Division yields
[tex]\dfrac{x^4+7}{x^3+2x} = x-\dfrac{2x^2-7}{x^3+2x}[/tex]
Now for partial fractions: you're looking for constants a, b, and c such that
[tex]\dfrac{2x^2-7}{x(x^2+2)} = \dfrac ax + \dfrac{bx+c}{x^2+2}[/tex]
[tex]\implies 2x^2 - 7 = a(x^2+2) + (bx+c)x = (a+b)x^2+cx + 2a[/tex]
which gives a + b = 2, c = 0, and 2a = -7, so that a = -7/2 and b = 11/2. Then
[tex]\dfrac{2x^2-7}{x(x^2+2)} = -\dfrac7{2x} + \dfrac{11x}{2(x^2+2)}[/tex]
Now, in the integral we get
[tex]\displaystyle\int\frac{x^4+7}{x^3+2x}\,\mathrm dx = \int\left(x+\frac7{2x} - \frac{11x}{2(x^2+2)}\right)\,\mathrm dx[/tex]
The first two terms are trivial to integrate. For the third, substitute y = x ² + 2 and dy = 2x dx to get
[tex]\displaystyle \int x\,\mathrm dx + \frac72\int\frac{\mathrm dx}x - \frac{11}4 \int\frac{\mathrm dy}y \\\\ =\displaystyle \frac{x^2}2+\frac72\ln|x|-\frac{11}4\ln|y| + C \\\\ =\displaystyle \boxed{\frac{x^2}2 + \frac72\ln|x| - \frac{11}4 \ln(x^2+2) + C}[/tex]
*20 points*
A rancher’s herd of 250 sheep grazes over a 40-acre pasture. He would like to find out how many sheep are grazing on each acre of the pasture at any given time, so he has some images of the pasture taken by the state department of agriculture’s aerial photography division. Here are three samples of the images.
Sample 1: 4
Sample 2: 1
Sample 3: 9
How do the sample statistics compare to the population mean and standard deviation?
There will be about 6.25 sheep on each acre.
250/40 = 6.25
Which of the following methods of sampling is an example of a stratified random sample?
A. Randomly choosing a name from a list of names in the population and then choosing every tenth name thereafter.
B. From 500 names of members of a population in a hat drawing 50 names from the hat without looking.
C. Dividing a target population of students by grade level and choosing the first 25 names from each group.
D. Dividing a population of adults into males and females and randomly choosing a sample proportional to the numbers in each group.
Answer: D
Step-by-step explanation:
Answer: D
Step-by-step explanation:
Pencils are sold in a local store for 55 cents each. The factory has $1300 in fixed costs
plus 15 cents of additional expense for each pencil made. Assuming all
pencils manufactured can be sold, find the break-even point.
Break-even point:
Answer:
3250 pencils sold
Step-by-step explanation:
Let x represent the number of pencils.
The profit from the pencils sold can be represented by 0.55x, and the cost from making the pencils can be represented by 1300 + 0.15x.
Set these two terms equal to each other, and solve for x:
0.55x = 1300 + 0.15x
0.4x = 1300
x = 3250
So, the break even point is at 3250 pencils sold.
the polygons in each pair are similar find the scale factor smaller figure to the larger
Answer:
smaller figure/larger figure = ½
Step-by-step explanation:
The scale factor = any of the side length of the smaller figure / the corresponding side length of the larger figure
Side length of smaller figure = 3
Corresponding sides length of larger figure = 6
Scale factor = smaller figure/larger figure = 3/6
Simplify
Scale factor = smaller figure/larger figure = ½
Locate the points of discontinuity in the piecewise function shown below.
Answer:
Step-by-step explanation:
The given piecewise function i
From the given function it is clear that function is divided at x=-1 and x=2. It means we check the discontinuity at x=-1 and x=2.
For x=-1,
LHL:
Since LHL ≠ f(-1), therefore the given function is discontinuous at x=-1.
For x=2,
LHL:
Since LHL ≠ f(2), therefore the given function is discontinuous at x=2.
Therefore, the correct option is A.
