.11\times 10^{-31}}}\\\\v = \sqrt{11268.935} \\\\v = 106.2 \ m/s[/tex]
Therefore, the speed of the electron at the given position is 106.2 m/s
If an object with constant mass is accelerating, what does Newton's second
law imply?
A. It will continue to accelerate until it meets an opposing force.
B. The object is exerting an opposite but equal force.
C. A force must be acting on the object.
D. The object will be difficult to decelerate.
Answer:
C. A force must be acting on the object.
Explanation:
This is due to the action of its momentum direction.
[tex].[/tex]
Polarized sunglasses:
a. block most sunlight because sunlight is polarized
b. are better but work the same way as non-polarized sunglasses
c. are polarized to filter out certain wavelengths of light
d. block reflected light because reflected light is partially polarized.
Polarized sunglasses creates filter of vertical openings for light. The light rays will reach the eyes of human vertically only.
The sun rays will not reach human eye directly which will create a shield for sun light burden on human eye.
Polarized sunglasses are best used for blocking and eliminating certain wavelengths of light.
Therefore the correct answer is option C. Polarizes Sunglasses are polarized and it filter out certain wavelengths of light.
Learn more at https://brainly.com/question/24372632
Good evening everyone Help me i n my hw ,The wall of cinema hall are covered with sound absorbing materials. Why?Answer it ASAP.Good day
what do you mean about it