Answer:
4.48 years
Step-by-step explanation:
The formula for simple interest is
A = P(1+r*t), with A being the final amount, P being the initial amount, r being the interest rate, and t being the time. Plugging our values in, we get
1750 = 1500(1+0.0372 * t)
Note that 3.72 was translated into 0.0372 as changing percents to decimals requires dividing by 100
Expanding our equation, we get
1750 = 1500 + 55.8 * t
subtract 1500 from both sides to isolate the t and its coefficient
250 = 55.8 * t
divide both sides by 55.8 to get t
t = 4.48
At a bake sale, pies cost $8 each. One customer buys $64 worth of pies.
The customer bought 8 pies.
To find the total amount of pies the customer bought, simply divide 64 by 8 to recieve your answer of 8 pies.
I hope this is correct and helps!
What do you add to 2 7/8 to make 5
Answer:
2 1/8
Step-by-step explanation:
7/8 is the same as 0.875 and therefore you need 0.125 also known as 1/8 to make it a whole number. When you add it to the already existing whole 2 you get three. Subtract three from five to make two which is what you need to add on top to finally get 5.
There are 4 contestants in a beauty pageant. How many results are possible for the first, second, and third place?
Explanation:
There are 4 choices for first place, 3 choices for second place, and 2 choices for third place. Overall, there are 4*3*2 = 24 permutations.
A random sample of 35 employees of the local green technologies plant Greenies, who completed two years of college, were asked to take a basic mathematics test. The mean and standard deviation of their scores were 75.1 and 12.8, respectively. In a random sample of 50 employees who had only completed high school, the mean and standard deviation of the test scores were 72.1 and 14.6, respectively. Assuming equal variance between the two populations, can we infer at the .10 level of significance that students who completed two years of college had a higher average than students who had only completed high school
Answer:
There is no significance evidence that students who completed two years of college had a higher average than students who had only completed high school.
Step-by-step explanation:
The hypothesis :
H0 : μ1 = μ2
H1 : μ1 > μ2
Given :
n1 = 35 ; x1 = 75.1 ; s1 = 12.8
n2 = 50 ; x2 = 72.1 ; s2 = 14.6
Pooled variance = Sp² = (df1*s1² + df2*s2²) ÷ (n1 + n2 - 2)
df1 = n1 - 1 = 35 - 1 = 34
df2 = n2 - 1 = 50 - 1 = 49
(x1 - x2) ÷ Sp(√(1/n1 + 1/n2))
Sp² = (34*12.8^2 + 49*14.6^2) / (35+50-2)
Sp² = (5570.56 + 10444.84) / 83
Sp² = 192.95662
Sp = √192.95662
Sp = 13.89
Test statistic = (75.1 - 72.1) / 13.89 * √(1/35 + 1/50)
Test statistic = 3 / (13.89 * 0.2203892)
Test statistic = 0.980
df = n1 + n2 - 2
df = 35 + 50 - 2 = 83
Using the Pvalue calculator :
Pvalue(0.980, 83) = 0.165
α = 0.1
Pvalue > α ; We fail to reject the H0; and conclude that there is no significance evidence that students who completed two years of college had a higher average than students who had only completed high school.
Symposium is part of a larger work referred to as Plato's Dialogues. Wishart and Leach† found that about 21.4% of five-syllable sequences in Symposium are of the type in which four are short and one is long. Suppose an antiquities store in Athens has a very old manuscript that the owner claims is part of Plato's Dialogues. A random sample of 498 five-syllable sequences from this manuscript showed that 129 were of the type four short and one long. Do the data indicate that the population proportion of this type of five-syllable sequence is higher than that found in Plato's Symposium? Use ???? = 0.01.
