Answer:
Proved
Step-by-step explanation:
Given
[tex]n = 6[/tex] --- sides of hexagon
[tex]l = 1[/tex] --- side length
Required
Prove that for 7 points picked from the interior, 2 points are at most 1 unit apart
1. Draw a hexagon (see attachment)
2. Divide the hexagon into 6 triangles
3. Select 7 points on the hexagon
You will notice that at least 2 points will be in one of the triangle.
The maximum distance between these two points is 1 unit. This is because
1. The triangle is equilateral (all sides equal)
2. The length of each is 1 unit (in other words, the distance between points, cannot exceed the side length)
Find the length of the third side. If necessary, round to the nearest tenth
[tex]\huge\bold{Given:}[/tex]
Length of the base = 8
Length of the hypotenuse = 17
[tex]\huge\bold{To\:find:}[/tex]
The length of the third side ''[tex]x[/tex]".
[tex]\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}[/tex]
[tex]\longrightarrow{\purple{x\:=\: 15}}[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}[/tex]
Using Pythagoras theorem, we have
(Perpendicular)² + (Base)² = (Hypotenuse)²
[tex]\longrightarrow{\blue{}}[/tex] [tex]{x}^{2}[/tex] + (8)² = (17)²
[tex]\longrightarrow{\blue{}}[/tex] [tex]{x}^{2}[/tex] + 64 = 289
[tex]\longrightarrow{\blue{}}[/tex] [tex]{x}^{2}[/tex] = 289 - 64
[tex]\longrightarrow{\blue{}}[/tex] [tex]{x}^{2}[/tex] = 225
[tex]\longrightarrow{\blue{}}[/tex] [tex]x[/tex] = [tex]\sqrt{225}[/tex]
[tex]\longrightarrow{\blue{}}[/tex] [tex]x[/tex] = [tex]15[/tex]
Therefore, the length of the missing side [tex]x[/tex] is [tex]15[/tex].
[tex]\huge\bold{To\:verify :}[/tex]
[tex]\longrightarrow{\green{}}[/tex] (15)² + (8)² = (17)²
[tex]\longrightarrow{\green{}}[/tex] 225 + 64 = 289
[tex]\longrightarrow{\green{}}[/tex] 289 = 289
[tex]\longrightarrow{\green{}}[/tex] L.H.S. = R. H. S.
Hence verified.
[tex]\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{♨}}}}}[/tex]
HCF of the numbers divisible be
3 between 21 and 30 is ___
Answer:
3
Step-by-step explanation:
Numbers between 21 and 30 divisible by 3 are 24 and 27. so you get the HCF of the two.
Find the volume of the solid. PLEASE HURRY ASAP
I need help I’ll mark u as brainlest
Answer:
105 in³
Step-by-step explanation:
Volume of triangular prism = base area * height
here
base area = (10*7)/2 = 35
height = 3
Volume = 35* 3 = 105
PLEASE IM BEGGING ILL GIVE YOU BRAINIEST:
100 students are interviewed to see which of biology, chemistry or physics they prefer.
17 of the students are girls. 3 of the girls like biology best.
24 of the boys prefer physics.
8 out of the 28 who prefer chemistry are girls.
What percentage of the students prefer biology?
Answer:
32%
Step-by-step explanation:
3 girls like biology, 8 like chem and the rest prefer physics. 28 people like chemistry, and 24 boys like physics. This leaves 29 boys and 3 girls liking bio.
A rectangular storage container with an open top is to have a volume of 14 cubic meters. The length of its base is twice the width. Material for the base costs 10 dollars per square meter. Material for the sides costs 8 dollars per square meter. Find the cost of materials for the cheapest such container.
Answer:
C(min) = 277.95 $
Container dimensions:
x = 2.822 m
y = 1.411 m
h = 3.52 m
Step-by-step explanation:
Let´s call x and y the sides of the rectangular base.
