9514 1404 393
Answer:
B. x = 2
Step-by-step explanation:
The graph is symmetrical about the vertical line through its vertex. The x-value of that vertex is 2, so the line of symmetry is ...
x = 2
Find the values of c such that the area of the region bounded by the parabolas y = 4x2 − c2 and y = c2 − 4x2 is 32/3. (Enter your answers as a comma-separated list.)
Answer:
-2,2
Step-by-step explanation:
Let
[tex]y_1=4x^2-c^2[/tex]
[tex]y_2=c^2-4x^2[/tex]
We have to find the value of c such that the are of the region bounded by the parabolas =32/3
[tex]y_1=y_2[/tex]
[tex]4x^2-c^2=c^2-4x^2[/tex]
[tex]4x^2+4x^2=c^2+c^2[/tex]
[tex]8x^2=2c^2[/tex]
[tex]x^2=c^2/4[/tex]
[tex]x=\pm \frac{c}{2}[/tex]
Now, the area bounded by two curves
[tex]A=\int_{a}^{b}(y_2-y_1)dx[/tex]
[tex]A=\int_{-c/2}^{c/2}(c^2-4x^2-4x^2+c^2)dx[/tex]
[tex]\frac{32}{3}=\int_{-c/2}^{c/2}(2c^2-8x^2)dx[/tex]
[tex]\frac{32}{3}=2\int_{-c/2}^{c/2}(c^2-4x^2)dx[/tex]
[tex]\frac{32}{3}=2[c^2x-\frac{4}{3}x^3]^{c/2}_{-c/2}[/tex]
[tex]\frac{32}{3}=2(c^2(c/2+c/2)-4/3(c^3/8+c^3/28))[/tex]
[tex]\frac{32}{3}=2(c^3-\frac{4}{3}(\frac{c^3}{4}))[/tex]
[tex]\frac{32}{3}=2(c^3-\frac{c^3}{3})[/tex]
[tex]\frac{32}{3}=2(\frac{2}{3}c^3)[/tex]
[tex]c^3=\frac{32\times 3}{4\times 3}[/tex]
[tex]c^3=8[/tex]
[tex]c=\sqrt[3]{8}=2[/tex]
When c=2 and when c=-2 then the given parabolas gives the same answer.
Therefore, value of c=-2, 2
How does the rate of change of f(x)=3x+5 compare to the rate of change of g(x)=2x+5 ?
HELP I NEED ANSWERS
Answer:
The rate of change of f(x) is faster than the rate of change of g(x).
General Formulas and Concepts:
Algebra I
Slope-Intercept Form: y = mx + b
m - slope b - y-interceptStep-by-step explanation:
*Note:
Rate of Change is determined by slope.
Step 1: Define
f(x) = 3x + 5
↓ Compare to y = mx + b
Slope m = 3
g(x) = 2x + 5
↓ Compare to y = mx + b
Slope m = 2
Step 2: Answer
We can see that the slope of f(x) is greater than g(x).
∴ the rate of change of f(x) would be greater than g(x).
Use the procedures developed to find the general solution of the differential equation. (Let x be the independent variable.)
2y''' + 15y'' + 24y' + 11y= 0
Solution :
Given :
2y''' + 15y'' + 24y' + 11y= 0
Let x = independent variable
[tex](a_0D^n + a_1D^{n-1}+a_2D^{n-2} + ....+ a_n) y) = Q(x)[/tex] is a differential equation.
If [tex]Q(x) \neq 0[/tex]
It is non homogeneous then,
The general solution = complementary solution + particular integral
If Q(x) = 0
It is called the homogeneous then the general solution = complementary solution.
2y''' + 15y'' + 24y' + 11y= 0
[tex]$(2D^3+15D^2+24D+11)y=0$[/tex]
Auxiliary equation,
[tex]$2m^3+15m^2+24m +11 = 0$[/tex]
-1 | 2 15 24 11
| 0 -2 - 13 -11
2 13 11 0
∴ [tex]2m^2+13m+11=0[/tex]
The roots are
[tex]$=\frac{-b\pm \sqrt{b^2-4ac}}{2a}$[/tex]
[tex]$=\frac{-13\pm \sqrt{13^2-4(11)(2)}}{2(2)}$[/tex]
[tex]$=\frac{-13\pm9}{4}$[/tex]
[tex]$=-5.5, -1$[/tex]
So, [tex]m_1, m_2, m_3 = -1, -1, -5.5[/tex]
Then the general solution is :
[tex]$= (c_1+c_2 x)e^{-x} + c_3 \ e^{-5.5x}$[/tex]
what is the percent decrease on a Tv that has been marked down from $550 to $420? round to the nearest tenth
The percent decrease on a TV after the markdown to the nearest tenth is 23.6%.