Complete Question
ymposium is part of a larger work referred to as Plato's Dialogues. Wishart and Leach† found that about 21.4% of five-syllable sequences in Symposium are of the type in which four are short and one is long. Suppose an antiquities store in Athens has a very old manuscript that the owner claims is part of Plato's Dialogues. A random sample of 498 five-syllable sequences from this manuscript showed that 129 were of the type four short and one long. Do the data indicate that the population proportion of this type of five-syllable sequence is higher than that found in Plato's Symposium? Use = 0.01.
a. What is the value of the sample test statistic? (Round your answer to two decimal places.)
b. Find the P-value of the test statistic. (Round your answer to four decimal places.)
Answer:
a) [tex]Z=2.45[/tex]
b) [tex]P Value=0.0073[/tex]
Step-by-step explanation:
From the question we are told that:
Probability of Wishart and Leach [tex]P=21.4=>0.214[/tex]
Population Size [tex]N=498[/tex]
Sample size [tex]n=12[/tex]
Therefore
[tex]P'=\frac{129}{498}[/tex]
[tex]P'=0.2590[/tex]
Generally the Null and Alternative Hypothesis is mathematically given by
[tex]H_0:P=0.214[/tex]
[tex]H_a:=P>0.214[/tex]
Test Statistics
[tex]Z=\frac{P'-P}{\sqrt{\frac{P(1-P)}{n}}}[/tex]
[tex]Z=\frac{0.2590-0.214}{\sqrt{\frac{0.214(1-0.214)}{498}}}[/tex]
[tex]Z=2.45[/tex]
Therefore P Value is given as
[tex]P Value =P(Z\geq 2.45)[/tex]
[tex]P Value =1-P(Z\leq 2.45)[/tex]
[tex]P Value =1-0.99268525[/tex]
[tex]P Value=0.0073[/tex]
What is the equation of the line that is perpendicular to
and has the same y-intercept as the given line?
(0,0)
(5,0)
O y = x+1
O y = x+5
o y = 5x + 1
O y = 5x + 5
-6 -5 -4 -3 -2 -1
23
4 5 6
Mark this and return
Save and Exit
Nyt
Submit
Answer:
y = 5x + 1
Step-by-step explanation:
Given the coordinate points (0,1) and (5,0)
First, get the slope
Slope m =(0-1)/5-0
m = -1/5
Since the required line is perpendicular, then the required slope is;
M = -1/(-1/5)
M = 5
Since 1the y intecept id (0,1) i.e. 1
Required equation is y = mx+b
y = 5x + 1
This gives the required equation
Note that the coordinate (0,1) was used instead os (0,0)
Solve the given system by the substitution method.
3x + y = 8
7x - 4y = 6
Answer:
[tex]{ \tt{y = 8 - 3x}} - - - (i) \\ \\ = > 7x - 4(8 - 3x) = 6 \\ 7x - 32 + 12x = 6 \\ 19x - 32 = 6 \\ 19x = 38 \\ x = 2 \\ \\ = > y = 8 - 3(2) \\ y = 2[/tex]
Need help on last question
Answer:
Step-by-step explanation:
so let the equation equal 13
13 = 3[tex]x^{3}[/tex]-12x+13
so when ever 3[tex]x^{3}[/tex]-12x=0 then this is equation is true, soooo
x (3[tex]x^{2}[/tex] - 12) =0
so when x = 0 this is true, but also when
3[tex]x^{2}[/tex]-12=0 also
3[tex]x^{2}[/tex] = 12
[tex]x^{2}[/tex] = 4
x = 2
so when x = 2 or -2 or 0 , then this is true
There's a three in the tens
placed
The digit is the ones places is
third multiple of three
It is a two-digit number
Answer:
That number is 39
In a mixture of 240 gallons, the ratio of ethanol and gasoline is 3:1. If the ratio is to be 1:3, then find the quantity of gasoline that is to be added.
Answer:
480 gallons.
Step-by-step explanation:
Given that in a mixture of 240 gallons, the ratio of ethanol and gasoline is 3: 1, if the ratio is to be 1: 3, to find the quantity of gasoline that is to be added the following calculation must be performed:
240/4 x 3 = Ethanol
240/4 = Gasoline
180 = Ethanol
60 = Gasoline
0.25 = 180
1 = X
180 / 0.25 = X
720 = X
720 - 180 - 60 = X
480 = X
Therefore, 480 gallons of gasoline must be added if the ratio is to be 1: 3.