The surface area for a rectangular container is:
S = Area of the base (A₁) + 2 * area of a lateral side x (A₂) + 2 * area lateral y (A₃)
Area of the base is :
A₁ = x*y we assume, according to problem statement that
x = 2*y y = x/2
A₁ = x²/2
Area lateral on side x
A₂ = x*h ( h is the height of the box )
Area lateral on side y
A₃ = y*h ( h is the height of the box )
s = x²/2 + 2*x*h + 2*y*h
Cost = Cost of the base + cost of area lateral on x + cost of area lateral on y
C = 10*x²/2 + 8* 2*x*h + 8*2*y*h
C as function of x is:
The volume of the box is:
V(b) = 14 m³ = (x²/2)*h 28 = x²h h = 28/x²
C(x) = 10*x²/2 + 16*x*28/x² + 16*(x/2)*28/x²
C(x) = 5*x² + 448/x + 224/x
Taking derivatives on both sides of the equation we get:
C´(x) = 10*x - 448/x² - 224/x²
C´(x) = 0 10x - 448/x² - 224/x² = 0 ( 10*x³ - 448 - 224 )/x² = 0
10*x³ - 448 - 224 = 0 10*x³ = 224
x³ =22.4
x = ∛ 22.4
x = 2.822 m
y = x/2 = 1.411 m
h = 28/x² = 28 /7.96
h = 3.52 m
To find out if the container of such dimension is the cheapest container we look to the second derivative of C
C´´(x) = 10 + 224*2*x/x⁴
C´´(x) = 10 + 448/x³ is positive then C has a minimum for x = 2.82
And the cost of the container is:
C = 10*(x²/2) + 16*x*h + 16*y*h
C = 39.82 + 158.75 + 79.38
C = 277.95 $
Razon trigonometría que se requiere para calcular la altura de la torre si desde una distancia de 50 m se observa su punto mas alto con un ángulo de 48
Answer:
se supone que debes usar el SINE RATIO ya que se trata del lado opuesto y la hipotenusa.
This question difficult and i need some help would anyone please help me
Answer:
x = 30
F = 130
G = 50
Step-by-step explanation:
f and g are supplementary which means they add to 180
5x-20 + 3x - 40 = 180
Combine like terms
8x - 60 = 180
Add 60 to each side
8x-60+60 = 180+60
8x = 240
Divide by 8
8x/8 = 240/8
x = 30
F = 5x -20 = 5*30 -20 = 150 -20 = 130
G = 3x-40 = 3*30 -40 = 90-40 = 50
Answer:
Because a straight line = 180, we can find x like this :
(5x - 20) + (3x - 40) = 180
Step 1 - collect like terms
8x - 60 = 180
Step 2 - Move terms around to isolate x
8x = 180 + 60
Step 3 - Divide both sides by 8
x = 30
Now you can find the value of the angles by plugging in x
∠f = (5 x 30) - 20
= 130 degrees
∠g = (3 x 30) - 40
= 50 degrees
We can check to see if this works by adding them up
130 + 50 = 180, so this is correct
Hope this helps! I would really appreciate a brainliest if possible :)
A certain game consist of rolling a single fair die and based off as a following numbers listed in the picture
Given:
A fair die is rolled.
It pays off $10 for 6, $7 for a 5, $4 for a 4 and no payoff otherwise.
To find:
The expected winning for this game.
Solution:
If a die is rolled then the possible outcomes are 1, 2, 3, 4, 5, 6.
The probability of getting a 6 is:
[tex]P(6)=\dfrac{1}{6}[/tex]
The probability of getting a 5 is:
[tex]P(5)=\dfrac{1}{6}[/tex]
The probability of getting a 4 is:
[tex]P(4)=\dfrac{1}{6}[/tex]
The probability of getting other numbers (1,2,3) is:
[tex]P(\text{Otherwise})=\dfrac{3}{6}[/tex]
[tex]P(\text{Otherwise})=\dfrac{1}{2}[/tex]
We need to find the sum of product of payoff and their corresponding probabilities to find the expected winning for this game.
[tex]E(x)=10\times P(6)+7\times P(5)+4\times P(4)+0\times P(\text{Otherwise})[/tex]
[tex]E(x)=10\times \dfrac{1}{6}+7\times \dfrac{1}{6}+4\times \dfrac{1}{6}+0\times \dfrac{1}{2}[/tex]
[tex]E(x)=\dfrac{10}{6}+\dfrac{7}{6}+\dfrac{4}{6}+0[/tex]
[tex]E(x)=\dfrac{10+7+4}{6}[/tex]
[tex]E(x)=\dfrac{21}{6}[/tex]
[tex]E(x)=3.5[/tex]
Therefore, the expected winnings for this game are $3.50.