What is the percent decrease on the TV after the markdown?The percent decrease formula can be expressed as:
Percent decrease = [( original value - new value ) / original value ] × 100%
Given the data in the question:
The original value of the TV = $550
New value after markdown = $420
Percent decrease =?
Plug the given values into the above formula and solve for the percent decrease.
Percent decrease = [( original value - new value ) / original value ] × 100%
Percent decrease = [( 550 - 420 ) / 550 ] × 100%
Percent decrease = [ 130 / 550 ] × 100%
Percent decrease = 0.2363 × 100%
Percent decrease = 23.6%
Therefore, the percent decrease is 23.6%.
Learn about Percent increase here: https://brainly.com/question/19062651
#SPJ3
Please helpppppp me!!!!!!!!
Answer:
A --> y=cot(x)
Step-by-step explanation:
if you graph tan(x), it has a period of just PI, because tan(x) is just sin(x)/cos(), and cot(x) is the same because it is just sec(x)/csc(x).
Betty received $ 500,000 from a life insurance policy to be distributed to her as an annuity certain in 10 equal annual installments with the first payment made immediately. On the day she receives her third payment, she is offered a monthly perpetuity of X in lieu of the future annual payments. The first payment will be made in exactly one month. The effective annual rate of interest is 8 %. Determine the value of X.
9514 1404 393
Answer:
annual payment: $68,995.13monthly payment in perpetuity: X = $2394.76Step-by-step explanation:
a) For payments made at the beginning of the period, the annuity is called an "annuity due." The formula in the first attachment tells how to compute the payment for a given present value ($500,000), number of periods (N=10), and interest rate (i=0.08).
pmt = $500,000/(1 +(1 -(1 +i)^(-N+1))/i) = $500,000/(1 +(1 -(1.08^-9))/.08)
pmt ≈ $68,995.13 . . . . annual payment
__
b) After the first payment, the account balance is ...
$500,000 -68,995.13 = $431,004.87
After subsequent payments, the account balance will be ...
$431,004.87×1.08 -68,995.13 = $396,490.13 . . . after 2nd payment
$396,490.13×1.08 -68,995.13 = $359,214.21 . . . after 3rd payment
The payment amount that can be made in perpetuity is the amount of the monthly interest on this balance:
X = $359,214.21 × (0.08/12) = $2394.76
According to the scale drawing, how wide will the actual patio be?
m
Garden
Patio
7 cm
Scale 1 cm: 2 m
The width of the actual garden patio according to the scale drawing is 14 meters.
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables.
An independent variable is a variable that does not depends on other variable while a dependent variable is a variable that depends on other variable.
Given the scale of 1 cm : 2 m
For a patio of 7 cm, then:
Actual patio = 7 cm / (1 cm/ 2m) = 14 m
The width of the actual garden patio according to the scale drawing is 14 meters.
Find out more on equation at: brainly.com/question/2972832
#SPJ1
Open the graphing tool one last time. Compare the graphs of y=log (x-k) and y=log x+k in relation to their domain, range, and asymptotes. Describe what you see.
Answer:
sorry I don't know the answer
Answer:
For the equation y=log(x-k), the domain depends on the value of K. Sliding K moves the left bound of the domain interval. The range and the right end behavior stay the same. For the equation y=log x+k, the domain is fixed, starting at an x-value of 0. The vertical asymptote is also fixed. The range of the equation depends on K.
Step-by-step explanation:
The sum of two binomials is 12x2 − 5x. If one of the binomials is x2 − 2x, the other binomial is:
1. 11x2 − 7x.
2. 12x2 − 3x.
3. 11x2 − 3x.
