The concentration of barium ion, Ba2+, in solution is 0.010 M.a) What concentration of sulfate ion, SO42–, is required to begin precipitation of BaSO4?b) When enough SO42– has been added so that the concentration of sulfate ion in solution reaches 0.015 M, what concentration of Ba2+ will remain in solution?

Answers

Answer 1

The balanced chemical equation for precipitation of [tex]BaSO4[/tex] is:

[tex]Ba2+ (aq) + SO42- (aq) → BaSO4 (s)[/tex]. The concentration of Ba2+ remaining in solution is 7.3 × 10^-9 M.

a) To begin precipitation of BaSO4, the ion product of Ba2+ and SO42- must reach the solubility product constant, Ksp, for BaSO4. The Ksp for BaSO4 is[tex]1.1 * 10^{-10}[/tex]. [tex]Ksp = [Ba2+][SO42-][/tex] , [tex]1.1 * 10^{-10} = (0.010 M)(x M)[/tex],[tex]x = 1.1 * 10^{-8} M[/tex]. Therefore, concentration of sulfate ion required to begin precipitation of BaSO4 is [tex]1.1 * 10^{-8} M[/tex].  

b) Once  concentration of SO42- in solution reaches 0.015 M, the ion product of Ba2+ and SO42- will exceed the Ksp for BaSO4, and precipitation will occur until equilibrium is established. [tex][Ba2+][SO42-][/tex] = (0.010 M)(1.1 × 10^-8 M) = 1.1 × 10^-10.

Let x be the concentration of Ba2+ that remains in solution after precipitation: [tex]Ksp = [Ba2+][SO42-][/tex] ,[tex]1.1 * 10^{-10} = (x M)(0.015 M),[/tex] [tex]x = 7.3 * 10^{-9 }M.[/tex]

To know more about precipitation, here

brainly.com/question/18109776

#SPJ4


Related Questions

what is the hybridization of the oxygen atom in a water molecule?

Answers

During the formation of a water molecule, we focus on the oxygen atom. In hybridization of H2O, the oxygen atom is sp3hybridized.

A chemistry student is given 650. mL of a clear aqueous solution at 33.° C. He is told an unknown amount of a certain compound X is dissolved in the solution. The student allows the solution to cool to 17.9 C. At that point, the student sees that a precipitate has formed. He pours off the remaining liquid solution, throws away the precipitate, and evaporates the water from the remaining liquid solution under vacuum. More precipitate forms. The student washes dries and weighs the additional precipitate. It weighs 0.150 kg.-Using only the information solubility above, can you calculate solubility of X in water at 17.°cYes/ No.-If you said yes, calculate itBe sure your answer has a unit symbol and the right number of significant digits

Answers

Yes, the solubility of X in water at 17°C can be calculated using the given information. The solubility of X is 0.00118 kg/L.

What is the solubility of compound?

To determine the solubility, we need to assume that all of the X is dissolved in the solution and use the solubility of X at 33°C.

Solubility of X at 33°C = 12.0 g/L = 0.012 kg/L

Volume of solution = 650 mL = 0.65 L

Therefore, the initial mass of X in the solution is: 0.012 kg/L × 0.65 L = 0.0078 kg

Now we need to determine the final mass of X in the solution after cooling. Since a precipitate has formed, we know that some of the X has come out of solution. Let's assume that all of the additional precipitate that formed came from X. Therefore, the final mass of X in the solution is: 0.0078 kg - 0.150 kg = 0.00765 kg = 7.65 g

Now we can use the final mass of X and the volume of the remaining liquid solution to calculate the solubility of X at 17°C.

Solubility of X at 17.9°C = mass of X / volume of solution at 17.9°C = 7.65 g / 0.65 L = 11.8 g/L = 0.0118 kg/L

Therefore, the solubility of X in water at 17°C is 0.0118 kg/L.

Learn more about Solubility here:

https://brainly.com/question/28170449

#SPJ11

a saturated a g c l solution was analyzed and found to contain 1.25 x 10-5 m a g ions. use this value to calculate the k s p of a g c l .

Answers

AgCl is an insoluble salt. In water, it ionizes into Ag+ and Cl- ions. The equilibrium constant for the dissociation reaction of AgCl is known as Ksp.

The molar solubility of a sparingly soluble salt is defined as the amount of the salt dissolved in water to form a saturated solution at a given temperature. The Ksp expression can be used to determine the solubility of a sparingly soluble salt like AgCl.

Saturated solution refers to a solution that contains the maximum amount of solute that can be dissolved at a given temperature.

To calculate the Ksp of AgCl in this solution, the molar solubility must first be determined. The number of Ag+ ions in solution is given as 1.25 x 10^-5 M.

According to the balanced equation:

AgCl ↔ Ag+ + Cl-

Ksp = [Ag+][Cl-] = (1.25 x 10^-5 M)(1.25 x 10^-5 M)

Ksp = 1.56 x 10^-10

Since, the value of Ksp is extremely small, it indicates that AgCl is a sparingly soluble salt.

To learn more about "Ksp", visit:https://brainly.com/question/25134328

#SPJ11

why don’t we change the subscripts in order to balance an equation?

Answers

Answer:

Because if we changed the subscript number we will change the identity of the compound and we Well creat a new compound  or substance different than what they gave us to balance also the law of conservation of mass states that the mass cannot be created nor destroyed.

Explanation:

where are positively charged particles found in an atom?

Answers

The positively charged particles found in nucleus of an atom and those are called protons.

Protons are found in the nucleus of the atom. This is a tiny, dense region at the center of the atom. Protons have a positive electrical charge of one (+1) and a mass of 1 atomic mass unit which is about 1.67×10−27 kilograms. There are 2 types of particles in the nucleus. Those particles are neutrons and protons. The positively particle called as protons have unit positive charge and neutrons are neutral in charge.

An atom is defined as a particle of matter that uniquely defines a chemical element. This consists of a central nucleus that is surrounded by one or more negatively charged electrons. It is evident that the nucleus is positively charged and contains one or more relatively heavy particles known as protons and neutrons.

To learn more about Protons

https://brainly.com/question/1481324

#SPJ4

True or False : A scientific law is different from a scientific theory because it describes something in nature without attempting to explain it.

Answers

Answer:

True

hope it helps you [and others too] ;)

what is the [H3O+] and the pH of a buffer that consists of 0.41 M HNO2 and 0.66 M KNO2? (Ka of HNO2=7.1x10^-4)

Answers

The pH of the buffer can be calculated using the equation pH=-log[H3O+], which gives pH = -log(2.9x10^-4) = 3.54.

PH is the degree of acidity or alkalinity of a solution, expressed in base 10 as the negative logarithm of the H ion concentration. 

The [H3O+] and pH of a buffer that consists of 0.41 M HNO2 and 0.66 M KNO2 can be calculated using the Ka value of HNO2, which is 7.1x10^-4.

The [H3O+] is equal to the concentration of the acidic component (HNO2) times Ka, so [H3O+]= 0.41 M * 7.1x10^-4 = 2.9x10^-4 M.

The pH of the buffer can be calculated using the equation pH=-log[H3O+], which gives pH = -log(2.9x10^-4) = 3.54.

Learn more about the pH of a buffer: brainly.com/question/22390063

#SPJ11

suppose a .14 m aqueous solution of oxalic acid () is prepared. calculate the equilibrium molarity of . you'll find information on the properties of oxalic acid in the aleks data resource.

Answers

The equilibrium molarity of H+ ions in the given solution of oxalic acid is 0.316 M.

Oxalic acid is a diprotic acid, which means that it can donate two hydrogen ions (H+) to a solution. The chemical formula of oxalic acid is H2C2O4. Given that a 0.14 m aqueous solution of oxalic acid (H2C2O4) is prepared, we need to calculate the equilibrium molarity of H+ ions. We can use the ionization reaction of oxalic acid to determine the concentration of H+ ions in solution.

H2C2O4(aq) → 2 H+(aq) + C2O42-(aq)

The equilibrium constant expression for this reaction is given by:

K = [H+]^2 [C2O42-] / [H2C2O4]

Since oxalic acid is a weak acid, we can assume that the concentration of oxalate ions (C2O42-) is negligible compared to the initial concentration of oxalic acid. Therefore, we can simplify the expression as follows:

K = [H+]² / [H2C2O4]

We can also express the concentration of oxalic acid in terms of H+ ions using the dissociation constant (Ka) for the first ionization step of oxalic acid:

H2C2O4(aq) + H2O(l) ⇌ H3O+(aq) + HC2O4-(aq)

Ka = [H3O+][HC2O4-] / [H2C2O4]

Since we are dealing with a dilute solution, we can assume that the concentration of water is constant and cancel it out from the equation. We can also assume that the concentration of HC2O4- ions is negligible compared to the concentration of H2C2O4. Therefore, we can simplify the expression as follows:

Ka = [H3O+]² / [H2C2O4]

Rearranging the equation, we get:

[H3O+] = √(Ka [H2C2O4])

Substituting the given values, we get:

[H3O+] = √(5.9 × 10^-2 × 0.14)

[H3O+] = 0.316 M

Therefore, the equilibrium molarity of H+ ions in the given solution of oxalic acid is 0.316 M.

More on equilibrium molarity: https://brainly.com/question/15213840

#SPJ11

The colorless, odorless gas that is naturally occurring decay product of uranium?

Answers

The gas you are referring to is radon. It is a radioactive gas that occurs naturally in the earth's soil and rocks, particularly in areas with high levels of uranium deposits.

Radon is colorless, odorless, and tasteless, which makes it difficult to detect without special equipment. Radon can enter buildings through cracks in the foundation, walls, and floors, and can accumulate to dangerous levels, especially in poorly ventilated areas. Exposure to high levels of radon gas has been linked to an increased risk of lung cancer, particularly in smokers. It is important to test for radon levels in homes and take steps to reduce levels if they are found to be too high.