Crystal left her running shoes at school yesterday. Today she walked 44 miles to school to get her shoes, she ran home along the same route, and the total time for both trips was 22 hours. Crystal walked and ran at constant speeds, and she ran 33 miles per hour faster than she walked.
What was Crystal’s walking speed in miles per hour?
Answer:
We can conclude that her walking speed is 2.1 miles per hour.
Step-by-step explanation:
We have the relation:
Speed = distance/time.
Here we know:
She walked for 44 miles.
And she ran along the same route, so she ran for 44 miles.
The total time of travel is 22 hours, so if she ran for a time T, and she walked for a time T', we must have:
T + T' = 22 hours.
If we define: S = speed runing
S' = speed walking
Then we know that:
"and she ran 33 miles per hour faster than she walked."
Then:
S = S' + 33mi/h
Then we have four equations:
S'*T' = 44 mi
S*T = 44 mi
S = S' + 33mi/h
T + T' = 22 h
We want to find the value of S', the speed walking.
To solve this we should start by isolating one of the variables in one of the equations.
We can see that S is already isoalted in the third equation, so we can replace that in the other equations where we have the variable S, so now we will get:
S'*T' = 44mi
(S' + 33mi/H)*T = 44mi
T + T' = 22h
Now let's isolate another variable in one of the equations, for example we can isolate T in the third equation to get:
T = 22h - T'
if we replace that in the other equations we get:
S'*T' = 44mi
(S' + 33mi/h)*( 22h - T') = 44 mi
Now we can isolate T' in the first equation to get:
T' = 44mi/S'
And replace that in the other equation so we get:
(S' + 33mi/h)*( 22h -44mi/S' ) = 44 mi
Now we can solve this for S'
22h*S' + (33mi/h)*22h + S'*(-44mi/S') + 33mi/h*(-44mi/S') = 44mi
22h*S' + 726mi - 44mi - (1,452 mi^2/h)/S' = 44mi
If we multiply both sides by S' we get:
22h*S'^2 + (726mi - 44mi)*S' - (1,425 mi^2/h) = 44mi*S'
We can simplify this to get:
22h*S'^2 + (726mi - 44mi - 44mi)*S' - (1,425 mi^2/h) = 0
22h*S'^2 + (628mi)*S' - ( 1,425 mi^2/h) = 0
This is just a quadratic equation, the solutions for S' are given by the Bhaskara's equation:
[tex]S' = \frac{-628mi \pm \sqrt{(628mi)^2 - 4*(22h)*(1,425 mi^2/h)} }{2*22h} \\S' = \frac{-628mi \pm 721 mi }{44h}[/tex]
Then the two solutions are:
S' = (-628mi - 721mi)/44h = -30.66 mi/h
But this is a negative speed, so this has no real meaning, and we can discard this solution.
The other solution is:
S' = (-628mi + 721mi)/44h = 2.1 mi/h
We can conclude that her walking speed is 2.1 miles per hour.
Kyle buys a bag of cookies that contains 4 chocolate chip cookies, 9 peanut butter cookies, 9 sugar cookies and 7 oatmeal cookies. What is the probability that Kyle randomly selects a sugar cookie from the bag, eats it, then randomly selects a peanut butter cookie
5 scientific calculators are being sold for $135 at a school supply store, Mary needs to
buy 35 calculators for her students. How much should she expect to pay at this rate?
Mary expects to pay $954 at this rate for 35 calculators
How do you find the rate per item?If you have a rate, such as a price per a certain number of things, and the denominator quantity is not 1, you may determine the unit rate or price per unit by dividing the numerator by the denominator.
How to find 35 calculator's price?Five 5 scientific calculators are being sold for $135.
then the per calculator's cost is 135/5= $27.
And Mary needs to buy 35 calculators for her students
then 35 calculators is 35×27 = $954.
Hence she expects to pay $954.
Learn more about the rate per item here: https://brainly.com/question/14469368
#SPJ2
Which of the following types of data are likely to be normally distributed? Check all that apply.
A. The number of times Americans have been struck by lightning
B. The distance of an archer's shots from the center of a target
C. The time it takes for an airliner to fly from Los Angeles to New York
D. The outcomes of rolling a single fair die
Answer:
B. The distance of an archer's shots from the center of a target
C. The time it takes for an airliner to fly from Los Angeles to New York
Step-by-step explanation:
According to the Question,
B & C should each have a range of values that cover most occurrences with outlying values that decrease in number as they move further away from the dominant value range, which is the definition of a normal distribution.