4. None of these choices are correct.
Answer:
C. 11x² - 3x
Step-by-step explanation:
(12x² - 5x) - (x² - 2x)
12x² - 5x - x² + 2x
12x - x² - 5x + 2x
11x² - 3x
5 = –6x2 + 24x
5 = –6(x2 – 4x)
inside the parentheses and
.
–19 = –6(x – 2)2
StartFraction 19 Over 6 EndFraction = (x – 2)2
Plus or minus StartRoot StartFraction 19 Over 6 EndFraction EndRoot = x – 2
The two solutions are
Plus or minus StartRoot StartFraction 19 Over 6 EndFraction EndRoot.
Answer:
x = 2 - sqrt(19/6)
x = 2 + sqrt(19/6)
Step-by-step explanation:
Answer:
add 4
subtract 24 from 5
2
Step-by-step explanation:
Which graph shows the solution to the given system of inequalities? [y<6x+1 y<-3.2x-4
Answer:
VERY NICE RACK U HAVE MAM
Step-by-step explanation:
Answer:
Its a
Step-by-step explanation:
found on another thing and im taking test
the line that passes through the point (-4, 2) and has a
What is the equation of
slope of
2?
Answer:
y = 2x + 10
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Here m = 2 , then
y = 2x + c ← is the partial equation
To find c substitute (- 4, 2 ) into the partial equation
2 = - 8 + c ⇒ c = 2 + 8 = 10
y = 2x + 10 ← equation of line
Can someone help me with this problem
Answer:
3/11
Step-by-step explanation:
The winter group provides tax advice
what? ;-;.............
whats 2 plus 2
*just trying to help someone get points* :)
Answer:4 ma boi
Step-by-step explanation:
Answer:
14
Step-by-step explanation:
because I am god at meth and very smart
URGENT HELP
The gradient of the tangent to the curve y = ax + bx^3 at the point (2, -4) is 6.
Determine the unknowns a and b.
a=?
b=?
Answer:
a = -6
b = 1
Step-by-step explanation:
The gradient of the tangent to the curve y = ax + bx^3, will be:
dy/dx = a + 3bx²
at (2, -4)
dy/dx = a+3b(2)²
dy/dx = a+12b
Since the gradient at the point is 6, then;
a+12b = 6 ....1
Substitute x = 2 and y = -4 into the original expression
-4 = 2a + 8b
a + 4b = -2 ...2
a+12b = 6 ....1
Subtract
4b - 12b = -2-6
-8b = -8
b = -8/-8
b = 1
Substitute b = 1 into equation 1
Recall from 1 that a+12b = 6
a+12(1) = 6
a = 6 - 12
a = -6
Hence a = -6, b = 1
For the rational function f(x)=5−xx2+5x+6, find the points on the graph at the function value f(x)=3.
Given:
The rational function is:
[tex]f(x)=\dfrac{5-x}{x^2+5x+6}[/tex]
To find:
The points on the graph at the function value [tex]f(x)=3[/tex].
Solution:
We have,
[tex]f(x)=\dfrac{5-x}{x^2+5x+6}[/tex]
Substituting [tex]f(x)=3[/tex], we get
[tex]3=\dfrac{5-x}{x^2+5x+6}[/tex]
[tex]3(x^2+5x+6)=5-x[/tex]
[tex]3x^2+15x+18=5-x[/tex]
Moving all the terms on one side, we get
[tex]3x^2+15x+18-5+x=0[/tex]
[tex]3x^2+16x+13=0[/tex]
Splitting the middle term, we get
[tex]3x^2+3x+13x+13=0[/tex]
[tex]3x(x+1)+13(x+1)=0[/tex]
[tex](3x+13)(x+1)=0[/tex]
Using zero product property, we get
[tex](3x+13)=0\text{ or }(x+1)=0[/tex]
[tex]x=-\dfrac{13}{3}\text{ or }x=-1[/tex]
Therefore, the required values are [tex]-\dfrac{13}{3},-1[/tex].
3w2 – 21w = 0
Need some help.
Answer:
The solutions are w=0 ,7
Step-by-step explanation:
3w^2 – 21w = 0
Factor out 3w
3w(w-7) =0
Using the zero product property
3w=0 w-7=0
w =0 w=7
The solutions are w=0 ,7
What is the measurement of N?
