The correlation coefficient may assume any value between -1 and 1. Correct answer option A.
This means that the coefficient might be negative, zero, or positive, with -1 being a perfect negative correlation, 0 representing no connection, and 1 representing a perfect positive correlation.
The correlation coefficient is a numerical measure of two variables' linear connection. It is a measure of the strength of the link between two variables. A correlation coefficient of 1 indicates that there is a perfect positive connection, a coefficient of -1 indicates that there is a perfect negative correlation, and a coefficient of 0 shows that there is no correlation between the two variables.
Learn more about correlation coefficient:
brainly.com/question/12663699
#SPJ4
A dolphin was swimming 6 feet below sea level. The number line shows the
location of the dolphin. It then swam down 3 feet. Describe how to use the
number line to find the new location of the dolphin.
-10-9-8-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
OA. On the number line, move 3 units to the left. End at -9. The dolphin
was 9 feet below sea levelsm
OB. On the number line, move 3 units to the right. End at 9. The dolphin
was 9 feet above sea level.
OC. On the number line, move 3 units to the left. End at 3. The dolphin
was 3 feet above sea level.
OD. On the number line, move 3 units to the right. End at -3. The
dolphin was 3 feet below sea level.
On the number line, move 3 units to the left. End at -9. The dolphin was 9 feet below sea level.
What is location?
Location refers to the specific position or coordinates of an object or point in space or time. It can refer to the physical location of an object or place on Earth, such as a building or city, or the position of an astronomical object in the universe.
In a mathematical context, location is often expressed as a set of coordinates or points in a coordinate system.
Location is an important concept in various fields, including geography, cartography, astronomy, and mathematics, and is often used to describe and locate objects, places, or events in a precise and accurate manner.
To know more about Location related questions, visit:
https://brainly.com/question/11718756
#SPJ1
the answer i need is Another pair it could be (_,10)
and every y value is _ every x value
Answer:
Another order pair could be (30,10).
Every y value is "one-third of" every x value.
what is the probability of reaching into the box and randomly drawing a chip number that is smaller than 212 ? express your answer as a simplified fraction or a decimal rounded to four decimal places.
The probability of reaching into the box and randomly drawing a chip number that is smaller than 212 is 0.9378
First, we should find the total number of chips in the box. The box contains 225 chips numbered from 1 to 225. Therefore, the probability of reaching into the box and randomly drawing a chip number that is smaller than 212 is 211/225.
The probability can be expressed as a simplified fraction or a decimal rounded to four decimal places. The probability is rounded to four decimal places is 0.9378.
The probability of drawing a chip number that is smaller than 212 from the box is 211/225 or 0.9378 (rounded to four decimal places).
To learn more about probability refer :
https://brainly.com/question/21200970
#SPJ11
Data were collected on the fiber diameter and the fleece weight of wool
Regression lines can be used to visually represent the relationship between the independent( x) and dependent( y) variables on a chart. This is point C
Point C represents the residual of the circled point in Graph 1.
The regression line is occasionally called the" best-fit line" because it's the line that stylish fits through the points. This is the line that minimizes the gap between factual results and anticipated results.
There are two charts:
In graph 1, one point is circled.
The five points labeled A, B, C, D and E can be set up in Graph 2.
Find which point on path 2 represents the remainder of the circled point on path 1
Point C represents the remainder of the circled point in Graph 1
Question
fiber diameter and fleece weight data were collected from a sample of 20 lamb. The data is presented in the graphs below. The plot is a scatterplot of pile weight versus fiber periphery, with the corresponding least places regression line indicated. Map 2 is a identified plot of residuals versus prognosticated values. Map 1 chief Weight 35 40 30 Fiber Periphery Map 2 Fiber Periphery Map 2 Remaining chief Weight 1. D 7 8 9 10 11 12 Anticipated chief Weight 13 14 15 A point is filled in the map and the points marked with ABC are displayed in the map 2 which represents the graph the rest of the circled point on the graph? Peille coat weight In Diagram 1, one point is circled. Five points, labeled A, B, C, D, and E, are linked in map
2 Which point on Chart 2 is the residual for the circled point on Chart 1?
To know more about Regression Line,
brainly.com/question/14984940
#SPJ4
cosθ(1+tanθ)=cosθ+sinθ
Answer:
Starting with the left side of the equation:
cosθ(1+tanθ) = cosθ(1+sinθ/cosθ) (since tanθ = sinθ/cosθ)
= cosθ + sinθ
Therefore, the left side of the equation is equal to the right side of the equation, which means that cosθ(1+tanθ) = cosθ+sinθ is true.