Therefore, The answer is C the time it takes for an airliner to fly from Los Angeles to New York City, and B the distance of an archer's shot from the center of a target.Ang salitang entrepreneur ay hango sa salitang na entrepende na nangangahulugan__________
Answer:
— Ang salitang entrepreneur ay hango sa salitang French na entrepende na nangangahulugang?
the average score on mid term examination of 25 students was 78.8 out 100
after the mid term exam, however, a student whose score was 41 out of 100 dropped the course. what is the average (mean) score amount of the 24 students?
Solve for 5x + 11 ≤ 67 = ?
9I will give brainliest.)
Answer:
x ≤ 11.20
Step-by-step explanation:
solve it like a regular equation
5x ≤ 67 - 11
5x ≤ 56
x ≤ 11 1/5
x ≤ 11.20
Workers employed in a large service industry have an average wage of $9.00 per hour with a standard deviation of $0.50. The industry has 64 workers of a certain ethnic group. These workers have an average wage of $8.85 per hour. Calculate the probability of obtaining a sample mean less than or equal to $8.85 per hour. (Round your answer to four decimal places.)
Answer:
The probability of obtaining a sample mean less than or equal to $8.85 per hour=0.0082
Step-by-step explanation:
We are given that
Average wage, [tex]\mu=[/tex]$9.00/hour
Standard deviation,[tex]\sigma=[/tex]$0.50
n=64
We have to find the probability of obtaining a sample mean less than or equal to $8.85 per hour.
[tex]P(\bar{x} \leq 8.85)=P(Z\leq \frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}})[/tex]
Using the values
[tex]P(\bar{x}\leq 8.85)=P(Z\leq \frac{8.85-9}{\frac{0.50}{\sqrt{64}}})[/tex]
[tex]P(\bar{x}\leq 8.85)=P(Z\leq \frac{-0.15}{\frac{0.50}{8}})[/tex]
[tex]P(\bar{x}\leq 8.85)=P(Z\leq -2.4)[/tex]
[tex]P(\bar{x}\leq 8.85)=0.0082[/tex]
Hence, the probability of obtaining a sample mean less than or equal to $8.85 per hour=0.0082
i already have A but I do not have B
Answer:
-4 , -1 , -2 , 0 , +1 , +3
Step-by-step explanation:
Answer:
the integers -4,-2,-1,0, +1, +3
Step-by-step explanation:
because when you put them in order you find which pairs are located between -5 and +5
-8,-4,-2,-1,0,+3,+8,+9
which tells you that
-4,-2,-1,0, +1, +3 are between -5 and +5
if $1995 .00 is Shared equally among 7 men, how much would each get?
Anwer:$285
Explaination: Division method
$1995.00÷7=$285
How would this quadrilateral be best classified, and what is the measure of Angle B?
Answer:
The quadrilateral is Rhombus
B=70°
Step-by-step explanation:
110+110+z+z=360
220+2z=360
2z=360-220
2z=140
z=140/2
Therefore, z=70
So Angle B=70
Since z= Angle B=Angle D
If you were given a fractional strip, that did not have any subdivisions marked like this one pictured below, how would you determine the fractional amount of the bar that is shaded?
9514 1404 393
Answer:
it depends on the accuracy and resolution required of the answer
Step-by-step explanation:
The shaded portion appears to be about half the length of the unshaded portion, suggesting the shaded amount is 1/3.
__
Using a pair of dividers, one could determine the number of times the shaded portion fits into the whole bar. Depending on how much is left over, the process could repeat to determine the approximate size of the remaining fraction relative to the bar or to the shaded portion. (Alternatively, one could replicate the length of the bar to see what integer number of shaded lengths fit into what integer number of whole lengths.)
One could measure the shaded part and the whole bar with a ruler, then determine the relative size of the shaded part by dividing the first measurement by the second. The finer the divisions on the ruler, the better the approximation will be.
Find the missing side or angle.
Round to the nearest tenth.
A=60°
b=50
C=48
a=[?]
The missing side 'a' of the triangle ABC is 96.80 units.
What is a triangle?
A triangle is a flat geometric figure that has three sides and three angles. The sum of the interior angles of a triangle is equal to 180°. The exterior angles sum up to 360°.