Hi i need help i have class in 30 min! <3
For what values of a are the following statements true:
Answer:
if I understand correctly, I hope this helps:
Answer to b: a< or equal to Zero.
Answer to d: a>or equal to -5
A basic cellular package costs $30/month for 60 minutes of calling with an additional charge of $0.40/minute beyond that time. The cost function C (2) for using x minutes would be • If you used 60 minutes or less, i.e. if if x < 60, then C (x) = 30 (the base charge). If you used more than 60 minutes, i.e. (x – 60 minutes more than the plan came with, you would pay an additional $0.40 for each of those (x – 60 minutes. Your total bill would be C (x) = 30 + 0.40 (x – 60). If you want to keep your bill at $50 or lower for the month, what is the maximum number of calling minutes you can use? minutes. The maximum calling minutes you can use is ? Number
Answer:
The maximum number of minutes to keep the cost at $50 or less is 110 minutes
Step-by-step explanation:
Given
[tex]C(x) = 30[/tex] ---- [tex]x < 60[/tex]
[tex]C(x) = 30 + 0.40(x - 60)[/tex] --- [tex]x \ge 60[/tex]
Required
[tex]C(x) = 50[/tex] ---- find x
We have:
[tex]C(x) = 30 + 0.40(x - 60)[/tex]
Substitute 50 for C(x)
[tex]50 = 30 + 0.40(x - 60)[/tex]
Subtract 30 from both sides
[tex]20 = 0.40(x - 60)[/tex]
Divide both sides by 0.40
[tex]50 = x - 60[/tex]
Add 60 to both sides
[tex]110 = x[/tex]
[tex]x =110[/tex]
Use the distributive property to simplify
the equation below.
с
8(2a + 4b - c)
[? ]a + [ ]b - [
[ ]
Answer:
16a +32b - 8c
Step-by-step explanation:
8(2a + 4b - c)
Distribute
8*2a + 8*4b+ 8*(-c)
16a +32b - 8c
Answer:
16a + 32b - 8c
Step-by-step explanation:
You bring 8 inside the parenthesis and then multiply it with everything. so for a you put 16, b you put 32 and c you put 8
Find the remainder when f(x)=x3−4x2−6x−3 f ( x ) = x 3 − 4 x 2 − 6 x − 3 is divided by x+1
Answer:
The remainder is -2.
Step-by-step explanation:
According to the Polynomial Remainder Theorem, if we divide a polynomial P(x) by a binomial (x - a), then the remainder of the operation will be given by P(a).
Our polynomial is:
[tex]P(x) = x^3-4x^2-6x-3[/tex]
And we want to find the remainder when it's divided by the binomial:
[tex]x+1[/tex]
We can rewrite our divisor as (x - (-1)). Hence, a = -1.
Then by the PRT, the remainder will be:
[tex]\displaystyle\begin{aligned} R &= P(-1)\\ &=(-1)^3-4(-1)^2-6(-1)-3 \\ &= (-1)-4(1)+(6)-3 \\ &= -2 \end{aligned}[/tex]
The remainder is -2.
I need help with the answer
Answer:
Option B, x ≈ -2.25
Step-by-step explanation:
3^x-2=(x-1)/(x^2+x-1)
or x ≈ -2.21166
so it's closest to the answer of the 2nd option
Your credit card has a balance of $3300 and an annual interest rate of 14%. You decided to pay off the balance over two years. If there are no further purchases charged to the card, you must pay $158.40 each month, and you will pay a total interest of $501.60. Assume you decided to pay off the balance over one year rather than two. How much more must you pay each month and how much less will you pay in total interest?
9514 1404 393
Answer:
$137.90 more each month$246.00 less total interestStep-by-step explanation:
The amortization formula is ...
A = P(r/12)/(1 -(1 +r/12)^(-12t))
for the monthly payment on principal P at annual rate r for t years. Here, we have P=3300, r = 0.14, and t=1, so the monthly payment is ...
A = $3300(0.14/12)/(1 -(1 +0.14/12)^-12) ≈ $296.30
The payment of $296.30 is ...