X is a Poisson RV with parameter 4. Y is a Poisson RV with parameter 5. X and Y are independent. What is the distribution of X+Y? A. X+Y is an exponential RV with parameter 9 B. X+Y is a Poisson RV with parameter 4.5 C. X+Y is a Poisson RV with parameter 9
The distribution of C) X+Y is a Poisson RV with parameter 9.
This is because the sum of two independent Poisson distributions with parameters λ1 and λ2 is also a Poisson distribution with parameter λ1 + λ2. Therefore, X+Y follows a Poisson distribution with parameter 4+5 = 9.
Option A is incorrect because an exponential distribution cannot arise from the sum of two Poisson distributions. Option B is also incorrect because the parameter of X+Y is not the average of the parameters of X and Y. Option C is the correct answer as explained above.
In summary, the distribution of X+Y is Poisson with parameter 9.
For more questions like Poisson distributions click the link below:
https://brainly.com/question/17280826
#SPJ11
3. The length of one leg of a 45-45-90 triangle is 7 m. What is the length of the other leg and the length of the hypotenuse?
The other leg is 7 m, and the hypotenuse is 7 m.
The other leg is 7 m, and the hypotenuse is 14 m.
O The other leg is 7√2 m, and the hypotenuse is 7 m.
The other leg is 7 m, and the hypotenuse is 7√2 m.
Answer: The other leg is 7 m, and the hypotenuse is 7√2 m.
Step-by-step explanation:
This is just a rule that in all cases, the two legs are equal and the hypotenuse is equal to the length of a leg times the square root of 2.
Hope this helps :)
1.3. The Dow Jones average (a stock market share index) dropped from 12 837 to 12 503 in one week in July 2012. 1.3.1. Calculate the drop in the share index. 1.3.2. If the price continued to drop at the same rate, calculate the Dow Jones average after 4 more weeks.
The Dow Jones average after 4 more weeks of the same rate of drop would be 11,167.
What is average?
Average, also known as mean, is a measure of central tendency that represents the typical or common value in a set of data. It is calculated by adding up all the values in a data set and then dividing the sum by the total number of values.
To calculate the drop in the Dow Jones average, we subtract the initial value from the final value:
Drop = Final Value - Initial Value
Drop = 12,503 - 12,837
Drop = -334
So the Dow Jones average dropped by 334 points in one week.
If the price continued to drop at the same rate for 4 more weeks, then the total drop after 5 weeks would be:
Total Drop = 5 x Drop
Total Drop = 5 x (-334)
Total Drop = -1670
To calculate the Dow Jones average after 4 more weeks, we need to subtract the total drop from the initial value:
New Dow Jones Average = Initial Value - Total Drop
New Dow Jones Average = 12,837 - 1,670
New Dow Jones Average = 11,167
Therefore, the Dow Jones average after 4 more weeks of the same rate of drop would be 11,167.
To know more about average and given link below -
https://brainly.com/question/24057012
#SPJ1
True or false (with a counterexample if false)?(a) The vectors that are not in the column space form a subspace.(b) If contains only the zero vector, then is the zero matrix.(c) The column space of equals the column space of .(d) The column space of equals the column space of .
(a) False; A subspace is formed by the set of vectors that do not belong to the column space.
(b) True; If the matrix contains solely the zero vector, then it is the zero matrix.
(c) True; The column space of a particular matrix is equivalent to the column space of another specified matrix.
(d) False; The column space of one matrix is identical to the column space of another matrix.