Answer:
the measurement of N is D, 81.
Step-by-step explanation:
The angle measurement of a Right Angled Triangle is 90 degrees. And based off the angle dimension given in the image above ( 9 degrees ), you need to subtract 90 ( the angle dimension of the triangle) with the angle dimension given (9 degrees) which gets you to an answer of 81 degrees.
distance between 4, -4 and -7, -4
Step-by-step explanation:
here's the answer to your question
Answer: Distance = 11
Step-by-step explanation:
Concept:
Here, we need to know the idea of the distance formula.
The distance formula is the formula, which is used to find the distance between any two points.
If you are still confused, please refer to the attachment below for a clear version of the formula.
Solve:
Find the distance between A and B, where:
A (4, -4)B (-7, -4)[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]Distance=\sqrt{(4+7)^2+(-4+4)^2}[/tex]
[tex]Distance=\sqrt{(11)^2+(0)^2}[/tex]
[tex]Distance=\sqrt{121+0}[/tex]
[tex]Distance=\sqrt{121}[/tex]
[tex]Distance=11[/tex]
Hope this helps!! :)
Please let me know if you have any questions
Find the probability of a couple having at least 1 girl among 4 children. Assume that boys and girls are
equally likely and that the gender of a child is independent of the gender of any brothers or sisters.
Answer:
15/16 (93.75%)
Step-by-step explanation:
List of Possible Combinations:
BBBB, BBBG, BBGB, BBGG, BGBB, BGBG, BGGB, BGGG, GBBB, GBBG, GBGB, GBGG, GGBB, GGBG, GGGB, GGGG
As you can see, only 1 out of 16 of the possible combinations is all boys. This means that the chance of at least 1 girl among the 4 children is 15 out of 16 (15/16) or 93.75%
what is the area of this whole shape
Answer:
104 m²
Step-by-step explanation:
Area of the whole shape = area of the triangle + area of the rectangle
= ½*b*h + L*W
Where,
b = 8 m
h = 6 m
L = 10 m
W = 8 m
Plug in the values into the equation
Area of the whole shape = ½*8*6 + 10*8
= 24 + 80
= 104 m²
What is the numerical coefficient of the first term
Answer:
the number before the first variable (first term)
Step-by-step explanation:
this appears to be an incomplete question. The numerical coefficient of a term is the number before the variable.
the constant is the number without a variable.
А _______ equation can be written in the form ax2 + bx+c=0 where a, b, and c are real numbers, and a is a nonzero number.
Fill in the blank.
A) quadratic
B) quartic
C) linear
D) cubic
Wrong answers WILL be reported. Thanks!
Answer:
A) quadratic
Step-by-step explanation:
ax2 + bx+c=0
Since the highest power of the equation is 2
A) quadratic -2
B) quartic- 4
C) linear- 1
D) cubic-3
What is a1
of the arithmetic sequence for which a3=126
and a64=3,725
a
64
=
3
,
725
?
In an arithmetic sequence, every pair of consecutive terms differs by a fixed number c, so that the n-th term [tex]a_n[/tex] is given recursively by
[tex]a_n=a_{n-1}+c[/tex]
Then for n ≥ 2, we have
[tex]a_2=a_1+c[/tex]
[tex]a_3=a_2+c = (a_1+c)+c = a_1 + 2c[/tex]
[tex]a_4=a_3+c = (a_1 + 2c) + c = a_1 + 3c[/tex]
and so on, up to
[tex]a_n=a_1+(n-1)c[/tex]
Given that [tex]a_3=126[/tex] and [tex]a_{64}=3725[/tex], we can solve for [tex]a_1[/tex]:
[tex]\begin{cases}a_1+2c=126\\a_1+63c=3725\end{cases}[/tex]
[tex]\implies(a_1+63c)-(a_1+2c)=3725-126[/tex]
[tex]\implies 61c = 3599[/tex]
[tex]\implies c=59[/tex]
[tex]\implies a_1+2\times59=126[/tex]
[tex]\implies a_1+118 = 126[/tex]
[tex]\implies \boxed{a_1=8}[/tex]
The work done by a machine in 2 minutes is 480J. Calculate the power of the machine
Answer:
I think the power is 4
Step-by-step explanation:
480J / 120 = 4
Put 2 mins into seconds which is 120 seconds
Sorry if it is wrong :)
Answer:
[tex]4\text{ watts}[/tex]
Step-by-step explanation:
In physics, the power of a machine is given by [tex]P=\frac{W}{\Delta t}[/tex], where [tex]W[/tex] is work in Joules and [tex]\Delta t[/tex] is time in seconds.
Convert 2 minutes into seconds:
2 minutes = 120 seconds.
Substitute [tex]W=480[/tex] and [tex]\Delta t=120[/tex] to solve for [tex]P[/tex]:
[tex]P=\frac{480}{120}=\boxed{4\text{ watts}}[/tex]
Select the correct answer. Which graph represents this inequality? y ≥ 4x − 3
Step-by-step explanation:
You didn't put the graph, but you can compare between your graphs and the picture.
Brainliest please
The graph that represents this inequality y ≥ 4x − 3 is attached below.
What is a solution set to an inequality or an equation?If the equation or inequality contains variable terms, then there might be some values of those variables for which that equation or inequality might be true. Such values are called solution to that equation or inequality. Set of such values is called solution set to the considered equation or inequality.
We are given that the inequality is;
y ≥ 4x − 3
The slope of the inequality is 4.
The equation of the red line is y = 4x − 3
The shading is above the line and the line is solid, that means y is greater than or equal 4x − 3
The graph of this inequality y ≥ 4x − 3 is attached below.
Learn more about inequalities here:
https://brainly.com/question/27425770
#SPJ2
Directions: Use the figure to write the symbol for each.
1. I ray
2. a plane
А
3. 3 points
4. 2 lines
5. 3 angles
6. 3 line segments
D
Geometry
156
Total Math Grade 6
I need help ASAP please due tomorrow 6th grade geometry
a gym class has 10 boys and 12 girls. how many ways can a team of 6 be selected if the team must have the same number of boys and girls
Answer:
The number of ways of selecting the team is 26,400 ways.
Step-by-step explanation:
Given;
total number boys in the gym, b = 10 boys
total number of girls in the gym, g = 12 girls
number of team to be selected, n = 6
If there must equal number of boys and girls in the team, then the team must consist of 3 boys and 3 girls.
Number of ways of choosing 3 boys from the total of 10 = [tex]10_C_3[/tex]
Number of ways of choosing 3 girls from a total of 12 = [tex]12_C_3[/tex]
The number of ways of combining the two possibilities;
[tex]n = 10_C_3 \times 12_C_3\\\\n = \frac{10!}{7!3!} \ \times \ \frac{12!}{9!3!} \\\\n = \frac{10\times 9 \times 8}{3\times 2} \ \times \ \frac{12\times 11 \times 10}{3\times 2} \\\\n = 120 \times 220\\\\n = 26,400 \ ways[/tex]
Therefore, the number of ways of selecting the team is 26,400 ways.
A humanities professor assigns letter grades on a test according to the following scheme.
A: Top 8% of scores
B: Scores below the top 8% and above the bottom 62%
C: Scores below the top 38% and above the bottom 18%
D: Scores below the top 82% and above the bottom 9%
E: Bottom 9% of scores Scores on the test are normally distributed with a mean of 67 and a standard deviation of 7.3.
Find the numerical limits for a C grade.
Answer:
The numerical limits for a C grade are 60.6 and 69.1.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Scores on the test are normally distributed with a mean of 67 and a standard deviation of 7.3.
This means that [tex]\mu = 67, \sigma = 7.3[/tex]
Find the numerical limits for a C grade.
Below the 100 - 38 = 62th percentile and above the 18th percentile.
18th percentile:
X when Z has a p-value of 0.18, so X when Z = -0.915.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-0.915 = \frac{X - 67}{7.3}[/tex]
[tex]X - 67 = -0.915*7[/tex]
[tex]X = 60.6[/tex]
62th percentile:
X when Z has a p-value of 0.62, so X when Z = 0.305.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.305 = \frac{X - 67}{7.3}[/tex]
[tex]X - 67 = 0.305*7[/tex]
[tex]X = 69.1[/tex]
The numerical limits for a C grade are 60.6 and 69.1.