Answer:
By the Empirical Rule, approximately 68% of the bulbs have lifetimes that lie within 1 standard deviation to either side of the mean.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
What percentage of the bulbs have lifetimes that lie within 1 standard deviation to either side of the mean?
By the Empirical Rule, approximately 68% of the bulbs have lifetimes that lie within 1 standard deviation to either side of the mean.
Derive
Somebody could help me?
check that
////////////////////////
What is the slope of the line that passes through the points (9, 4) and (9,-5)?
Write your answer in simplest form.
Answer:
slope=undefined
Step-by-step explanation:
(-5-4)/(9-9)
-9/0
[tex]\frac{(y_2-y_1)}{(x_2-x_1)}[/tex]
[tex]\frac{(-5-4)}{(9-9)}[/tex]
[tex]\frac{-9}{0}[/tex]
Because the denominator is 0, the slope is undefined.
Rise over run. The run is 0.
please help me please help me
14. largest 9510
15. smallest 1000000
16. n+6=22 —> n=22-6 —>n = 16
17. Add : 204 + 38429= 38633
A test is divided into 4 sets of problems with the same number pf problems in each set. Alice correctly solves 35 problems. How many problems are on the test if Alice solved more than 60 percent of all the problems, but less than 65 percent of all problems? Give all possible answers.
Answer:
54, 55, 56, 57, 58
Step-by-step explanation:
Answer:
56 problems
Step-by-step explanation:
Set up an equation.
[tex]\frac{3}{5}x<35<\frac{13}{20}x[/tex]
Why do we do this? We are told that she solved MORE than 60%, or [tex]\frac{3}{5}[/tex], and LESS than 65%, or [tex]\frac{13}{20}[/tex]. Therefore, if we set the TOTAL number of problems to x, we have an equation we can solve.
[tex]\frac{3}{5}x<35<\frac{13}{20}x\\[/tex]
Multiply all parts of the inequality by 20 to get rid of the denominators.
[tex]20*\frac{3}{5}x<20*35<20*\frac{13}{20}x\\ \\12x<700<13x[/tex]
Now we can solve TWO individual inequalities to isolate the x variable.
[tex]12x<700\\x<\frac{700}{12}\\x < 175/3\\x<58[/tex]
We can approximate 175/3 to about 58 (rounding down). We will sometimes round down when we have to deal with whole numbers.
The second inequality is as follows.
[tex]13x>700\\x>700/13\\x>53[/tex]
Therefore, we can combine the two inequalities.
[tex]53<x<58[/tex]
There were in between 53 and 58 questions. Since the number of questions must be a whole number, there can be 54, 55, 56, 57, OR 58. Why does 58 also work? When you plug 58 back into the original equation, you get that it STILL works. This is due to the fact that inaccuracies in computations allow you to round UP.
However, the last thing to keep in mind is that there are four sections with an equal number of questions. Meaning, the final answer has to be a multiple of four. The only multiple of 4 is 56; therefore, the final answer is 56.
what is the slope intercept equation of the line below?
Answer:
[tex]{ \tt{slope, \: m = \frac{1 - ( - 1)}{1 - 0} }} \\m = 2 \\ y - intercept : y = mx + c \\ { \tt{1 = (2 \times 1) + c}} \\ c = - 1 \\ { \boxed{ \bf{y = 2x - 1}}}[/tex]
What is 10 + 15k equivalent
Plz hurry
Answer:
if you mean 15k as is 15 thousand then the answer would be 15,010
What is
the solution to the system of equations graphed below?
A study by researchers at a university addressed the question of whether the mean body temperature of an animal is 98 6°F Among other data, the researchers obtained the body temperatures of 109 healthy animals. Suppose you want to use those data to decide whether the mean body temperature of healthy animals is less than 98.6°F.
Required:
a. Determine the null hypothesis
b. Determine the alternative hypothesis
Answer:
H0 : μ ≥ 98.6
H1 : μ < 98.6
Step-by-step explanation:
The population mean temperature, μ = 98.6
The null hypothesis takes up the value of the population mean temperature as the initial truth ;
The alternative hypothesis on the other hand is aimed at using a sample size of 109 to establish if the mean temperature is less than the population mean temperature.