(a) False; if A = [1 0; 0 0], then the column space of A is { e1 }, where e1 is the standard unit vector in the plane. If v is not in the column space of A, but w is not in the column space of A, then v + w is not in the column space of A.
Therefore, the set of vectors that are not in the column space of A does not form a subspace.
(b) True; if every vector in Rn is in the null space of A, then in particular, every standard unit vector is in the null space of A. Thus, the ith column of A is zero for i = 1, . . . , n, so A is the zero matrix.
(c) True; the column space of A is generated by the columns of A, while the column space of AB is generated by linear combinations of the columns of AB. By definition of matrix multiplication, the columns of AB are linear combinations of the columns of A, so the column space of AB is a subspace of the column space of A. Conversely, let b be in the column space of A. Then there is an x in Rm such that Ax = b. Thus, ABx = A(Bx), so b is in the column space of AB. Therefore, the column space of A is a subspace of the column space of AB. Hence the two column spaces are equal.
(d) False; if A = [1 0; 0 0] and B = [0 0; 0 1], then the column space of A is { e1 }, while the column space of B is { e2 }. The column space of AB is { 0 }, so it is not equal to either column space.
To know more about column space: https://brainly.com/question/31061677
#SPJ11
Two percent of all individuals in a certain population are carriers of a particular disease. A diagnostic test for this disease has a 95% detection rate for carriers and a 3% detection rate for noncarriers. Suppose the test is applied independently to two different blood samples from the same randomly selected individual. A. What is the probability that both tests yield the same result?
The probability that both tests yield the same result is 7.7%.
Simply put, probability is the likelihood that something will occur. When we don't know how an occurrence will turn out, we can discuss the likelihood or likelihood of various outcomes. Statistics is the study of occurrences that follow a probability distribution.
It is predicated on the likelihood that something will occur. The justification for probability serves as the primary foundation for theoretical probability. For instance, the theoretical chance of receiving a head when tossing a coin is 12.
Let's break it down:-
90% don't have of those 99%
5% will be positive
1% positive of those 1%
90% positive
10% negative.
Well we need it to be the same, so 99*(.05*.05+.95*.95)+.01*(.9*.9+.1*.1)= 90.4%.
If both tests are positive, we have:-
0.99*0.05*0.05 and 0.01*0.9*0.9 for being positive, so :-
[tex]\frac{carrier}{positive} = \frac{0.01*0.9*0.9}{(0.99*0.05*0.05+0.01*0.9*0.9)} = 7.7[/tex]
hence, the probability of the two tests yield the same result is 7.7%.
To know more about probability go through:-
https://brainly.com/question/13604758
#SPJ4
c) assume that 25% of the defendants in the state are innocent. in a certain year 200 people put on trial. what is the expected value and variance of the number of cases in which juries got the right decision?
The expected value of cases in which juries got the right decision is 150, and the variance is 375.
1. Since 25% of defendants in the state are innocent, that means that 75% of the defendants are guilty.
2. This means that in the given year, 150 out of the 200 people put on trial will be guilty.
3. Thus, the expected value of cases in which juries got the right decision is 150.
4. The variance of the number of cases in which juries got the right decision is calculated by taking the expected value and subtracting it from the total number of people put on trial, which is 200.
5. The result of the calculation is 375, which is the variance of cases in which juries got the right decision.
See more about variance at: https://brainly.com/question/9304306
#SPJ11
A man saves Rs.7,500 in first year. In each year after the first, he saves Rs. 2,000 more than he does in the preceding year. When will he be saved the total amount Rs.1,65,000? Find it.
Answer:
aeqtq34t
Step-by-step explanation:
q34t35t134
7. What is the greatest whole number that satisfies the inequality
3x - 1 < 8 ?
Answer:
2
Step-by-step explanation:
3(2)-1<8
6-1<8
5<8
if you go up to 3 as the whole number then the equation ends up 8<8, and the sign is less than (<) not less than or equal to.