To know more about Radon, here

brainly.com/question/13526655

#SPJ4

Consider the following thermochemical equation: C(s) + O2(g) → CO2(g) ΔH = −393 kJ CO(g) + ½O2(g) → CO2(g) ΔH = −294 kJ What is the enthalpy change for the following related thermochemical equation C(s) + ½O2(g) → CO(g) Group of answer choices a. −687 kJ b. –99 kJ c. +99 kJ d. +687 kJ

Answers

Option (b) is correct. The enthalpy change for the thermochemical equation, C (s) + ½O2(g) → CO2(g) is -99 KJ.

Hess's law states that the total heat changes occurring during a chemical reaction are independent of path.

Thermochemical equation are defined as the chemical equation which includes the term 'Heat' are referred to as thermochemical equations. The thermochemical equation include chemical equations for endothermic reactions and exothermic reaction. The thermochemical equations are,

C(s) + O2(g) → CO2(g),  ΔH = −393 kJ

CO(g) + ½O2(g) → CO2(g), ΔH = −294 kJ

Adding both the solution we get,

C (s) + ½O2(g) → CO2(g)

so, ΔH = 294 kJ - 393 kJ

           = -99 KJ

The standard enthalpy change of reaction for a chemical reaction can be defined as the the difference between total reactant and total product molar enthalpies calculated for substances in their standard states.

To learn more about enthalpy change

https://brainly.com/question/14047927

#SPJ4

How many covalent bonds are generally formed by atoms with five valence electrons?

Answers

Atoms with five valence electrons typically form three covalent bonds.

This is because atoms tend to form enough bonds to complete their outermost shell, which typically requires eight valence electrons (the octet rule). In the case of an atom with five valence electrons, it needs to gain three electrons to complete its outer shell. However, it is often easier for the atom to share three electrons with other atoms through covalent bonding, resulting in three covalent bonds being formed. This is commonly seen with elements such as nitrogen (N) and phosphorus (P), which have five valence electrons in their outermost shells.

To know more about electrons click here:

brainly.com/question/12001116

#SPJ4

An element has an electron configuration of [Ar]4s^2 3d^10 4p^5. Which of the following is/are TRUE about the element? Select ALL statements that are true about the element. a. The element is Se. b. The element is a halogen c. The element has one fewer electron than the following noble gas. d. When the element reacts with a metal, the elements tends to gain one electron to form an anion with a 1-charge.

Answers

An element with an electron configuration of [Ar]4s²3d¹⁰4p⁵ is Bromine(Br). The statements that are true about the element are B, C, and D.

A. The element is Bromine(Br). Bromine is a nonmetal and belongs to the family of elements called halogens, which is group 17. It is situated in period four of the periodic table. The electron configuration of Se is [Ar]4s²3d¹⁰4p⁵, which shows that it contains seven valence electrons.

Therefore, the statement "The element is Se" is incorrect.

B. Br is a halogen because it belongs to group 17, and all halogens possess a similar electron configuration, which is ns²np. Therefore, the element is a halogen and the statement is true.

C. Br has one less electron than the previous noble gas (Krypton) because Br has 35 electrons, whereas Kr has 36 electrons. So the statement "The element has one fewer electron than the following noble gas" is true.

D. The tendency of the element Br to gain one electron when it reacts with the metal to form a negatively charged ion is due to its valence electron configuration. Because Br contains seven valence electrons, it prefers to gain 1 electron and form an anion with a -1 charge. Therefore statement D is also true.

Overall, All the statements are TRUE except for statement A.

To know more about Bromine(Br), refer here:

https://brainly.com/question/29028678#

#SPJ11

Buffer solutions containing Na2CO3 and NaHCO3range in pH from 10.0 to 11.0. The chemical equation below represents the equilibrium between CO32- and H2O, and the table lists the composition of four different buffer solutions at 25°C.CO32- (aq) + H2O (l) ⇄ HCO3- (aq) + OH- (aq);​Kb= 2.1 × 10-4 at 25°CBuffer [NaHCO3] Na2CO3 pH1 0.150 0.100 ?2 0.200 0.200 10.323 0.100 0.100 10.324 0.100 0.200 ?Which of the following chemical equilibrium equations best shows what happens in the buffer solutions to minimize the change in pH when a small amount of a strong base is added?A. H3O+(aq) + OH−(aq) ⇄ 2 H2O(l)B. HCO3−(aq)+ OH−(aq) ⇄ CO32−(aq) + H2O(l)C. CO32−(aq) + H3O+(aq) ⇄ HCO3−(aq) +H2O(l)D. CO32−(aq) + H2O(l) ⇄ HCO3−(aq)+ OH−(aq)

Answers


The correct answer is D. [tex]CO_3^{2-}(aq) + H_ 2O(l) \rightleftharpoons  HCO_3^-(aq) + OH^-(aq)[/tex]. This chemical equilibrium equation best shows what happens in the buffer solutions to minimize the change in pH when a small amount of a strong base is added.

Buffer solutions containing [tex]Na_2CO_3[/tex] and [tex]NaHCO_3[/tex] range in pH from 10.0 to 11.0. The chemical equation given represents the equilibrium between [tex]CO_3^{2-}[/tex] and [tex]H_2O[/tex], and the table lists the composition of four different buffer solutions at 25°C. When a small amount of a strong base is added to a buffer solution, the pH will start to increase. This equation helps to minimize the change in pH by shifting the equilibrium so that the concentration of [tex]HCO_3^-[/tex] is increased. This decreases the concentration of [tex]OH^-[/tex] and the pH increases less than it would if the equilibrium had not shifted.

To know more about buffer solutions, click on below link:

https://brainly.com/question/24262133

#SPJ11

in the catalytic triad, what is the purpose of the aspartic acid residue?

Answers

In the catalytic triad, the purpose of the aspartic acid residue is to activate the serine residue by removing a hydrogen ion (H+) from the serine residue, causing it to become a highly reactive alkoxide ion.

The catalytic triad is a trio of amino acid residues that play a significant role in catalyzing reactions in a diverse range of enzymes. The residues found in the triad are typically present in the active site of an enzyme, where they work together to catalyze a reaction.Aside from the aspartic acid residue, the catalytic triad also contains two other amino acid residues: serine and histidine. These three residues work together to carry out the enzyme's function. In the case of the aspartic acid residue, its primary role is to activate the serine residue by removing a hydrogen ion (H+) from the serine residue, causing it to become a highly reactive alkoxide ion. This highly reactive ion then goes on to react with the enzyme's substrate, resulting in the desired reaction.Catalytic triads are found in a variety of enzymes, including chymotrypsin, trypsin, and elastase. Each of these enzymes has a slightly different catalytic triad that is uniquely suited to catalyzing the specific reaction the enzyme carries out.

For more such questions on aspartic acid , Visit:

https://brainly.com/question/15062960

#SPJ11

Tartaric acid is found in many fruits, including grapes, and is partially responsible for the dry texture of certain wines. Calculate the pH and the tartrate ion 1C4H4O6 2-2 concentration for a 0.250 M solution of tartaric acid, for which the acid-dissociation constants. Did you have to make any approximations or assumptions in your calculation?

Answers

No approximations or assumptions need to be made in the calculation of the pH and the tartrate ion 1C4H4O6 2-2 concentration for a 0.250 M solution of tartaric acid.

The pH and the tartrate ion 1C4H4O6 2-2 concentration of a 0.250 M solution of tartaric acid can be calculated using the acid-dissociation constants and the Henderson-Hasselbalch equation. The acid-dissociation constants (Ka1 and Ka2) of tartaric acid are 1.14x10-2 and 5.01x10-5, respectively.


The pH of the solution can be calculated using the Henderson-Hasselbalch equation: pH = pKa + log([base]/[acid]) where [base] is the concentration of the conjugate base (the tartrate ion) and [acid] is the concentration of the acid (tartaric acid). Since the solution is 0.250 M in tartaric acid, [acid] = 0.250 M and [base] = 0.250 M - [tartrate ion], which can be calculated using the Ka1 and Ka2 values.


For Ka1, the tartrate ion 1C4H4O6 2-2 concentration can be calculated as 0.250 M - 0.250 * 1.14x10-2 = 0.249 M. For Ka2, the tartrate ion 1C4H4O6 2-2 concentration can be calculated as 0.250 M - 0.250 * 5.01x10-5 = 0.249 M.


Using the Henderson-Hasselbalch equation, the pH of the solution can be calculated as pH = pKa + log([base]/[acid]). The pKa values of tartaric acid are 3.92 and 5.63 respectively. Therefore, for Ka1, the pH of the solution can be calculated as pH = 3.92 + log(0.249/0.250) = 3.91, and for Ka2, the pH of the solution can be calculated as pH = 5.63 + log(0.249/0.250) = 5.63.


No approximations or assumptions need to be made in the calculation of the pH and the tartrate ion 1C4H4O6 2-2 concentration for a 0.250 M solution of tartaric acid, as the Henderson-Hasselbalch equation and the acid-dissociation constants of tartaric acid can be used.

Learn more about Tartaric acid: brainly.com/question/24178503

#SPJ11

a scientist dilutes 50.0 ml of a ph 5.85 solution of hcl to 1.00 l. what is the ph of the diluted solution (kw

Answers

A scientist dilutes 50.0 ml of a pH 5.85 solution of HCl to 1.00 L. The pH of the diluted solution (Kw = 1.0 × 10-14) is approximately 1.85.

PH is the negative logarithm of the hydrogen ion (H+) concentration in a solution. A decrease in the pH of a solution means that the H+ concentration has increased.

The following formula can be used to calculate the pH of a solution:

pH = -log[H+]

The number of hydrogen ions per liter of solution is referred to as the hydrogen ion concentration [H+]. In addition, the hydroxide ion (OH-) concentration may be calculated using the following formula:

[H+] [OH-] = 1.0 × 10-14

The pH of the solution can be calculated using the equation given below:

5.85 = -log[H+]5.85 = -log[H+]H+ = 1.38 x 10-6

The number of moles of HCl in 50 mL of a 5.85 pH solution is 0.00138 mol. The number of moles of HCl after dilution to 1.00 L can be determined using the equation below:

n1V1 = n2V2

0.00138 mol x 50 ml = n2 x 1.00 LN2 = 0.0000276 mol

After dilution, the HCl concentration is 0.0000276 moles/liter. The hydroxide ion concentration [OH-] in the solution can be determined using the formula given below:

[H+] [OH-] = 1.0 × 10-140.0000276 [OH-] = 1.0 × 10-14[OH-] = 3.6 x 10-10 mol/L

The pH of the solution can be calculated using the equation given below:

pH = -log[H+]pH = -log(3.6 × 10-10)pH = 9.44

The pH of the diluted solution (Kw = 1.0 × 10-14) is approximately 1.85.

Learn more about the pH of a solution at brainly.com/question/30934747

#SPJ11

What is the hydronium ion concentration of a solution formed from 150.0 mL of 0.250 M ammonia, NH3, and 100.0 mL of 0.200 M hydrochloric acid, HCl? Kb for ammonia is 1.80 x 10-5

Answers

The solution has a hydronium ion concentration of 1.78 x 10-10 M.

How many hydronium ions are there in an HCl solution?

Because of this, the concentration of HCl determines the hydronium ion concentration, which is 0.10 M in HCl and 0.10 M in HCOOH.

We must first formulate the balanced chemical equation for the reaction between ammonia and hydrochloric acid in order to tackle this issue:

NH3 + HCl → NH4+ + Cl-

To accomplish this, we must determine how many moles of each reagent are present in the solution:

moles of NH3 = 0.250 M x 0.1500 L = 0.0375 moles

moles of HCl = 0.200 M x 0.1000 L = 0.0200 moles

Secondly, we must determine how many moles of NH4+ and Cl- ions were generated by the reaction:

moles of NH4+ = 0.0200 moles

moles of Cl- = 0.0200 moles

We can figure out how many NH4+ ions are present in the solution:

[ NH4+ ] = moles / volume = 0.0200 moles / 0.250 L = 0.080 M

We must take into account the fact that NH4+ is a weak acid and will undergo the following reaction with water in order to determine the concentration of hydronium ions:

NH4+ + H2O ⇌ H3O+ + NH3

This reaction's equilibrium constant is represented by the following symbol:

Kw / Kb = Ka

To find Ka, we can rearrange this equation as follows:

Ka = Kw / Kb = (1.0 x 10-14) / (1.80 x 10-5), which is 5.56 x 10-10.

The equilibrium expression for the reaction between NH4+ and water may now be written as follows:

Ka = [H3O+][NH3]/[NH4+].

To solve for [H3O+], we can rewrite the equation above as follows:

[ H3O+ ] = (Ka x [ NH4+ ]) / [ NH3 ] = (5.56 x 10^-10) x (0.080 M) / (0.250 M) = 1.78 x 10^-10 M

To know more about hydronium visit:-

https://brainly.com/question/28609181

#SPJ1




1. How can food handlers reduce bacteria to safe levels when prepping vegetables for hot holding?

O Cook the vegetables to the correct internal temperature.

O Prep root vegetables before prepping green, leafy vegetables

Answers

Option (A) is correct. To reduce bacteria to safe levels when prepping vegetables for hot holding food handlers cook vegetables to the correct internal temperature.

There are three major factors in reducing bacteria from the vegetables. The first is to reduce the total number of bacteria present in the food before you prepare your food, the second is to use proper equipment and technique during preparation of food and the third step is to maintain food temperatures properly at correct temperature when serving your food. To reduce pathogens in food to safe levels food handlers need to cook it to its required minimum internal temperature. Once the temperature is reached handler must hold the food at that temperature for a specific amount of time. And most important is to cook the vegetable at minimum temperature and immediately allow it to cool completely.

To learn more about Bacteria in vegetables

https://brainly.com/question/30414616

#SPJ4

The complete question is,

How can food handlers reduce bacteria to safe levels when prepping vegetables for hot holding?

A.  Cook the vegetables to the correct internal temperature.

B. Prep root vegetables before prepping green, leafy vegetables

Density is a physical property that relates the mass of a substance to its volume. a) Calculate the density (in g/mL) of a liquid that has a mass of 0.155 g and a volume of 0.000275 L.
a- calculate the density (in g/mL) of a liquid has mass of 0.155 g and a volume of 0.000275L
b) Calculate the volume in milliliters of a 4.83-g sample of a solid with a density of 3.03 g/mL.
c) Calculate the mass of a 0.285-mL sample of a liquid with density 0.789 g/mL.

Answers

The density of the liquid is 0.562 g/mL, the volume in milliliters is about 1.59 mL, and the mass of 0.285mL sample is about 0.224 grams.

What is density?

The formula for density is as follows:

Density = mass/volume

Density = 0.155 g/0.000275 L= 562.1 g/L

We know that, 1 L = 1000 mL

So, Density = 562.1 g/L × 1 L/1000 mL= 0.562 g/mL

The density of the given liquid is 0.562 g/mL.