(10 points!) The function below has an input, x, and produces a specific output, c. (Pictured below.)
Answer:
x =[tex]x =(\frac{c}{4} )^{1/3} \\[/tex]
input 2 output 32
output 256 input 4
Step-by-step explanation:
36x^2=y^2
Does the equation define y as a function of x ?
Answer:
ya the equation divides y as a function of x
Identify the level of measurement of the data, and explain what is wrong with the given calculation. Ina set of data, alert levels are represented as 1 for low, 2 for medium, and 3 for high. The average mean of the 522 alert levels is 1.3. The data are at the ________ level of measurement. a. Nominalb. Ordinalc. Ratiod. IntervalWhat is wrong with the given calculation?a. Such data should not be used for calculations such as an average.b. One must use a different method to take the average of such datac. The true average is 2.5d. There is nothing wrong with the given calculation.
Answer:
(1) Ordinal
(2) Such data should not be used for calculations such as an average.
Step-by-step explanation:
Given
[tex]1 \to Low[/tex]
[tex]2 \to Medium[/tex]
[tex]3 \to High[/tex]
[tex]Average = 1.3[/tex]
Solving (a): The level of measurement
When observations are presented in ranks such as:
[tex]1 \to Low[/tex]
[tex]2 \to Medium[/tex]
[tex]3 \to High[/tex]
The level of measurement of such observation is ordinal
Solving (b): What is wrong with the computation?
Ordinal level of measurement are not numerical values whose average can be calculated because they are used as ranks.
Hence, (a) is correct
Х/10 is between 1/5
and 0.6. What could the value of x be?
Answer:
2 < x < 6
Step-by-step explanation:
x/10
1/5 = 2/10
.6 = 6/10
2 < x < 6
An angle with measure of 71° is bisect at what angle?
Answer:
A
Step-by-step explanation: just divide 71 into 2 which gives you 35.5 making a your answer.
Sketch the graph of y = 2(x – 2)2 and identify the axis of symmetry
Answer:
x = 2
Step-by-step explanation:
The minimum point of the curve is (2, 0). Hence, axis of symmetry is x = 2
The functions f(x) and g(x) are shown on the graph.
f(x) = x2
What is g(x)?
10-
If(x)
1
х
10
-5
5
10
g(x)
-10
A. g(x) = (– x)2 - 3
B. g(x) = – x2 + 3
c. g(x) = (-x)2 + 3
D. g(x) = -X2 - 3
Answer:
[tex]g(x) = -x^2 + 3[/tex]
Step-by-step explanation:
Given
[tex]f(x) = x^2[/tex]
Required
Determine g(x)
First, shift f(x) down by 3 units
The rule is:
[tex]f'(x) = f(x) - 3[/tex]
So:
[tex]f'(x) = x^2 - 3[/tex]
Next, reflect f'(x) across the x-axis to get g(x)
The rule is:
[tex]g(x) = -f(x)[/tex]
So, we have:
[tex]g(x) = -(x^2 - 3)[/tex]
Open bracket
[tex]g(x) = -x^2 + 3[/tex]
Answer:
D
Step-by-step explanation:
I figured out the hard way
Can someone help me out?
Answer:
Terms:
-5x4-x-1Like Terms:
-5x and -x4 and -1Coefficients:
The coefficient of -5x is -5.The coefficient of -x is -1.Constants:
4-1You simplify the expression by combining like terms:
-5x + 4 - x - 1 = -6x + 5
(7b - 4) + (-2b + a + 1) = 7b - 4 - 2b + a + 1 = 5b + a - 3
Enter an equation in point-slope form for the line.
Slope is −6 and (1, 1) is on the line.
Answer:
y - 1 = -6(x - 1)
General Formulas and Concepts:
Algebra I
Point-Slope Form: y - y₁ = m(x - x₁)
x₁ - x coordinate y₁ - y coordinate m - slopeStep-by-step explanation:
Step 1: Define
Identify
Point (1, 1)
Slope m = -6
Step 2: Find Equation
Substitute in variables [Point-Slope Form]: y - 1 = -6(x - 1)What is the area of this composite figure?
Answer:
Well, divide the shape into rectangles,
triangles or other shapes after that, you can find the area of and then add the areas back together.
Step-by-step explanation:
The area of composite shapes is defined as the area covered by any composite shape. A composite shape is made up of basic shapes put together. Thus, the area of the composite shape is found by individually adding all the basic shapes.
To calculate the area of a composite shape you must divide the shape into rectangles, triangles or other shapes you can find the area of and then add the areas back together.es
jenny has 3 cherry candies and 3 orange candies. She takes out 2 candies without looking.What is the probability in fractions that both are cherry?
you count after 2. What is the number?
4. When this 3-digit number is rounded to the
nearest hundred, it rounds to 200. Rounded
to the nearest ten, this number rounds to
200. The sum of the digits of this number
is 19. What is the number?
Answer:
I think the answer is 100 because nothing greater than 200 if its rounded hope this helped if not sorry
find the equation of the circle centre (3-2)radius 2 unit
Answer:
(x - 3)^2 + (x + 2)^2 = 4
Step-by-step explanation:
Equation of circle:
(x - h)^2 + (x - k)^2 = r^2
(h, k) = (3, -2)
r = 2
(x - 3)^2 + (x - (-2))^2 = 2^2
(x - 3)^2 + (x + 2)^2 = 4
A statistics class weighed 20 bags of grapes purchased from the store. The bags are advertised to contain 16 ounces, on average. The class calculated the 90% confidence interval for the true mean weight of bags of grapes from this store to be (15.875, 16.595) ounces. What is the sample mean weight of grapes, and what is the margin of error?
O The sample mean weight is 15.875 ounces, and the margin of error is 16.595 ounces.
O The sample mean weight is 16.235 ounces, and the margin of error is 0.360 ounces.
O The sample mean weight is 16.235 ounces, and the margin of error is 0.720 ounces.
O The sample mean weight is 16 ounces, and the margin of error is 0.720 ounces.
Answer:
The sample mean weight is 16.235 ounces, and the margin of error is 0.360 ounces
Step-by-step explanation:
To find the sample mean, we can find the mean of the confidence interval.
(15.875 + 16.595)/2 = 16.235
To find the margin of error, that is the difference between the mean and one of the edges of the confidence interval. 16.595 - 16.235 = 0.36
The sample mean weight is 16.235 ounces, and the margin of error is 0.360 ounces
Answer:
C. We are 90% confident that the interval from 15.875 ounces to 16.595 ounces captures the true mean weight of bags of grapes.
Step-by-step explanation:
Does it pay to ask for a raise? A national survey of heads of households showed the percentage of those who asked for a raise and the percentage who got one. According to the survey, of the men interviewed, 21% had asked for a raise and 60% of the men who had asked for a raise received the raise. If a man is selected at random from the survey population of men, find the following probabilities. (Enter your answers to three decimal places.)
Answer:
a) P(man asked for a raise) = 0.21.
b) P(man received raise, given he asked for one) = 0.6.
c) P(man asked for raise and received raise) = 0.126.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
Question a:
21% asked for a raise, so:
P(man asked for a raise) = 0.21.
Question b:
Event A: Asked for a raise.
Event B: Received a raise:
21% had asked for a raise and 60% of the men who had asked for a raise received the raise:
This means that [tex]P(A) = 0.21, P(A \cap B) = 0.21*0.6[/tex], thus:
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.21*0.6}{0.6} = 0.6[/tex]
P(man received raise, given he asked for one) = 0.6.
Question c:
[tex]P(A \cap B) = 0.21*0.6 = 0.126[/tex]
P(man asked for raise and received raise) = 0.126.
If someone can pls give the answer with steps that would be greatly appreciated :)
hope it helps.
stay safe healthy and happy..Answer: look below
Step-by-step explanation:
A straight angle is 180
180-50=130
the opposite is also the same angle which is the same
180-50-50=80 and 80 + 2x =180
x=50
the angles are 50, 50, 50, 50, 80, 130 and 130 degrees respectively
solve the inequality x^3+4x>5x^2 please show steps and interval notation. thank you.
Answer: [tex]x\in (0,1)\cup (4,\infty)[/tex]
Step-by-step explanation:
Given
In equality is [tex]x^3+4x>5x^2[/tex]
Taking terms one side
[tex]\Rightarrow x^3-5x^2+4x>0\\\Rightarrow x(x^2-5x+4)>0\\\Rightarrow x(x^2-4x-x+4)>0\\\Rightarrow x(x-4)(x-1)>0\\\Rightarrow (x-0)(x-1)(x-4)>0[/tex]
Using wavy curve method
[tex]x\in (0,1)\cup (4,\infty)[/tex]
Divide the following complex numbers:
[tex](2 + i) \div (1 - 4i)[/tex]
Answer:
[tex]-\dfrac{2}{17} + \dfrac{9}{17}i[/tex]
Step-by-step explanation:
[tex] (2 + i) \div (1 - 4i) = [/tex]
[tex] = \dfrac{2 + i}{1 - 4i} [/tex]
[tex] = \dfrac{2 + i}{1 - 4i} \times \dfrac{1 + 4i}{1 + 4i} [/tex]
[tex] = \dfrac{(2 + i)(1 + 4i)}{(1 - 4i)(1 + 4i)} [/tex]
[tex] = \dfrac{2 + 8i + i + 4i^2}{1 + 16} [/tex]
[tex] = \dfrac{2 + 9i - 4}{17} [/tex]
[tex] = \dfrac{-2 + 9i}{17} [/tex]
[tex]= -\dfrac{2}{17} + \dfrac{9}{17}i[/tex]
the campus bookshop sells exercise books and textbooks, where, the total cost of 10 exercise books and 2 textbooks is $1400.00. One also finds the total cost of 3 textbooks and 30 exercise books is $3000. Then determine the price of 1 exercise book?
Answer:
The price of 1 exercise book is $122.45.
Step-by-step explanation:
This question is solved using a system of equations.
I am going to say that:
x is the price of one exercise book.
y is the price of one textbook.
Total cost of 10 exercise books and 2 textbooks is $1400.00.
This means that:
[tex]10x + 2y = 1400[/tex]
Since we want x:
[tex]2y = 1400 - 10x[/tex]
[tex]y = 700 - 5x[/tex]
One also finds the total cost of 3 textbooks and 30 exercise books is $3000.
This means that:
[tex]3x + 30y = 3000[/tex]
Since [tex]y = 700 - 5x[/tex]
[tex]3x + 30(700 - 5x) = 3000[/tex]
[tex]3x + 21000 - 150x = 3000[/tex]
[tex]147x = 18000[/tex]
[tex]x = \frac{18000}{147}[/tex]
[tex]x = 122.45[/tex]
The price of 1 exercise book is $122.45.
stuck on this problem
Answer:
B
Step-by-step explanation:
When we reflect something across the y axis, the y axis stays the same but the x values change by a factor of -1.
B is the Answer
Answer:
c. switch the x-values and y-values in the table
Step-by-step explanation:
For any table or graph reflection over the line y=x
The rule is (x,y) ----> (y,x)
f(x) is reflected over the line y=x, so the coordinates of f(x) becomes
(-2,-31) becomes (-31,-2)
(-1,0) becomes (0,-1)
(1,2) becomes (2,1)
(2,33) becomes (33,2)
As per the rule, we switch the x-values and y-values in the table
For reflection over the line y=x , the coordinate becomes
(-31,-2)
(0,-1)
(2,1)
(33,2)