The hypothesis ;
Null hypothesis, H0 : μ ≥ 98.6
Alternative hypothesis ; H1 : μ < 98.6
it’s question number 3 and i know the answer but i need someone to explain to me how to get the answer the answer is B. pls can hurry i need the explanation soon
Answer:
2+6=8
Step-by-step explanation:
Start at 2
Then since we are adding 6 move 6 units to the right
If a square root parent function is vertically compressed by a factor of 1/6,
what is the equation of the new function, G(x)?
O A. G(x)=1/6square root of x
B. G(x) = Square root of 6x
C. G(x) = 6 square root of x
D. G(x) = -6 square root of x
Answer:
the answer could be B i think cause that makes total sense
uppose cattle in a large herd have a mean weight of 1158lbs and a standard deviation of 92lbs. What is the probability that the mean weight of the sample of cows would differ from the population mean by less than 12lbs if 55 cows are sampled at random from the herd
Answer:
Hence the probability that the mean weight of the sample of 55 cows would differ from the population mean by less than 12 lbs is 0.66545.
Step-by-step explanation:
Solve 2x2 - 9x - 5 = 0 by factoring.
AS IN THE PICTURE...........
I need help with this
Answer:
A. More students prefer Model A1 calculators than the Model C3 calculators.
If the integer $152AB1$ is a perfect square, what is the sum of the digits of its square root?
9514 1404 393
Answer:
13
Step-by-step explanation:
152AB1 is not a square in hexadecimal, so we assume A and B are supposed to represent single digits in decimal.
If A=B=0, √152001 ≈ 389.9
If A=B=9, √152991 ≈ 391.1
The least significant digit of 152AB1 being non-zero, we know it is not the square of 390. Hence, it must be the square of 391.
For 152AB1 to be a perfect square, we must have ...
152AB1 = 391² = 152881
The sum of the digits of the square root is 3+9+1 = 13.
How to do questions 19 and 20
Answer & Step-by-step explanation:
Using the information given in the question we can form the following 3 equations (in the order of the first 3 sentences)
w = 2h (twice the price)
t = h - 4 ($4 less)
3w + 2h + 5t = 136 (total purchasing and cost)
We can solve all 3 equations for h first, by substituting the first two equations, into the third equations w and t
3(2h) + 2h + 5(h-4) = 136
Simplify
6h + 2h + 5h - 20 = 136
13h = 136 + 20
13h = 156
h = 156/13
h = $12
Using this information, we can solve for w and t
w = 2h
w = 2(12)
w = $24
And finally
t = h - 4
t = 12 - 4
t = $8
Need help due tomorrow
Answer:
[tex]Given:[/tex] Δ ABC ≈ ΔDEF
[tex]therefor:[/tex] A(ΔABC)/A(ΔDEF)=(BC)²/(EF)²
⇒ 34/A(ΔDEF)=9²/(13.5)²
⇒34/A(ΔDEF)=81/182.25
⇒A(ΔDEF)=34×182.25/81
⇒Area of ΔDEF=76.5 cm²
----------------------------------
Hope it helps...
Have a great day!!!
Last question pls help me
Answer:
Step-by-step explanation:
684 dollars
Someone help so lost I didn’t understand the course and now I’m stuck please help a girl out
Answer:
the answer is b. you are basically multiplying them
PLZZZZZ HURRY WILL GIVE BRAINLIEST!!!!
Is rectangle EFGH the result of a dilation of rectangle ABCD with a center of dilation at the origin? Why or why not?
Yes, because corresponding sides are parallel and have lengths in the ratio Four-thirds
Yes, because both figures are rectangles and all rectangles are similar.
No, because the center of dilation is not at (0, 0).
No, because corresponding sides have different slopes.
Answer:
option b
Step-by-step explanation:
both are rectangles and similar measures
Yes, because both figures are rectangles and all rectangles are similar
The rectangle EFGH is a result of the dilation of rectangle ABCD
What is Dilation?Resizing an item uses a transition called Dilation. Dilation is used to enlarge or contract the items. The result of this transformation is an image with the same shape as the original. However, there is a variation in the shape's size. Dilation transformations ensure that the shape will stay the same and that corresponding angles will be congruent
Given data ,
Let the first rectangle be represented as ABCD
Now , the rectangle is dilated by a scale factor k
And , the transformed rectangle is given by EFGH
where the center of origin is the scale factor of dilation
Now , the ratios of the sides of the rectangles will be similar
So , the rectangles ABCD and EFGH are similar
Hence , the dilated rectangle is EFGH
To learn more about dilation click :
https://brainly.com/question/13176891
#SPJ7
A group of dental researchers are testing the effects of acidic drinks on dental crowns. They have five containers of crowns labeled V, W, X, Y, and Z. They will randomly select one of the containers to be the control for the experiment by drawing one of five well-mixed slips of paper with the same labels from a hat. Which of the following is the probability model for the control container?
Answer:
[tex]\begin{array}{cccccc}{x} & {V} & {W} & {X} & {Y} & {Z} & P(x) & {0.20} & {0.20} & {0.20} & {0.20} & {0.20} \ \end{array}[/tex]
Step-by-step explanation:
Given
[tex]S = \{V,W,X,Y,Z\}[/tex]
[tex]n(S) = 5[/tex]
Required
The probability model
To do this, we simply calculate the probability of each container.
So, we have:
[tex]P(V) = \frac{n(V)}{n(S)} = \frac{1}{5} = 0.20[/tex]
[tex]P(W) = \frac{n(W)}{n(S)} = \frac{1}{5} = 0.20[/tex]
[tex]P(X) = \frac{n(X)}{n(S)} = \frac{1}{5} = 0.20[/tex]
[tex]P(Y) = \frac{n(Y)}{n(S)} = \frac{1}{5} = 0.20[/tex]
[tex]P(Z) = \frac{n(Z)}{n(S)} = \frac{1}{5} = 0.20[/tex]
So, the probability model is:
[tex]\begin{array}{cccccc}{x} & {V} & {W} & {X} & {Y} & {Z} & P(x) & {0.20} & {0.20} & {0.20} & {0.20} & {0.20} \ \end{array}[/tex]
Answer:
answer is V=.20, W=.20, X=.20, Y=.20, X=.20
Step-by-step explanation:
What are the solutions to the equation?
x3 – 6x2 – 9x + 54 = 0
Answer:
x = -3 or x = 3 or x = 6
Step-by-step explanation:
x3 – 6x2 – 9x + 54 = 0
There is no common factor to factor out. There are 4 terms. We try factoring by grouping. Factor a common factor out of the first two terms. Factor a common factor out of the last two terms.
x^2(x - 6) - 9(x - 6) = 0
x - 6 is a common factor, so we factor it out.
(x^2 - 9)(x - 6) = 0
x^2 - 9 is the difference of 2 squares, so we factor it.
(x + 3)(x - 3)(x - 6) = 0
x + 3 = 0 or x - 3 = 0 or x - 6 = 0
x = -3 or x = 3 or x = 6
Answer:
x=6 x=3 x=-3
Step-by-step explanation:
x^3 – 6x^2 – 9x + 54 = 0
Factor by grouping
x^3 – 6x^2 – 9x + 54 = 0
x^2(x-6) -9(x-6 ) =0
Factor out x-6
(x-6)(x^2 -9) =0
Notice x^2 -9 is the difference of squares
(x-6)(x-3)(x+3) = 0
Using the zero product property
x-6 =0 x-3 =0 x+3 =0
x=6 x=3 x=-3
The degree of this expression 2x+3y=4
Answer:
1st degree
Step-by-step explanation:
You look at the largest exponet, right here, there are none so it would be 1st degree.
Answer:
1
Step-by-step explanation:
The degree of an expression with multiple exponents is the highest exponent in it. In this expression, there is no expression, so the answer will be 1 because there is no exponent and every variable and number has an invisible 1 as its exponent.
Hope this helps.