So 2 would be the answer.
simplest form please
hmmm what we do is firstly make the recurring part a variable, then we multiply it such that, the recurring digits move over from the decimal point to the left, so we'd multiply it by some power of 10, in this case power of 3, because we have three digits to move, 246, so let's do all that
[tex]0.\overline{246}\hspace{5em}x=0.\overline{246}\hspace{5em} \begin{array}{llll} 1000x&=&246.\overline{246}\\\\ &&246+0.\overline{246}\\\\ &&246+x \end{array} \\\\[-0.35em] ~\dotfill\\\\ 1000x=246+x\implies 999x=246\implies x=\cfrac{246}{999}\implies x=\cfrac{82}{333}[/tex]
True or False, suppose a hypothesis test was performed with a level of significance of 0.05. then if the null hypothesis is actually true, then there is a 5% chance that the researcher will end up accepting the alternative hypothesis in error.
If the null hypothesis is actually true, then there is a 5% chance that the researcher will end up accepting the alternative hypothesis in error, the statement is true.
If a hypothesis test is performed with a level of significance of 0.05 and the null hypothesis is actually true, then there is a 5% chance (or 0.05 probability) that the researcher will reject the null hypothesis and accept the alternative hypothesis in error.
This is known as a Type I error. The Type I error rate is determined by the level of significance of the test.
In other words, if the null hypothesis is true, but the researcher concludes that it is false (i.e., accepts the alternative hypothesis), this is an incorrect decision that is made with a probability of 0.05 or 5%, assuming a significance level of 0.05.
To learn more about alternative hypothesis:
https://brainly.com/question/25263462
#SPJ11
A road running north to south crosses a road going east to west at the point P. car A is driving north along the first road, and an airplane is flying east above the second road. At a particular time the car is 15 kilometers to the north of P and traveling at 55 km/hr, while the airplane is flying at speed 185 km/hr 10 kilometers east of P at an altitude of 2 km. How fast is the distance between the car and the airplane changing? 148.38 km/hr Draw a sketch that shows the roads intersecting at point P, Car A, and the airplane. Label the horizontal distance from P to the airplane x and the vertical distance from P to Car A as y, and let z represent the altitude of the plane. What equation relates the distance from Car A to the plane with x, y and z? Using implicit differentiation, solve for the appropriate derivative that answers the "how fast" question.
The distance between car A and the airplane is changing at a rate of 148.38 km/hr.
To better understand this answer, we can draw a sketch of the scenario and label the variables accordingly.
Let x represent the horizontal distance from P to the airplane, y the vertical distance from P to car A, and z the altitude of the airplane. The equation that relates the distance from car A to the plane can be written as:
[tex]d^2 = (x^2 + y^2 + z^2)[/tex]
We can use implicit differentiation to solve for the derivative of this equation with respect to time, which answers the “how fast” question. The derivative of the equation is:
x = 185t (horizontal distance from P to airplane)
y = 15 - 55t (vertical distance from P to car)
z = 2 (altitude of airplane)
Now we can substitute these expressions into our equation for the distance between the car and the airplane, and take the derivative with respect to time:
distance between car and airplane = sqrt((185t)^2 + (15 - 55t)^2 + 2^2)
d/dt(distance between car and airplane) = d/dt(sqrt((185t)^2 + (15 - 55t)^2 + 2^2))
= 1/2 * (185^2 * 2t + (15 - 55t)(-55)) / sqrt((185t)^2 + (15 - 55t)^2 + 2^2)
Evaluating this expression at t = 0 (the time when the car is at its closest point to the airplane), we get:
d/dt(distance between car and airplane) = 1/2 * (185^2 * 2(0) + (15 - 55(0))(-55)) / sqrt((185(0))^2 + (15 - 55(0))^2 + 2^2)
= 1/2 * (-825) / sqrt(15^2 + 2^2)
= -412.5 / sqrt (229)
The negative sign indicates that the distance between the car and the airplane is decreasing, as expected. Finally, we can take the absolute value of this expression to get the speed at which the distance is changing:
d/dt (distance between car and airplane)| = 412.5 / sqrt (229) ≈ 148.38 km/hr.
For more similar questions on differentiation
https://brainly.com/question/30572604
#SPJ11
gamboa, inc. sold 110 selfie sticks for $10 each. if producing the selfie sticks had an average cost of $3 , how much profit did the company make?