For the given situation,
Let ABC be the triangle and a,b,c be the respective sides of the triangle.
The diagram below shows that the triangle with their dimensions.
The dimensions are
A=60°, b=50, c=48.
The two sides and one angle of the triangle are given.
The missing side a can be found by using the law of cosines,
[tex]a=\sqrt{b^{2}+c^{2} -2abcosA }[/tex]
Substitute the above values,
⇒ [tex]a=\sqrt{50^{2}+48^{2} -2(50)(48)cos60 }[/tex]
⇒ [tex]a=\sqrt{2500+2304-4800(-0.9524)}[/tex]
⇒ [tex]a=\sqrt{2500+2304+4571.58}[/tex]
⇒ [tex]a=\sqrt{9375.58}[/tex]
⇒ [tex]a=96.82[/tex] ≈ [tex]96.80[/tex]
Hence we can conclude that the missing side 'a' of the triangle ABC is 96.80 units.
Learn more about triangles here
https://brainly.com/question/4418532
#SPJ2
What is the output of the following function for x=2
F(x)= 2x^4-x^3+5x-9
Answer:25
Step-by-step explanation:
Suppose that IQ scores have a bell-shaped distribution with a mean of 97 and a standard deviation of 17. Using the empirical rule, what percentage of IQ scores are between 46 and 148
Answer:
99.7% of IQ scores are between 46 and 148.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 97, standard deviation of 17.
What percentage of IQ scores are between 46 and 148?
97 - 3*17 = 46
97 + 3*17 = 148
Within 3 standard deviations of the mean, so:
99.7% of IQ scores are between 46 and 148.
Please help!! Will mark brainilest ☺️☺️
20. Find the measure of < DEG. (G.CO.C.10)
4
E
A. 25
B. 8
(3y + 4) A (5y-10)
C. 30
水
D
F
Click to add speaker notes
e here to search
O
c
3
PO
.
a
Answer:
A. 25
Step-by-step explanation:
From the diagram given, we can deduce that <D EG = <F EG
Therefore:
3y + 4 = 5y - 10
Collect like terms and solve for y
3y - 5y = -4 - 10
-2y = -14
Divide both sides by -2
y = -14/-2
y = 7
✔️m<D EG = 3y + 4
Plug in the value of y
m<D EG = 3(7) + 4
m<D EG = 25°
At a local concert, the cost for 3 adults and 2 children was $32.00. The cost for 8 adults and 5 children
was $84.00. Find how much it costs for an individual adult and how much it costs for an individual
child.
Adult ticket price = $
Child ticket price = $
Answer:
Hence the cost of adult tickets is $8
and the cost of child ticket is $4
Step-by-step explanation:
Given data
Let the cost per adult be x
and the cost per child be y
So
3x+2y= 32------------1
8x+5y= 84------------2
Now solving 1 and 2 simultaneously, we have
3x+2y= 32------------1X 5
8x+5y= 84------------2 X 2
15x+ 10y= 160
16x+ 10y= 168
-x+0)=-8
-x= -8
x= 8
Put x= 8 in 1 to find y
3*8+2y= 32
24+2y= 32
2y= 32-24
2y= 8
y= 4
can anyone help???????????
Given:
The distance between the two buildings on a map = 14 cm
The scale is 1:35000.
To find:
The actual distance in km.
Solution:
The scale is 1:35000.
It means 1 cm on map = 35000 cm in actual.
Using this conversion, we get
14 cm on map = [tex]14\times 35000[/tex] cm in actual.
= [tex]490000[/tex] cm in actual.
= [tex]4.9\times 1000o0[/tex] cm in actual.
= [tex]4.9[/tex] km in actual. [tex][1\text{ km}=100000\text{ cm}][/tex]
Therefore, the actual distance between two buildings is 4.9 km.
Find the constant of variation when t varies directly as s, and t =
260 when s = 65.
Answer:
4
Step-by-step explanation:
Use the direct variation equation, y = kx.
Replace y with t, and replace x with s:
y = kx
t = ks
Plug in 260 as k and 65 as s, then solve for k (the constant of variation):
t = ks
260 = k(65)
4 = k
So, the constant of variation is 4.
Which of the following is(are) the solution(s) to 17x+12= 12?
Answer:
17x+12=12
17x=12-12
17x=0
divide both sides by 17
x=0
rough check
17(0) = 12-12
0=0
I hope this helps