Density = mass/volume

Rearranging the above formula we get,

Volume = mass/density

Density = 3.03 g/mL, Mass = 4.83 g

Volume = 4.83 g/3.03 g/mL= 1.59 mL

Therefore, the volume in milliliters of a 4.83 g sample of a solid with a density of 3.03 g/mL is 1.59 mL.

Mass = density × volume

M = D × V

Density = 0.789 g/mL, Volume = 0.285 mL

Mass = 0.789 g/mL × 0.285 mL= 0.224 g

Therefore, the mass of a 0.285-mL sample of a liquid with density 0.789 g/mL is 0.224 g.

Learn more about Density here:

https://brainly.com/question/29775886

#SPJ11

Classify the compounds as a strong acid, weak acid, strong base, or weak base.Strong acid ______Weak acid ______Strong base ______Weak base ______Aswer Bank : HI, HCN, NH3, Sr(OH)2, H2S03, H2S04, LiOH

Answers

Strong acid: H₂SO₄

Weak acid: H₂SO₃, HCN

Strong base: Sr(OH)₂, LiOH

Weak base: NH₃, H₂S

Acids are chemical compounds that, when dissolved in water, release hydrogen ions (H+). Their sour taste, capacity to make litmus paper red, and propensity to combine with bases to produce salts and water are what distinguish them. Depending on how much an acid dissociates in water, it can be characterised as either a strong or weak acid.

In water, strong acids like sulfuric and hydrochloric acid totally dissociate to create H+ ions and anions. In water, weak acids like acetic acid and carbonic acid only partially dissociate.

Acids play an important role in many chemical reactions and are used in various applications such as food and beverage processing, pharmaceuticals, and cleaning agents.

Learn more about acid here:

https://brainly.com/question/14072179

#SPJ4

JOHN NEWLANDS REASON OF FAILURE

Answers

Answer: The law was applicable only to calcium. It could not include other elements beyond calcium.  With the discovery of rare gases, it was the ninth element and not the eighth element having similar chemical properties.

Explanation:

YOUR WELCOME

Find the pH at four points and sketch the titration curve for the titration of 20.0 mL of 0.200 M hypobromous acid, HBrO, with 0.140 M potassium hydroxide, KOH. K, = 2.5x10-9 In order to receive points you must show your work in detail and label each part of the titration curve with a definition of the significance of that particular.

Answers

The curve will have the points (0, 8.04), (halfway, 8.04), (equivalence point, 8.04), and (endpoint, 14). The points can then be connected to create a graph of the pH over the course of the titration.

At the start of the titration, before any KOH has been added, the concentration of HBrO is 0.200 M and the concentration of KOH is 0.000 M, so the pH can be calculated as:

pH = 8.04 + log ([0.000]/[0.200]) = 8.04 + log (0) = 8.04.

When the equivalence point is reached, the concentrations of the two reactants are equal, so the pH can be calculated as:

pH = 8.04 + log ([0.200]/[0.200]) = 8.04 + log (1) = 8.04.

At the end of the titration, when all of the KOH has been added, the concentration of KOH is 0.140 M and the concentration of HBrO is 0.000 M, so the pH can be calculated as:

pH = 14 + log ([0.140]/[0.000]) = 14 + log (infinity) = 14.

Using these four points, a titration curve can be drawn to represent the pH of the solution throughout the titration. The curve will have the points (0, 8.04), (halfway, 8.04), (equivalence point, 8.04), and (endpoint, 14). The points can then be connected to create a graph of the pH over the course of the titration.

Learn more about pH: brainly.com/question/172153

#SPJ11

Conclude Is the element silicon likely to form ionic or covalent bonds? Explain.

Answers

Silicon is likely to form covalent bonds, due to silicon has four valence electrons on its outermost shell. So, silicon can form covalent bond by sharing electrons.

which type of reaction involves the breakdown of a polymer into monomers

Answers

The type of reaction that involves the breakdown of a polymer into monomers is called hydrolysis.

Hydrolysis is a chemical reaction in which water molecules are used to break the covalent bonds that hold together the monomers in a polymer chain. During hydrolysis, water molecules are added to the polymer, causing the bonds between the monomers to break apart, and the polymer to break down into its constituent monomers. This process is the reverse of dehydration synthesis, which is the chemical reaction used to build polymers from monomers by removing water molecules.

Hydrolysis is an important process in biology, as it is used to break down complex molecules such as carbohydrates, proteins, and nucleic acids into simpler components that can be used by the cell.

To learn more about monomers refer to:

brainly.com/question/30266034

#SPJ4

Consider the molecular structure for linuron, an herbicide, provided in the questions below. a) What is the electron domain geometry around nitrogen-1? b) What is the hybridization around carbon-1? c) What are the ideal bond angles > around oxygen-1? d) Which hybrid orbitals overlap to form the sigma bond between oxygen-1 and nitrogen-2? e) How many pi bonds are in the molecule?

Answers

Answer:

a)Electron domain geometry around nitrogen-1 is tetrahedral

b)Hybridization around carbon-1 is sp2

c)The ideal bond angles around oxygen-1 are 120 degrees.

d)Hybrid orbitals overlapping to form the sigma bond between oxygen-1 and nitrogen-2 is sp2 hybrid orbitals from carbon-1 and nitrogen-2

e)There are no pi bonds in the molecule.

Explanation:

a) Electron domain geometry around nitrogen-1 is tetrahedral.The molecular structure of linuron is as follows: There are three carbon atoms in a row. The terminal carbon atom is linked to a methyl group and a chlorine atom. The carbon atom next to it is linked to the nitrogen atom in the herbicide. The third carbon atom is linked to two oxygen atoms, with one of them being a hydroxyl group.

b) Hybridization around carbon-1 is sp2.The carbon atom adjacent to the nitrogen atom is known as carbon-1. This carbon atom is joined to three other atoms. It has an sp2 hybridization since it has three regions of electron density.

c) The ideal bond angles around oxygen-1 are 120 degrees.Bond angles are the angles between two adjacent lines in a Lewis structure. Because oxygen-1 is linked to two other atoms, it has a bent geometry. Its ideal bond angle is 120 degrees.

d) Hybrid orbitals overlapping to form the sigma bond between oxygen-1 and nitrogen-2 is sp2 hybrid orbitals from carbon-1 and nitrogen-2.The sigma bond is the strongest type of covalent bond. Sigma bonds are created when the overlapping orbitals are arranged in a straight line. The sigma bond between oxygen-1 and nitrogen-2 is formed by the overlap of sp2 hybrid orbitals from carbon-1 and nitrogen-2.

e) There are no pi bonds in the molecule.There are no pi bonds in the molecule because all of the bonds are sigma bonds. The molecule consists of single bonds only.

To know more tetrahedral. about refer here: https://brainly.com/question/18612295#
#SPJ11

When we say that liquid water is unstable on Mars, we mean that
a) a cup of water would shake uncontrollably
b) it is impossible for liquid water to exist on the surface
c) any liquid water on the surface would quickly either freeze or evaporate

Answers

When we say that liquid water is unstable on Mars, we mean that any liquid water on the surface would quickly either freeze or evaporate. The correct option is c.

Mars is the fourth planet from the sun in the Solar System, with a diameter of around 6,779 kilometers (4,212 miles) and a day length of around 24.6 hours. It's also known as the Red Planet because of its reddish appearance. It is a terrestrial planet, which means that it is similar in structure and composition to Earth.The temperature on Mars:The temperature on Mars can be as cold as -143 degrees Celsius and as high as 35 degrees

Mars also has a very low atmospheric pressure, making it difficult for humans to live on the planet. "Water is a vital component for life as we know it, but it is also a challenging molecule to handle becau'se of its complicated properties. On Mars, the presence of water is vital to determining whether or not the planet could have supported life in the past, now, or in the future. Therefore, the correct option is c.

Know more about atmospheric pressure here:

https://brainly.com/question/30166820

#SPJ11

Give the approximate bond angle for a molecule with a tetrahedral shape.
90o
105o
109.5o
120o
180o

Answers

A molecule with a tetrahedral shape has an approximate bond angle of 109.5 degrees.  The correct option is 3.

This is due to the arrangement of the four electron pairs around the central atom, which maximizes the distance between them to minimize repulsion and achieve a stable configuration. In a tetrahedral molecule, the central atom is located at the center of a tetrahedron, with four surrounding atoms or lone pairs located at each of the tetrahedron's vertices. The four bonds or lone pairs form a tetrahedral arrangement around the central atom, with bond angles of 109.5 degrees between them. Examples of tetrahedral molecules include methane (CH4) and carbon tetrafluoride (CF4). Option 3 is correct.

To know more about tetrahedral molecule, here

brainly.com/question/13849344

#SPJ4

--The complete question is, Give the approximate bond angle for a molecule with a tetrahedral shape.

1. 90o

2. 105o

3. 109.5o

4. 120o

5. 180o ---

When drawing the Lewis structure of the H,CO molecule, the structure should represent a total of 12 valence electrons. Based on the elements present, a total of electrons are needed for a stable structure. Thus, there should be bonds in the structure, The ____... - atom should be in the center with ____... and _____.

Answers

When drawing the Lewis structure of the H, CO molecule, the structure should represent a total of 12 valence electrons. The carbon atom should be in the center with one hydrogen and one oxygen.

What is Lewis structure?

A Lewis structure is a diagram that shows the lone pairs and bonding pairs of electrons in a molecule or ion. Valence electrons are the outermost electrons of an atom that take part in chemical reactions. They are placed on the Lewis structure's outermost orbitals.

The Lewis dot structure of CO and H are given below: Carbon has four valence electrons, and oxygen has six valence electrons. Hydrogen has one valence electron. The total valence electrons for CO and H can be calculated as follows:

Valence electrons for CO: Valence electrons for C = 4

Valence electrons for O = 6

Total valence electrons for CO = 4 + 6 = 10

Valence electrons for H : Valence electrons for H = 1

Total valence electrons for H₂O = 1 × 2 = 2

Total valence electrons for H, CO = 10 + 2 = 12

In the Lewis structure of H, CO, the carbon atom should be in the center with one hydrogen and one oxygen. The carbon atom, which is the least electronegative element, should be in the center since it has to make the most bonds. One oxygen and one hydrogen atom should be bonded to the carbon atom. There should be one double bond between carbon and oxygen.

Learn more about Lewis structure here:

https://brainly.com/question/20300458

#SPJ11

A container of nitrogen gas contains 0.55 mol at 8.0 atm and 45C, and it has a volume of 2.0L. What volume will 1.20 mol of nitrogen have at 7.0 atm and 45C?
A 0.45L
B 4.5L
C 9.5L
D 0.95L

Answers

Answer:

B - 4.5 L.

Explanation:

Took the test.

Which one of the following compounds behaves as an acid when dissolved in water?
A. RaO
B. RbOH
C. C4H10
D. HI

Answers

The compound that behaves as an acid when dissolved in water is HI (hydrogen iodide). Thus, the correct option will be D.

What is an acid?

HI is an Arrhenius acid, meaning it produces hydrogen ions (H⁺) in aqueous solution. The compound that behaves as an acid when dissolved in the water Hydrogen iodide (HI). HI is a diatomic molecule and a colorless gas at room temperature.

Hydrogen iodide is a strong acid when dissolved in water, with a pKa of −10. Hydrogen iodide is also used as a reducing agent in organic chemistry in the production of iodinated compounds.

Learn more about Acids here:

https://brainly.com/question/29796621

#SPJ11

Other Questions
____ Sie die Avocado an der Teller und Prfferen Sie der Pfeffer Must be a verb. What is the quotient of 6 and x less than the product of 5 and y. by ensuring that nominal payments keep pace with rising prices, market participants can protect themselves from In his speech, Michael reviews for the city's exploratory committee the best locations for the new farmers' market it wishes to implement. He discusses two downtown locations and two locations in the city's parks. He presents the information in a fair and unbiased manner, in the interest of empowering the committee to choose freely and intelligently the best site to recommend to city council. By doing so, he is _____.sharing ideasarticulating alternativesproviding a demonstrationshaping listener perceptions If Rich decides to make no payments during the 4. 5 years, the interest will be capitalized at the end of that period. A. What will the new principal be when he begins making loan payments? b. How much interest will he pay over the llfe of the loani 1. Suppose Rich only paid the interest during his 4 years in school and th So the Guinness World Record declares 20-year-old Iranian as the worlds shortest man but I thought Tom Cruise was the shortest man in the world, IM CONFUSED : / ?????? wal-mart, mcdonald's and alamo are all examples of companies following which of porter's competitive strategies? Question 1Share ValuationThe board of Santova Ltd is exploring ways to expand the number of shares outstanding in an effort to reduce themarket price per share to a level that the firm considers more appealing to investors. The options under consideration are a 20% stock dividend and, alternatively, a 5-for-4 stock split. At the same time, the firms equity account and other per-share information are as follows:Preferred stock0Common stock ( 100,000 shares at R1 par)100000Paid-in capital in excess of par900000Retained earnings700000Total stockholders' equity1700000Share priceR30EPSR3,60DPSR1,08P/ER8,33a) Show the effects on the equity account, EPS and P/E ratio of a 20% of a stock dividend. After stock 20% dividendPreferred stockCommon stock ( )[2]Paid-in capital in excess of par[2]Retained earnings[2]Total stockholders' equity0[2]Change in price[1]Net Income[1]Change in EPS[1]b) Show the effect on the equity accounts, EPS and P/E ratio of a 5-for-4 stock split. After 5-for-4 stock splitPreferred stockCommon stock ( )[2]Paid-in capital in excess of par[2]Retained earnings[2]Total stockholders' equity0[2]Change in price[1]Change in EPS[1]Change in the number of Outstanding shares. the four basic financial statements are the income statement, statement of retained earnings, balance sheet, and statement of cash flows. group of answer choices true false Hi I need help on this question It's teacher conferences week and I want to get this done before this week what is the domain of the function {(-1,-1),(0,1),(2,-1)}a) (-1,1)b) (-1,0,2)c) (-1,0,1,2)d) {(-1,-1),(0,1),(2,-1)} As the Allies began closing in on Germany near the end of WWII, what happened to Hitler? A pollster recorded the size of households in hisarea. The table below shows the distribution for820 families. How many of the 820 families has atleast 3 people in the household?Number of people ina household123456 or more% of Households27%33%24%10%4%2% knowing that solid sodium acetate is soluble and that acetic acid dissociates into hydrogen ions and acetate ions, why will sodium acetate influence the equilibrium of acetic acid dissociation? is the genetic code is said to be because more than one codon can specify the same amino acid? Fractions MUST SHOW WORKING!! For the spur gearset with phi = 20degree, while avoiding interference, find: The smallest pinion tooth count that will run with itself. The smallest pinion tooth count at a ratio me = 2.5 and the largest gear tooth count possible with this pinion. The smallest pinion that will run with a rack. Given the function y = 4x + 3 do the following. Find its average rate of change: from x = 2 to x = 5 I think the answer is a but I am not quite sure what are the major growth and developmental milestones, by month, that the nurse should monitor for when assessing an infant?