The company made a profit of $770
How much profit did the company make?Profit is the difference between revenue and costs. In this scenario, the revenue from selling 110 selfie sticks is $10 × 110 = $1100.
Therefore, the costs of producing the same number of selfie sticks are
110 × $3 = $330
So, the profit that Gamboa, Inc. made is
$1100 - $330 = $770.
As we can see, based on the number of selfie sticks together with their production, we managed to obtain a profit of $770.
Hence, the company made a profit of $770.
See more about profit at: https://brainly.com/question/1078746
#SPJ11
parabola a and parabola b both have the x-axis as the directrix. parabola a has its focus at (3,2) and parabola b has its focus at (5,4). select all true statements.
a. parabola A is wider than parabola B
b. parabola B is wider than parabola A
c. the parabolas have the same line of symmetry
d. the line of symmetry of parabola A is to the right of that of parabola B
e. the line of symmetry of parabola B is to the right of that of parabola A
In the following question, among the given options, Option (b) "Parabola B is wider than Parabola A" and option (d) "The line of symmetry of Parabola A is to the left of that of Parabola B" are the true statements.
The following statements are true about the parabolas: c. the parabolas have the same line of symmetry, and d. the line of symmetry of parabola A is to the right of that of parabola B.
Parabola A and Parabola B have the x-axis as the directrix, with the focus of Parabola A at (3,2) and the focus of Parabola B at (5,4). As the focus of Parabola A is to the left of the focus of Parabola B, the line of symmetry for Parabola A is to the right of the line of symmetry of Parabola B.
Parabola A and Parabola B may have different widths, depending on their equation, but this cannot be determined from the information given.
For more such questions on Parabola
https://brainly.com/question/29635857
#SPJ11
The length of a rectangle is five times its width. If the permiteter of the rectangle is 72 m, find it’s area
Let's the width of the given rectangle be x. Then the length will be 5x.
We know that,
[tex] \bf \implies Perimeter_{( Rectangle)} = 2 ( Length + Width) [/tex]
[tex] \sf \implies 2( x+5x) = 72 [/tex]
[tex] \sf \implies 2\times 6x = 72 [/tex]
[tex] \sf \implies 12x =72 [/tex]
[tex] \bf \implies x = 6 [/tex]
Hence, the width of the rectangle is 6 m and the length is 5*6 =30 m
[tex]\bf\implies Area_{( Rectangle) }= Length \times Width [/tex]
[tex] \bf \implies Area _{( Rectangle)} = 30 \times 6 [/tex]
[tex] \bf \implies Area _{( Rectangle) }= 180 m^2 [/tex]
Therefore, the area of the given rectangle is 180 metre square.
Gavin drank nine 8-ounce glasses of water
today. How many quarts of water did he
drink?
Answer: Gavin drank 2.25 quarts today.
Step-by-step explanation: First you need to find out how many quarts are in 8 ounces -the answer to that is 0.25. Then you will need to times that by 9.
Please help physics due in 30 mins!!!!
The work done is 3750 Joules on the box.
What is the recipe for work completed?To quantitatively express this concept, the work W is equal to the force f times the distance d, or W = fd. If the force is applied at an angle to the displacement, the work is W = fd cos.t.
The equation W = F * d * cos(theta), where W is the work done, F is the force applied, d is the displacement of the item, and theta is the angle between the force and displacement vectors, can be used to solve this problem.
The force in this instance is 500 N, and the distance is provided as 15 m, and the 60 degree angle between the vectors of force and displacement.
So, by changing these numbers in the equation, we obtain:
W = 500 N x 15 m x cos (60 degrees)
We can simplify this to: Applying the trigonometric identity cos(60 degrees) = 1/2
W = (500 N) * (15 m) * (1/2)
W = 3750 J.
To know more about work done visit:-
https://brainly.com/question/29050812
#SPJ1
A number is increased by 70% and the result is 42.5. What is the number?
A. 29.75
B. 27.5
C. 25
D. 17
E. 12.75
Construct triangle ABC, in which AB = 5 cm, angle BAC = 95° and
angle ABC = 34°.
Measure the length of BC.
Give your answer to 1 d.p.
The length of BC is approximately 3.5 cm
What is a triangle?A triangle is described as a closed, 2-dimensional shape with 3 sides, 3 angles, and 3 vertices.
We construct triangle ABC, through the following steps:
Draw a line segment AB of length 5 cm.At point A, draw a ray that makes an angle of 95 degrees with AB.At point B, draw a ray that makes an angle of 34 degrees with AB.The intersection point of the two rays is point C, which is the third vertex of the triangle.The law of sines states that the ratio of the length of a side of a triangle to the sine of the angle opposite that side is the same for all three sides of the triangle.
Mathematically shown as:
a/sin(A) = b/sin(B) = c/sin(C)
5/sin(95) = BC/sin(34)
BC = (5*sin(34))/sin(95)
BC ≈ 3.5cm
In conclusion, the length of BC is approximately 3.5 cm.
Learn more about the law of sines at: https://brainly.com/question/24138896
#SPJ1
Question 70 Approximately 38 percent of people living in on Whave the blood type o positive. A random sample of 100 people from region veled people in the samed the Contra Hypothesis test to vestigate whether the percent of people in thegion with positive blood is different from that of tegen wWwth of the following is the property for the H-0.35 He0.35 с Hep -0.35 D Hp 0.35 H: 0.38
Answer: The null hypothesis (H0) is the statement that there is no significant difference between the proportion of people in the region with the O positive blood type (p) and the population proportion (p0) of 0.38.
The null hypothesis is usually denoted as:
H0: p = p0
In this case, p0 is given as 0.38, so the correct answer is:
H0: p = 0.38
Step-by-step explanation:
How to find x? I am not sure what equation to use to get the correct answer?
To compare the pain control offered by two different analgesics in pediatric patients, the authors selected the Wong-Baker FACES pain rating scale as the primary end point. Before beginning the clinical trial, the authors sought to validate this ordinal scale by showing a correlation with a previously validated visual analog scale. Which one of the following statistical test is most appropriate to assess whether a correlation exists between these two measurements?
A. Pearson correlation
B. Analysis of variance (ANOVA)
C. Spearman rank correlation
D. Regression analysis
The most appropriate statistical test to assess whether a correlation exists between the Wong-Baker FACES pain rating scale and a previously validated visual analog scale is the (C) Spearman rank correlation.
What is correlation?Correlation refers to the connection between two variables in which a modification in one variable is linked to a modification in the other variable. Correlation can be positive or negative.
Spearman rank correlation- A non-parametric approach to test the statistical correlation between two variables is Spearman rank correlation, also known as Spearman's rho or Spearman's rank correlation coefficient. This is based on the ranks of the values rather than the values themselves. The results are denoted by the letter "r".
The formula for Spearman's rank correlation coefficient:
Rs = 1 - {6Σd₂}/{n(n₂-1)}
Where, Σd₂ = the sum of the squared differences between ranks.
n = sample size
Thus, the most appropriate statistical test to assess whether a correlation exists between these two measurements is the (C) Spearman rank correlation.
To know more about the "Spearman rank correlation": https://brainly.com/question/14646555
#SPJ11
Which state is located at point C?
a map of the United States. New York, Indiana, and Kansas are labeled. There is an A marking the state south of New York along the Atlantic coast. There is a B marking the state east of Indiana. There is a C marking the state north of Indiana. There is a D marking the state northeast of Kansas. There is an E marking the state south of Kansas.
New Jersey
Ohio
Michigan
Iowa
According to the information provided, the state is at point C, Michigan.
Based on the information provided, the state located at point C is Michigan.
What is logical thinking?Logical reasoning consists of aptitude questions that require logical analysis to arrive at a suitable solution. Most of the questions are conceptual, the rest are unconventional.
Logical thinking follows he is divided into two types.
