Answer:
A) Maximum error = 170.32 cm³
B)Relative error = 0.0575
Step-by-step explanation:
A) Formula for circumference is: C = 2πr
Differentiating with respect to r, we have;
dC/dr = 2π
r is small, so we can write;
ΔC/Δr = 2π
So, Δr = ΔC/2π
We are told that ΔC = 0.5.
Thus; Δr = 0.5/2π = 0.25/π
Now, formula for Volume of a sphere is;
V(r) = (4/3)πr³
Differentiating with respect to r, we have;
dV/dr = 4πr²
Again, r is small, so we can write;
ΔS/Δr = 4πr²
ΔV = 4πr² × Δr
Rewriting, we have;
ΔV = ((2πr)²/π) × Δr
Since C = 2πr, we now have;
ΔV = (C²/π)Δr
ΔV will be maximum when Δr is maximum
Thus, ΔV = (C²/π) × 0.25/π
C = 82 cm
Thus;
ΔV = (82²/π) × 0.25/π
ΔV = 170.32 cm³
B) Formula for relative error = ΔV/V
Relative error = 170.32/((4/3)πr³)
Relative error = 170.32/((4/3)C³/8π³)
Relative errror = 170.32/((4/3)82³/8π³)
Relative error = 170.32/2963.744
Relative error = 0.0575
A box is filled with 8 blue cards, 6 red cards, and 6 yellow cards. A card is chosen at a random from the box. What is the probability that the card is not red ? Write your answer as a fraction.
Answer:
14/20 or .7 or 70%
Step-by-step explanation:
Total Number of cards: 20
Number of Red cards: 6
The leftover cards: 20 -6 = 14
The probability of not getting a red = 14/20
14/20 as a decimal = 14/20 = 70/100 = .7
14/20 as a percent = 14/20 = 70/100 = 70%
somebody please help
PLS HELP :Find all the missing elements:
Answer:
[tex]\large \boxed{\mathrm{34.2}}[/tex]
Step-by-step explanation:
[tex]\sf B= arcsin (\frac{b \times sin(A)}{a} )[/tex]
[tex]\sf B= arcsin (\frac{7 \times sin(40\°)}{8} )[/tex]
[tex]\sf B = 0.59733 \ rad = 34.225\°[/tex]
Find the sum (x^3+5x^2+3x-7)+(8x-6^2+6)
Find the difference (7x-3x^2+2)-(x^3+5x^2+2x-5)
Answer:
x^3 - x^2 + 11x - 1
-x^3 - 8x^2 + 5x + 7
Step-by-step explanation:
Find the sum
(x^3+5x^2+3x-7)+(8x-6x^2+6)
=x^3+5x^2+3x-7+8x-6x^+6
Collect like terms
=x^3 +5x^2-6x^2+3x+8x-7+6
Add the like terms
= x^3 - x^2 + 11x - 1
Find the difference (7x-3x^2+2)-(x^3+5x^2+2x-5)
(7x-3x^2+2)-(x^3+5x^2+2x-5)
= 7x-3x^2+2-x^3-5x^2-2x+5
Collect like terms
= -x^3-3x^2-5x^2+7x-2x+2+5
Add the like terms
= -x^3 - 8x^2 + 5x + 7
Which is the zero of the function f(x)=(x+3) (2x-1)(x+2) ?