$295.30 -158.40 = $137.90 . . . more each month
The total amount paid is 12×$296.30 = $3555.60, so 255.60 in interest. This amount is ...
$501.60 -255.60 = $246.00 . . . less total interest
of a loaf of brown bread costs R6, how much will 4 halves cost?
Answer:
R12
Step-by-step explanation:
Answer: R12
Explanation:
Cost of 1 loaf = R6
Cost of 4 halves = 6/2×4
= 6 × 2
= R12
Please click thanks and mark brainliest if you like
What is lim j(x)?
X-3
9514 1404 393
Answer:
(b) 4
Step-by-step explanation:
The point (3, 4) is a "hole" in the graph. The function approaches the value y=4 from either direction, so that is the limit as x → 3.
[tex]\displaystyle\lim_{x\to3}f(x)=4[/tex]
Help me please, is it d?
Answer:
Yes D is the correct answer :)
Answer:
Yes, D
Step-by-step explanation:
What is the equation of this graph
Answer:
y-1=x^2
Step-by-step explanation:
That is the equation of a parabola with vertex at (0,1). The equation is y-1=x^2.
Consider the following. fourteen less than the total of a number and three Translate into a variable expression. (Use x for your variable. Do not simplify.)
9514 1404 393
Answer:
(x +3) -14
Step-by-step explanation:
The total of a number and 3 will be represented by (x +3). Fourteen less than that is ...
(x +3) -14 or -14 +(x +3)
You take out a 60-day loan for $5000. At the end of the loan, you owe $73.97 in interest. What is the annual percentage rate? Round your answer to the nearest tenth of a percent.
The PERCENTAGE ANNUAL RATE is 9.0% to the nearest tenth using the SIMPLE INTEREST FORMULA
The question is related to a SIMPLE INTEREST problem:
Loan period = 60 days
using 365 days a year ;
converting to years , 60 days = (60 / 365) years
interest on loan = 73.97
principal = 5000
Using the formula:
interest = (principal * rate * time)
73.79 = (5000 * rate * (60/365)
Rate = 73.79/(5000 * (60/365)) =8.977%
rate = 9%
Therefore, PERCENTAGE ANNUAL RATE is 9.0%
Learn more : https://brainly.com/question/3880193
10) Find three numbers whose product is -72. You may use integers from -10 to 10. Give two
examples
Answer:
Step-by-step explanation:
-8 * 9 * 1
If you are going to get - 72, you need to have an odd number of minus signs.
4 * 3 * - 6
You must be careful of the limits. You can't use something like 36 * 2 * 1 because the numbers don't fall within +/- 10
You could use 6*6*-2
What is the volume of the cylinder below?
Answer:
A
Step-by-step explanation:
v=πr2h
r=(3)²* 5
45π unit³
Given the following coordinates complete the glide reflection transformation.
A(−1,−3)
B(−4,−1)
C(−6,−4)
Transformation: Reflection over the x-axis and a translation of shifting right 10 units.
Given:
The vertices of a triangle are A(−1,−3) , B(−4,−1) and C(−6,−4).
Transformation: Reflection over the x-axis and a translation of shifting right 10 units.
To find:
The image after glide reflection transformation.
Solution:
The vertices of a triangle are A(−1,−3) , B(−4,−1) and C(−6,−4).
If a figure is reflected over the x-axis, then
[tex](x,y)\to (x,-y)[/tex]
Using this, we get
[tex]A(-1,-3)\to A'(-1,3)[/tex]
[tex]B(-4,-1)\to B'(-4,1)[/tex]
[tex]C(-6,-4)\to C'(-6,4)[/tex]
If a figure is shifting 10 units right, then
[tex](x,y)\to (x+10,y)[/tex]
Using this we get
[tex]A'(-1,3)\to A''(-1+10,3)[/tex]
[tex]A'(-1,3)\to A''(9,3)[/tex]
Similarly,
[tex]B'(-4,1)\to B''(-4+10,1)[/tex]
[tex]B'-4,1)\to B''(6,1)[/tex]
And,
[tex]C'(-6,-4)\to C''(-6+10,4)[/tex]
[tex]C'(-6,-4)\to C''(4,4)[/tex]
Therefore, the vertices of the image are A''(9,3), B''(6,1) and C''(4,4).