Oral reasoning:
It is the ability to logically understand concepts expressed in words and solve problems. Oral reasoning tests your ability to extract information and meaning from sentences. Non-verbal thinking:
It is the ability to logically understand concepts represented by numbers, letters, and combinations of numbers and words and solve problems. Nonverbal reasoning tests your ability to reason and guide the logic and implications of information in a problem.
Much of the logic curriculum can be classified into his two types above.
To know more about Logical reasoning visit:
https://brainly.com/question/14458200
#SPJ1
Exponential for (0,35), (1,50), (2,100), (3,200), (4,400)
The exponential equation that fits the data points (0,35), (1,50), (2,100), (3,200), and (4,400) is y = 35 * (10/7)^x.
To find an exponential equation that fits the given data points, we can use the general form of an exponential equation:
y = a * b^x
where y is the dependent variable (in this case, the second coordinate of each data point), x is the independent variable (the first coordinate of each data point), a is the initial value of y when x is 0, and b is the growth factor.
Using the given data points, we can create a system of equations:
35 = a * b^0
50 = a * b^1
100 = a * b^2
200 = a * b^3
400 = a * b^4
The first equation tells us that a = 35, since any number raised to the power of 0 is 1. We can then divide the second equation by the first equation to get:
50/35 = b^1
Simplifying, we get:
10/7 = b
We can now substitute a = 35 and b = 10/7 into the remaining equations and solve for y:
y = 35 * (10/7)^x
This is the exponential equation that fits the given data points. We can use it to find the value of y for any value of x. This equation gives us a way to predict the value of y for any value of x.
To learn more about exponential click on,
https://brainly.com/question/11776332
#SPJ4
=
Suppose that a new employee starts working at $7.32 per hour and receives a 4% raise each year. After time t, in years, his hourly wage is given by the equation y = $7.32(1.04). Find
the amount of time after which he will be earning $10.00 per hour.
After what amount of time will the employee be earning $10.00 per hour?
years (Round to the nearest tenth of a year as needed.)
HELP PLEASE
Using the equation [tex]y = $7.32(1.04)^t[/tex], the amount of time after which the employee will be earning $10.00 is about 9.64 years, or approximately 9 years and 8 months.
What is an equation?
A mathematical definition of an equation is a claim that two expressions are equal when they are joined by the equals sign ("=").
We can start by setting up the equation for the employee's hourly wage y after t years -
[tex]y = $7.32(1.04)^t[/tex]
We want to find the amount of time t after which the employee will be earning $10.00 per hour, so we can set y equal to 10 and solve for t -
[tex]10 = $7.32(1.04)^t[/tex]
Dividing both sides by $7.32, we get -
[tex]1.367 = 1.04^t[/tex]
Taking the natural logarithm of both sides, we get -
[tex]ln(1.367) = ln(1.04^t)[/tex]
Using the property of logarithms that [tex]ln(a^b) = b ln(a)[/tex], we can simplify the right-hand side -
ln(1.367) = t ln(1.04)
Dividing both sides by ln(1.04), we get -
t = ln(1.367)/ln(1.04) ≈ 9.64
Therefore, the employee will be earning $10.00 per hour after about 9.64 years.
To learn more about equation from the given link
https://brainly.com/question/28871326
#SPJ1
Levi's investment account accrues interest biannually. The function below represents the amount of money in his account if the account is left untouched for
t years.
f(t) = 2000 (1.03)2t
The amount of money in the account ( increases or decreases )
by (2 , 3 or 103)
% (every six months, each year, or every two years)
Answer:
The amount of money in the account increases by 3% every six months, or biannually.
To see why, we can break down the function f(t) = 2000(1.03)^(2t):
The base amount in the account is $2000.The term (1.03)^(2t) represents the interest accrued over time.Since the interest is compounded biannually, the exponent of 2t indicates the number of six-month periods that have elapsed. For example, if t = 1, then 2t = 2, which means two six-month periods have elapsed (i.e., one year).
Each time 2t increases by 2, the base amount is multiplied by (1.03)^2, which represents the interest accrued over the two six-month periods.
Thus, the amount of money in the account increases by 3% every six months, or biannually.
As for the second part of the question, the amount of increase is not 2%, 3%, or 103%.