Answer:
x= -3 x = 1/2 x=-2
Step-by-step explanation:
f(x)=(x+3) (2x-1)(x+2)
Set equal to zero
0 =(x+3) (2x-1)(x+2)
Using the zero product property
x+3 =0 2x-1 =0 x+2 =0
x= -3 2x =1 x = -2
x= -3 x = 1/2 x=-2
simplify use the multiplication rule
Answer:
3
Step-by-step explanation:
[tex] \sqrt[4] {27} \cdot \sqrt[4] {3} = [/tex]
[tex] = \sqrt[4] {27 \cdot 3} [/tex]
[tex] = \sqrt[4] {3^3 \cdot 3^1} [/tex]
[tex] = \sqrt[4] {3^4} [/tex]
[tex] = 3 [/tex]
donald is a taxi driver. for each ride in the taxi, the cost, c, is given by c = 500+130d, where c is in cents and d is the distance of the ride, in miles. what is the meaning of the value 500 in this equation? a) donald charges 500 cents per mile b) donald drives 500 customers per day c) donald charges at least 500 cents per taxi ride d) donald charges at most 500 cents per taxi ride
can u go to my page real quick and answer my question pls
A certain game involves tossing 3 fair coins, and it pays .14 for 3 heads, .06 for 2 heads, and .01 for 1 head. The expected winnings are?
Answer:
Total expected amount = $0.04375
Step-by-step explanation:
We need to calculate probability of getting heads on every combination of coin tosses
HHH = 1/8 = 3 heads
HHT = 1/8 = 2 heads
HTH = 1/8 = 2 heads
HTT = 1/8 = 1 head
THH = 1/8 = 2 heads
THT = 1/8 = 1 head
TTH = 1/8 = 1 head
TTT = 1/8 = 0 head
So the probability of 3 heads is 1/8 and the amount is (1/8)* 0.14 = $0.0175
Probability of 2 heads is 3/8 and the amount is (3/8) * 0.06 = $0.0225
Probability of 1 head is 3/8 and amount is (3/8) * 0.01 = $0.00375
Total expected amount = 0.00375 + 0.0225 + 0.0175
Total expected amount = $0.04375
4 Which object has the shape of a
rectangular prism?
O pencil
O book
O scissors
1/3 is part of which set of numbers?
Answer:
[tex] \frac{1}{3} [/tex]Rational number as denominator is not equal to zero and numerator is a integer.
Rational numbers. denoted by [tex] \mathbb Q[/tex]
1/3 is clearly not a natural number or integer.
it is a fraction, =0.333 , it fits the definition of rational number ([tex] \frac pq [/tex]).
Jasmine is making 150 bracelets and she needs 26 cm of silver wire for each bracelet. She will buy either the 3.7 metre or the 10.5 metre packs. She wants to pay as little as possible for the silver wire. How much will she have to pay for the silver wire to make 150 bracelets? £
Answer:
The least possible price is p = £110
Step-by-step explanation:
From the question we are told that
The number of bracelets to be made is [tex]n = 150[/tex]
The length of silver require for on bracelet is [tex]x = 26 \ cm = 0.26 \ m[/tex]
The option of silver length packs that she buys is a = 10.5 m packs
b = 3.7 m packs
Generally
1 bracelet [tex]\to[/tex] 0.26 m
150 bracelet [tex]\to[/tex] z
=> [tex]z = \frac{150 * 0.26}{1}[/tex]
=> [tex]z = 39 \ m[/tex]
Now for option a i.e 10.5 m per pack
The number of packs require is
[tex]v = \frac{z}{a}[/tex]
=> [tex]v = \frac{39}{ 10.5}[/tex]
=> [tex]v = 3.7 1[/tex]
given that the number of packs cannot be a fraction but an integer hence she needs to purchase v = 4
and that 4 packs would equal t = 4 * 10.5 = 42 meters of silver
Now for option d i.e 3.7 meters per pack
The number of packs requires is
[tex]w = \frac{z}{b}[/tex]
=> [tex]w = \frac{39}{3.7}[/tex]
=> [tex]w = 10.54[/tex]
given that the number of packs cannot be a fraction but an integer hence she needs to purchase w= 11
and that 11 packs would equal t = 11 * 3.7 = 40.7 meters of silver
So the comparing the option and option b we see that for her to pay as little as possible she needs to go for option b since option be will produce the 150 bracelet with a little excess while option a will produce the 150 bracelet with much excess
Assuming the price for the 3.7 m pack is £10
And the price for the 10.7 pack is £30
The least possible amount she would pay is
[tex]p = 10 * 11[/tex]
p = £110
what number must be added to the sequence of 7,13 and 10 to get an average of 13
Answer:
22
Step-by-step explanation:
We can write an equation:
(7+13+10+x)/4=13
x represents the number that needs to be added to get an average of
(7+13+10+x)/4=13
(30+x)/4=13
30+x=52
x=22
The number is 22
Hope this helps! Have a wonderful day :)
Was it evaluated correctly?