Which graph has the solutions -1 and 4?
a.
On a coordinate plane, a parabola opens up and goes through (negative 4.2, 0) and (0, negative 1).
c.
On a coordinate plane, a parabola opens up and goes through (negative 4, 0) and (1, 0).
b.
On a coordinate plane, a parabola opens up and goes through (0, negative 3) and (4.5, 0).
d.
On a coordinate plane, a parabola opens up and goes through (0, negative 1) and (4, 0).
Please select the best answer from the choices provided
A
B
C
D
Answer:
graph d
in graph d, the line intersects the x axis twice at (-1,0) and (4,0), so those two are the solutions of the graph
What is 20×10 to the third power equal
Can someone please help with 25 , please put the way you got it. Please no links it’s serious
Answer:
X * 0.8 = $64
x = $80
Step-by-step explanation:
Please help with Question 2b
Answer:
MUST BE IN HLA, NOT FROM C TO ASSEMBLY.
PROGRAM 6: Same
Write an HLA Assembly language program that implements a function which correctly identifies when all four parameters are the same and returns a boolean value in AL (1 when all four values are equal; 0 otherwise). This function should have the following signature:
procedure theSam
What is the range of the function?
{(1.2, 11.6), (3.6, 11.5), (1.9, 11.4), (2.7, 11.5)}
Answer:
Range: 10.4
Step-by-step explanation:
Range = maximum(xi) - minimum(xi), where xi represents the set of values
= 11.6 - 1.2
= 10.4
Answer:
Range-
{
11.6
,
11.5
,
11.4
}
Step-by-step explanation:
What is the length of the arc of a circle with a radius of 4 by a central angle of 7pi/4?
9514 1404 393
Answer:
(b) 7π
Step-by-step explanation:
The arc length is the product of the radius and the central angle in radians.
s = rθ
s = (4)(7π/4) = 7π . . . units
Diana get a gift card with a value of $55, and her favorite drink cost $2.20. How many plain black coffee can she buy with the gift card
Answer:
Twouufyjughgyuioiu567uhu888
Answer:
55/2.20=25 so 25 black coffees
Step-by-step explanation:
Which of the following is correctly written in Standard Form? −3x + 7y = 12, y = 3/7x + 6 ,5x − 4y = 9 ,3/7x + 2y =9
A painter can paint 36 feet of molding per hour. How many inches of molding can he paint per hour?
Answer:
432 inches
Step-by-step explanation:
We need to convert feet to inches
1 ft = 12 inches
36 ft * 12 inches/ 1 ft = 432 inches
Air is being pumped into a spherical balloon at a rate of 5 cm^3/min. Determine the rate at which the radius of the balloon is increasing when the diameter of the balloon is 20 cm
0.08 cm/min
Step-by-step explanation:
Given:
[tex]\dfrac{dV}{dt}=5\:\text{cm}^3\text{/min}[/tex]
Find [tex]\frac{dr}{dt}[/tex] when diameter D = 20 cm.
We know that the volume of a sphere is given by
[tex]V = \dfrac{4\pi}{3}r^3[/tex]
Taking the time derivative of V, we get
[tex]\dfrac{dV}{dt} = 4\pi r^2\dfrac{dr}{dt} = 4\pi\left(\dfrac{D}{2}\right)^2\dfrac{dr}{dt} = \pi D^2\dfrac{dr}{dt}[/tex]
Solving for [tex]\frac{dr}{dt}[/tex], we get
[tex]\dfrac{dr}{dt} = \left(\dfrac{1}{\pi D^2}\right)\dfrac{dV}{dt} = \dfrac{1}{\pi(20\:\text{cm}^2)}(5\:\text{cm}^3\text{/min})[/tex]
[tex]\:\:\:\:\:\:\:= 0.08\:\text{cm/min}[/tex]