Perform the following series of rigid transformations on ∆ABC: Translate ∆ABC by moving it 5 units to the right and 2 units up. Draw the line y = -x, and reflect ∆A'B'C' across the line. Rotate ∆A''B''C'' counterclockwise about the origin by 270°.
Answer:
The answer is below
Step-by-step explanation:
Transformation is the movement of a point from its initial location to a new location. Types of transformation are rotation, reflection, translation and dilation.
If a point A(x, y) is translated a units right and b units up, the new point is at A'(x + a, y + b).
If a point A(x, y) is reflected across the line y = -x, the new point is at A'(-y, -x).
If a point A(x, y) is rotated counterclockwise by 270 degrees, the new point is at A'(y, -x).
Let us assume that triangle ABC has vertices at A(-6, -1), B(-3, -3) and C(-1, -2).
If it is moved 5 units to the right and 2 units up, the new point is at A'(-1, 1), B'(1, -1) and C'(3, 0). If it is reflected across the line y = -x, the vertices are at A"(-1, 1), B"(1, -1) and C"(0, -3). If it is then rotated counterclockwise about the origin by 270°, the new point is at A'"(-1, -1), B"'(1, 1), C"'(3, 0)
A party rental company has chairs and tables for rent. The total cost to rent 2 chairs and 5 tables is $53. The total cost to rent 8 chairs and 3 tables is $42. What is the cost to rent each chair and each table?
Answer:
c=cost of one chair rental
t=cost of one table rental
8c+3t=42
2c+5t=53
multiply the second equation, each term on both sides, by -4
8c+3t=42
-8c-20t=-212
add the two equations
-17t=-170
divide both sides by -17
t=$10 to rent one table
substitute t=10 into either original equation
2c+5(10)=53
2c+50=53
2c=3
c=$1.50 to rent one chair
19/3+[14/3 ÷{10-3(3+1/2-1/4)×1/3}]
Answer:
= 3 11/20
Sorry I am not doing the step by step.
Work out the length x. 14 cm 7 cm Х
Answer:
If you want the area of something with the sides 14cm and 7cm then it would be 98 cm.
Step-by-step explanation:
Area = length * width
Area = 14 cm * 7 cm
Area = 98 cm
3|3x+4|-7=5 please help
Answer:
[tex]x = 0[/tex]
Step-by-step explanation:
[tex]3 |3x + 4| - 7 = 5[/tex]
Add 7[tex]3 |3x + 4 | = 12[/tex]
Divide by 3.[tex] |3x + 4| = 4[/tex]
Remove the absolute value signs and left with:[tex]3x + 4 = 4[/tex]
Subtract[tex]3x = 0[/tex]
[tex]x = 0[/tex]
determine the values of X which the sequence
[tex]log3. \: log {3}^{3}. \: log {3}^{x} [/tex]
is (I) arithmetic (II) geometric
Answer:
arithmetic
hyj
bhhm
bm.hg
hgjm
hgjgshmih
mhh
jhuu
Look at the images above. How are the fish food box and the shipping box similar? How are they different?
Answer:
Read below c:
Step-by-step explanation:
Both are rectangular prisms and they have similar dimensions. They are different because one is visibly larger then the other.
hope it helps c:
In the diagram attached, ΔABC has coordinates A(1,1), B(4,1), and C(4,5).
Given the function rule
f(x, y) → (x − 5, −y − 2)
Describe the transformation as completely as possible.
The diagram is attached-- Thanks in advance!
(No this is not homework, I was using a study guide I found online to study for a test.)
Answer:
Step-by-step explanation:
ΔABC has the vertices as A(1, 1), B(4, 1) and C(4, 5).
Rule for the transformation has been given as,
f(x, y) → (x - 5, -y - 2)
By this rule vertices of the transformed image will be,
A(1, 1) → A'(1 - 5, -1 - 2)
→ A'(-4, -3)
B(4, 1) → B'(4 - 5, -1 - 2)
→ B'(-1, -3)
C(4, 5) → C'(4 - 5, -5 - 2)
→ C'(-1, -7)