Explain your reasoning
help i need to turn it in a hour
Answer:
no
Step-by-step explanation:
2(4+10)+20
2(14)+20
28+20
48
i need help really bad
Answer:
see explanation
Step-by-step explanation:
If f(x) and [tex]f^{-1}[/tex] are inverse functions, then
f([tex]f^{-1}[/tex])(x) = x
Thus substitute x = [tex]f^{-1}[/tex] (x) into f(x)
f([tex]\frac{x+6}{5}[/tex] )
= 5 ([tex]\frac{x+6}{5}[/tex] ) - 6
= x + 6 - 6
= x
Thus f(x) and [tex]f^{-1}[/tex] (x) are inverse functions
Use a definition, postulate, or theorem to find the value of x in the figure described. Point E is between points D and F. If DE = x − 3, EF = 6x + 5, and DF = 8x − 3, find x. Select each definition, postulate, or theorem you will use. A)definition of segment bisector B)definition of midpoint C)Linear Pair Theorem D)Segment Addition Postulate The solution is x =?
Answer:
Option (D)
x = 5
Step-by-step explanation:
Since point E is in the mid of the segment DF,
Therefore, by the Segment addition postulate,
DF = DE + EF
Since DF = (8x - 3), DE = (x - 3) and EF = (6x + 5)
By substituting these values in the given postulate,
(8x - 3) = (x - 3) + (6x + 5)
8x - 3 = (x + 6x) + (5 - 3)
8x - 3 = 7x + 2
8x - 7x = 3 + 2
x = 5
Therefore, x = 5 will be the answer.
Answer:
x=6 and D
Step-by-step explanation:
Find the next term of the sequence.
16, 9, 2, -5,
Answer: The next term is -12.
Step-by-step explanation:
16,9,2,-5
Looking at these numbers to go from 16 to 9 you will add -7 or subtract 7 . The same way you subtract 7 from 9 to get 2 and subtract 7 from 2 to get -5.
So to determine the next term subtract 7 from -7 or add -7.
-5 - 7 = -12
0r -5 + -7 = -12
[tex] 👋 [/tex] Hello ! ☺️
Step-by-step explanation:
•Find the next term of the sequence.
Let us find the interval between two successive terms:
16 - 9= 7
-7 is therefore the common différence of this sequence. (d)
Find the next term :
-5 + (-7)= -12
[tex]\boxed{\color{gold}{N = -12}} [/tex]
[tex]<marquee direction="left" scrollamount="2" height="100" width="150">💘Mynea04</marquee>[/tex]
What is the lateral area of the drawing is it a 200 km.b. 425.c.114d.1021km
Answer:
114 km
Step-by-step explanation:
Each side is an isosceles trapezoid, so ED=2 since you would need to add 2 to each end of the bottom line to get the top line. Now use Pythagorean Theorem to get ED^2+AD^2=AE^2. Plug in your numbers to solve for AE. This is the height of each trapezoid. Then use your formula for the area of a trapezoid, (B1+B2)h/2, to get the area of each side, then multiply by 4 to get the lateral area since there are 4 sides. Remember lateral area is just the sides, then surface area is when you include the area of the two bases.
Determine the Perimeter of the shape #1.
Answer:
56.8
Step-by-step explanation:
7.1*8=56.8
Find the side of a square whose diagonal is of the given measure.
Given = 15.2 cm
Answer:
15cm
Step-by-step explanation:
First, a square's diagonal is basically the hypotenuse of a 45-45-90 triangle. a 45-45-90 triangle has a really special relationship, where the side length is x, and the diagonal is x [tex]\sqrt{2}[/tex]. So, the side length is 15.
Answer:
15cm
Step-by-step explanation:
Each corner of the square would be a 90° angle so half of that would be 45°.
[tex] \sin(45) \times 15 \sqrt{2} = 15cm[/tex]
A segment with endpoints at $A(2, -2)$ and $B(14, 4)$ is extended through $B$ to point $C$. If $BC = \frac{1}{3} \cdot AB$, what are the coordinates for point $C$? Express your answer as an ordered pair.
Answer:
C = (18, 6)
Step-by-step explanation:
You have ...
AB : BC = 1 : 1/3 = 3 : 1
(B -A) / (C -B) = 3/1 . . . . . another way to write the distance relation
B -A = 3(C -B) . . . . . . . . . multiply by (C-B)
4B -A = 3C . . . . . . . . . . . add 3B
C = (4B -A)/3 . . . . . . . . . divide by 3 to get an expression for C
C = (4(14, 4) -(2, -2))/3 = (54, 18)/3
C = (18, 6)
Find the missing side or angle.
Round to the nearest tenth.
Answer:
b=2.7
Step-by-step explanation:
using sine rule,,,
Step-by-step explanation:
So for this problem, we need the missing angle A. From there, we can use the law of sines to compute length of b.
So the sum of the interior angles of a triangle is 180. With that in mind, we can make an equation to fine the measure of angle A.
53 + 80 + A = 180
133 + A = 180
A = 47
Now that we have the angle of A, we can use the law of sines to fine the length of b.
b / sin(B) = a / sin(A)
b = sin(B) * a / sin(A)
b = sin(80) * 2 / sin(47)
b = 2.693
Now round that to the nearest tenth to get
b = 2.7
Cheers.
A factory produces plate glass with a mean thickness of 4 mm and a standard deviation of 1.1 mm. A simple random sample of 100 sheets of glass is to be measured, and the mean thickness of the 100 sheets is to be computed. What is the probability that the average thickness of the 100 sheets is less than 3.74 mm
Answer:
0.0090483
Approximately = 0.00905
Step-by-step explanation:
z = (x - μ)/σ, where
x is the raw score = 3.74
μ is the sample mean = population mean = 4 mm
σ is the sample standard deviation
This is calculated as:
= Population standard deviation/√n
Where n = number of samples = 100
σ = 1.1/√100
σ = 1.1/10 = 0.11
z = (3.74 - 4) / 0.11
z = -2.36364
Using the z score table to determine the probability,
The probability that the average thickness of the 100 sheets is less than 3.74 mm
P(x<3.74) = 0.0090483
Approximately = 0.00905
Using the normal distribution and the central limit theorem, it is found that there is a 0.0091 = 0.91% probability that the average thickness of the 100 sheets is less than 3.74 mm.
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
It measures how many standard deviations the measure is from the mean. After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.By the Central Limit Theorem, the sampling distribution of sample means for size n has standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].In this problem:
Mean thickness of 4 mm, thus [tex]\mu = 4[/tex].Standard deviation of 1.1 mm, thus [tex]\sigma = 1.1[/tex].Sample of 100, thus [tex]n = 100, s = \frac{1.1}{\sqrt{100}} = 0.11[/tex].The probability is the p-value of Z when X = 3.74, then:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{3.74 - 4}{0.11}[/tex]
[tex]Z = -2.36[/tex]
[tex]Z = -2.36[/tex] has a p-value of 0.0091.
0.0091 = 0.91% probability that the average thickness of the 100 sheets is less than 3.74 mm.
A similar problem is given at https://brainly.com/question/14228383
Stephanie is twice as old as her sister Rosa. If Stephanie is 18 years old, how old is Rosa?
Answer:
rose. is. 18/2=9 years old
Answer:
Stephanie is 18years old and she is twice older than her sister
so rosa is 18÷2(since stephanie is twice older than rosa
so rosa is 9 years old
The volume of a gas in a container varies inversely as the pressure on the gas. If a gas has a volume of 356 cubic inches under a pressure of 6 pounds per square inch, what will be its volume if the pressure is increased to 7 pounds per square inch? Round your answer to the nearest integer if necessary.
Answer:
[tex]V_2=305.14\ \text{inch}^3[/tex]
Step-by-step explanation:
The volume of a gas in a container varies inversely as the pressure on the gas.
[tex]V\propto \dfrac{1}{P}\\\\V_1P_1=V_2P_2[/tex]
If V₁ = 356 inch³, P₁ = 6 pounds/in², P₂ = 7 pounds/in², V₂ = ?
So, using the above relation.
So,
[tex]V_2=\dfrac{V_1P_1}{P_2}\\\\V_2=\dfrac{356\times 6}{7}\\\\V_2=305.14\ \text{inch}^3[/tex]
So, the new volume is [tex]305.14\ \text{inch}^3[/tex].
What is the distance between the coordinates (4,2) and (0,2)
Answer: Hi!
The distance between the coordinates (4,2) and (0,2) is 4 units.
The coordinates have the same location on the y axis, but the coordinates have different locations on the x axis. (4,2) is 4 units to the right of the x axis and 2 up on the y axis, while (0,2) goes just straight up to 2 on the y axis. If we graphed these, the two points would be aligned with each other, but a distance of 4 units would separate them horizontally.
Hope this helps!
Please answer this correctly without making mistakes
Answer:
Put 1/10 in the box.
Step-by-step explanation:
Since, Bluepoint and Milford are at same distance from Weston, the distance further than this to Oakdale is 1/10 miles.
Best Regards!
Answer:
To Oakdale to Milford:
2/5 mi
Step-by-step explanation:
1/10 + 3/20 + 3/20
1/10 = 2/20
then;
2/20 + 3/20 + 3/20 = (2+3+3)/20 = 8/20
8/20 = 2/5
In the figure below, angle y and angle x form vertical angles. Angle x forms a straight line with the 50° angle and the 40° angle. A straight line is shown and is marked with three angles. The first angle measures 50 degrees. The second angle measures 60 degrees. The third angle is labeled x. The line between the 40 degree angle and angle x extends below the straight line. The angle formed is labeled angle y. Write and solve an equation to determine the measure of angle y.
Step-by-step explanation:
sorry but u should provide with a diagram for better understanding of ur question
These box plots show daily low temperatures for a sample of days in two different towns.
A
---------------------------------------------------------
Answer: I just took the test and it is D
In order to purchase a new backyard patio in 3 years, the Robinsons have decided to deposit $1,700 in an account that earns 6% per year compounded monthly for 3 years. How much money will be in the account in 3 years?
Answer: A = 2,034.356 ≈ $2,034.36
$2,034.36 will be in the account in 3 years
Step-by-step explanation:
Given that ;
P = $1,700
Rate r = 6%
Time period (t) = 3 years
now to find how much money will be in the account in 3 years
we say;
A = P ( 1 + r/n )^nt
A = 1,700 ( 1 + 0.06/12) ¹²ˣ³
A = 1,700 ( 1.19668)
A = 2,034.356 ≈ $2,034.36
ASAP Which graph has a correlation coefficient, r, closest to 0.75?
Answer:
C. Graph C
Step-by-step explanation:
In a scatter plot, a positive correlation coefficient suggests that as one variable increases the other increases as well, or as one decreases, the other decreases.
Also, the more clustered the data points are along the line of best fit, the higher the value of the coefficient, whether positive or negative.
Graph C shows a positive correlation because as the variable on the x-axis increases, the variable on the y-axis also increases. The data points are more clustered along the line if best fit, if we draw one. This suggest a positive correlation coefficient (r) as strong as 0.75.
Graph C has a correlation coefficient, r, that is closer to 0.75.
Answer: graph A ‼️
Step-by-step explanation: