Answer:
y = - 140
Step-by-step explanation:
Given that y varies jointly as x and z then the equation relating them is
y = kxz ← k is the constant of variation
To find k use the condition y = - 180 when z = 15 and x = - 3, thus
- 180 = k × - 3 × 15 = - 45k ( divide both sides by - 45 )
4 = k
y = 4xz ← equation of variation
When x = 7 and z = - 5, then
y = 4 × 7 × - 5 = - 140
Please help with this question!!!!!
===================================
Explanation:
Start with the parent function [tex]y = |x|[/tex]
Replacing x with x-1 shifts the graph 1 unit to the right
Tack a -1 at the end to get [tex]y = |x-1|-1[/tex] which will shift everything down 1 unit.
The vertex started at (0,0) and moved to (1,-1)
Which of the following is true? Tangent is positive in Quadrant I. Sine is negative in Quadrant II. Cosine is positive in Quadrant III. Sine is positive in Quadrant IV.
Answer:
A
Step-by-step explanation:
I had this question and got it right the user above explains it in detail
Use the difference of squares identity to write this polynomial expression in factored form : 9x^2-49
Answer:
The expression in factored form is (3x - 7)(3x + 7)
Step-by-step explanation:
Here in this question, we are interested in using the difference of two squares to factor the given expression.
Mathematically, supposed we have two squares a^2 and b^2, and we are told to factorize a^2-b^2.
By using the difference of two squares;
a^2-b^2 can thus be written as;
(a-b)(a + b)
Now, we can apply same approach to the problem at hand.
9x^2 - 49
kindly note that 9x^2 can be written as ((3x)^2 and 49 can be written as 7^2
So applying what we have said earlier about difference of two squares;
9x^2 - 49 will be ;
(3x-7)(3x + 7)
Answer:
The answer is (3x - 7) (3x +7)
Step-by-step explanation:
if 25% of a number is 75 find the number
Answer:
x = 300
Step-by-step explanation:
of means multiply and is means equals
25% * x = 75
Change to decimal form
.25x = 75
Divide each side by .25
.25x/.25 = 75/.25
x = 300
Answer:
300
Step-by-step explanation:
Assume the unknown value is 'Y'
75 = 25% x Y
75 = 25/100 x Y
Multiplying both sides by 100 and dividing both sides of the equation by 25 we will arrive at:
Y = 3 x 100/25
Y = 300%
Answer: 75 is 25 percent of 300
A box contains 20 oranges and 10 grapes what is the probability of picking a grape from the box?
Answer:
[tex]\frac{1}{3}[/tex]
Step-by-step explanation:
First, let's find how many total items there are in the box.
If there are 20 oranges and 10 grapes, then there are [tex]20+10=30[/tex] items in the box.
Now, if there are 10 grapes in this box, we know that the probability of picking a grape is [tex]\frac{10}{30}[/tex] because the total is the denominator and the number of items for that selection is the numerator.
We can simplify this fraction down to [tex]\frac{1}{3}[/tex].
Hope this helped!
Answer:
1/3
Step-by-step explanation:
Raj tested his new flashlight by shining it on his bedroom wall. The beam of light can be described by the equation . How many inches wide is the beam of light on the wall?
Answer:
12 inches
Step-by-step explanation:
Raj tested his new flashlight by shinning it on his bedroom wall the beam of the light can be described by the equation (x^2-2x) + (y^2-4y) - 31=0. how many inches wide is the beam of light on the wall
Solution
Given:
(x^2-2x) + (y^2-4y) - 31=0
By completing the square
(x^2-2x) + (y^2-4y) - 31=0
(x^2-2x+1-1) + (y^2-4y+4-4)-31=0
(x-1)^2 -1 + (y-2)^2 - 4 - 31=0
(x-1)^2 + (y-2)^2 - 1 - 4 - 31=0
(x-1)^2 + (y-2)^2 - 36=0
(x-1)^2 + (y-2)^2=36
Writing the equation in the form: (x-h)^2+(y-k)^2=r^2
(x-1)^2+(y-2)^2=6^2
From the above, r=6
Where,
r=radius
how wide is the diameter ?
radius=6
Diameter= 2 × radius
=2×6
=12 inches
Answer:
12
Step-by-step explanation:
to graph it just scan the equation on photo math!!
Find the height of the triangle by applying formulas for the area of a triangle and your knowledge about triangles.
A. 10.5 cm
B. 3.4 cm
C. 8.5 cm
D. 12 cm
Answer:
12 cm is the right answer pls mark me brainliest
The height of the triangle by applying formulas for the area of a triangle and your knowledge about triangles is 12 cm.
What is Area of Triangle?The area of a triangle is defined as the total space occupied by the three sides of a triangle in a 2-dimensional plane. The basic formula for the area of a triangle is equal to half the product of its base and height, i.e., A = 1/2 × b × h.
What is Heron's formula?Heron's formula, formula credited to Heron of Alexandria (c. 62 ce) for finding the area of a triangle in terms of the lengths of its sides. In symbols, if a, b, and c are the lengths of the sides:
Area = √s(s - a)(s - b)(s - c) where s is half the perimeter, or (a + b + c)/2.
Given:
Three sides are: 15cm, 25 cm and 2 cm
Now, Using Heron's formula
semi-perimeter= (25+ 20 + 15)/2
s= 30 cm
Now,
Area of triangle
=√s(s-a)(s-b)(s-c)
=√30* 5 * 10* 15
=√5*2*3*5*2*5*3*5
=5*5*2*3
=150 cm²
Again, area of triangle= 1/2* b* h
150= 1/2* 25* x
12cm= x
Learn more about Area of Triangle here:
https://brainly.com/question/9817285
#SPJ2
Factorise the following
Answer:
4ny²+4n²-4n-8+y⁴-2y²
Please help quickly!!
A truck is driving up a hill with a 24% grade, so it climbs 24 feet vertically for every 100 feet horizontally.
What is the slope of the hill?
Answer:
6/25
Step-by-step explanation:
rise / run
24/100 = 6/25
Answer:
[tex]\frac{6}{25}[/tex]
Step-by-step explanation:
The slope of any relationship is always rise over run. This means the vertical distance traveled over the horizontal distance traveled will get us our slope.
We travels 24 feet vertically for every 100 feet horizontally, so:
[tex]\frac{24}{100}[/tex].
We can simplify this fraction to find the slope in fraction form.
[tex]\frac{24\div4}{100\div4} = \frac{6}{25}[/tex]
So the slope of this equation is [tex]\frac{6}{25}[/tex].
Hope this helped!
Help the question is there
Answer:
y = 7 when x = -5
Step-by-step explanation:
First go to x = -5
Then go up to where you meet the green line
The y value is 7
y = 7 when x = -5
1. 3x + 6y = 3 and 7x + 3y = 7
ons for bo
Answer:
(1,0)
Step-by-step explanation:
3x + 6y = 3
7x + 3y = 7
Multiply the second equation by -2
-2( 7x + 3y = 7)
-14x -6y = -14
Add this to the first equation to eliminate y
3x + 6y = 3
-14x -6y = -14
--------------------
-11 x = -11
Divide by -11
x = 1
Now find y
3x + 6y = 3
3 +6y = 3
Subtract 3 from each side
6y = 0
y =0
Answer:
x = 1
y = 0
Step-by-step explanation:
3x + 6y = 3
7x + 3y = 7
=> 3y = 7 - 7x
=> y = -7/3x + 7/3
3x + 6(-7/3x + 7/3) = 3
=> 3x - 14x + 14 = 3
=> -11x = -11
=> -x = -11/11
=> -x = -1
=> x = 1
So, 3(1) + 6y = 3
=> 3 + 6y = 3
=> 6y = 0
=> y = 0/6
=> y = 0
So, x = 1
y = 0
If the measure of angle 4 is (11 x) degrees and angle 3 is (4 x) degrees, what is the measure of angle 3 in degrees?
Answer:
is it 2
Step-by-step explanation:
Translate the following phrase into an algebraic expression using the variable m. Do not simplify,
the cost of renting a car for one day and driving m miles if the rate is $39 per day plus 45 cents per mile
Answer:
y = 0.45X + 39
10. Write a word problem for this equation:
n ($25) = $125
Answer:
The word problem is "How many $25 are there in $125?"
Step-by-step explanation:
Given
[tex]n(\$25) = \$125[/tex]
Required
Write a word problem for the expression
We start by solving the given equation
[tex]n(\$25) = \$125[/tex]
Divide both sides by $25
[tex]\frac{n(\$25)}{\$25} = \frac{\$125}{\$25}[/tex]
[tex]n = \frac{\$125}{\$25}[/tex]
[tex]n = 5[/tex]
This implies that there are 5, $25 in $125
Hence; The word problem is "How many $25 are there in $125?"
Evaluate |3 - 5 + 7|. -5 5 -15 15
Answer:
5
Step-by-step explanation:
|3 - 5 + 7|
= |-2 + 7|
= |5| = 5
Answer:
The correct answer would be 5.
Step-by-step explanation:
To test the belief that sons are taller than their fathers, a student randomly selects 13 fathers who have adult male children. She records the height of both the father and son in inches and obtains the following data. Are sons taller than their fathers? Use the alphaequals0.10 level of significance. Note: A normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers.
Height of Father Height of Son
72.4 77.5
70.6 74.1
73.1 75.6
69.9 71.7
69.4 70.5
69.4 69.9
68.1 68.2
68.9 68.2
70.5 69.3
69.4 67.7
69.5 67
67.2 63.7
70.4 65.5
Which conditions must be met by the sample for this test? Select all that apply.
A. The sample size is no more than 5% of the population size.
B. The differences are normally distributed or the sample size is large.
C. The sample size must be large.
D. The sampling method results in a dependent sample.
E. The sampling method results in an independent sample.
Write the hypotheses for the test. Upper
H 0 :
H 1 :
Calculate the test statistic. t 0=?
(Round to two decimal places as needed.)
Calculate the P-value. P-value=?
(Round to three decimal places as needed.) Should the null hypothesis be rejected?
▼ Do not reject or Reject Upper H 0 because the P-value is ▼ less than or greater than the level of significance. There ▼ is or is not sufficient evidence to conclude that sons ▼ are the same height or are shorter than or are taller than or are not the same height as their fathers at the 0.10 level of significance. Click to select your answer(s).
Answer:
1) B. The differences are normally distributed or the sample size is large
C. The sample size mus be large
E. The sampling method results in an independent sample
2) The null hypothesis H₀: [tex]\bar x_1[/tex] = [tex]\bar x_2[/tex]
The alternative hypothesis Hₐ: [tex]\bar x_1[/tex] < [tex]\bar x_2[/tex]
Test statistic, t = -0.00693
p- value = 0.498
Do not reject Upper H₀ because, the P-value is greater than the level of significance. There is sufficient evidence to conclude that sons are the same height as their fathers at 0.10 level of significance
Step-by-step explanation:
1) B. The differences are normally distributed or the sample size is large
C. The sample size mus be large
E. The sampling method results in an independent sample
2) The null hypothesis H₀: [tex]\bar x_1[/tex] = [tex]\bar x_2[/tex]
The alternative hypothesis Hₐ: [tex]\bar x_1[/tex] < [tex]\bar x_2[/tex]
The test statistic for t test is;
[tex]t=\dfrac{(\bar{x}_1-\bar{x}_2)}{\sqrt{\dfrac{s_{1}^{2} }{n_{1}}-\dfrac{s _{2}^{2}}{n_{2}}}}[/tex]
The mean
Height of Father, h₁, Height of Son h₂
72.4, 77.5
70.6, 74.1
73.1, 75.6
69.9, 71.7
69.4, 70.5
69.4, 69.9
68.1, 68.2
68.9, 68.2
70.5, 69.3
69.4, 67.7
69.5, 67
67.2, 63.7
70.4, 65.5
[tex]\bar x_1[/tex] = 69.6
s₁ = 1.58
[tex]\bar x_2[/tex] = 69.9
s₂ = 3.97
n₁ = 13
n₂ = 13
[tex]t=\dfrac{(69.908-69.915)}{\sqrt{\dfrac{3.97^{2}}{13}-\dfrac{1.58^{2} }{13}}}[/tex]
(We reversed the values in the square root of the denominator therefore, the sign reversal)
t = -0.00693
p- value = 0.498 by graphing calculator function
P-value > α Therefore, we do not reject the null hypothesis
Do not reject Upper H₀ because, the P-value is greater than the level of significance. There is sufficient evidence to conclude that sons are the same height as their fathers at 0.10 lvel of significance
Manipulate the radius and height of the cone, setting different values for each. Record the radius, height, and exact volume of the cone (in terms of π). The first one has been done for you. Also calculate the decimal value of the volume, and verify that it matches the volume displayed by the tool. (You might see some discrepancies in the tool due to rounding of decimals.)
Answer:
The decimal value of the volume already given= 1885.2 unit³
For radius 11 unit height 12 unit
Volume= 484π unit³
Volume= 1520.73 unit ³
For radius 4 unit height 6 unit
Volume= 32π unit³
Volume= 100.544 unit³
For radius 20 unit height 15 unit
Volume= 2000π unit³
Volume= 6284 unit³
Step-by-step explanation:
The decimal value of the volume already given= 600π
The decimal value of the volume already given= 600*3.142
The decimal value of the volume already given= 1885.2 unit³
For radius 11 unit height 12 unit
Volume= πr²h/3
Volume= 11²*12/3 *π
Volume= 484π unit³
Volume= 1520.73 unit ³
For radius 4 unit height 6 unit
Volume = πr²h/3
Volume= 4²*6/3(π)
Volume= 32π unit³
Volume= 100.544 unit³
For radius 20 unit height 15 unit
Volume= πr²h/3
Volume= 20²*15/3(π)
Volume= 2000π unit³
Volume= 6284 unit³
Here's the right answer.
I will give brainliest to the right answer!! Find the vertex and the length of the latus rectum. x= 1/2 (y - 5)² + 7
Answer:
(7, 5)2Step-by-step explanation:
When the quadratic is written in vertex form:
x = a(y -k)^2 +h
the vertex is (x, y) = (h, k), and the length of the latus rectum is 1/a.
For your given equation, ...
x = (1/2)(y -5)^2 +7
you have a=1/2, k = 5, h = 7, so ...
the vertex is (7, 5)
the length of the latus rectum is 1/(1/2) = 2
Can someone help me solve parts (a) and (c) please? Thank you!
a) 4x +6
Add up all the sides to calculate perimeter
Answer:
a) 6x + 6
b) 15 x 24
c) see explanation
Step-by-step explanation:
a) 2x + x + 3 + 2x + x + 3 = 6x + 6
b) 6x + 6 = 78
6x = 72
x = 12
2(12) = 24
(12) + 3 = 15
15 x 24
c) 2x(x + 3) = 2x² + 6x
2(12)² + 6(12) = 288 + 72 = 360
15 x 24 is also 360
simplify the equation. (5xE2 - 3x) - (5xE2 - 3x+1)
Answer:
[tex]\huge \boxed{\mathrm{-1}}[/tex]
Step-by-step explanation:
[tex](5xe^2 - 3x) - (5xe^2 - 3x+1)[/tex]
Distribute negative sign.
[tex]5xe^2 - 3x- 5xe^2 +3x-1[/tex]
Combine like terms.
[tex]0xe^2 +0x-1[/tex]
[tex]0-1=-1[/tex]
Pick out the set of numbers that is not Pythagorean triple
9 40 46
16 30 34
10 24 26
50 120 130
Answer:
[tex]\huge\boxed{9,40,46}[/tex]
Step-by-step explanation:
Let's check it using Pythagorean Theorem:
[tex]c^2 = a^2 + b^2[/tex]
Where c is the longest sides, a and b are rest of the 2 sides
1) 9 , 40 , 46
=> [tex]c^2 = a^2 + b^2[/tex]
=> [tex]46^2 = 9^2 + 40^2[/tex]
=> 2116 = 81 + 1600
=> 2116 ≠ 1681
So, this is not a Pythagorean Triplet
2) 16, 30 and 34
=> [tex]c^2 = a^2 + b^2[/tex]
=> [tex]34^2 = 16^2 + 30^2[/tex]
=> 1156 = 256 + 900
=> 1156 = 1156
No need to check more as we've found the one which is not a Pythagorean Triplet.
Answer:
[tex] \boxed{ \huge{ \boxed{ \sf{ \blue{9 , \: 40 \:, 46 \: }}}}}[/tex]Option A is the correct option.
Step-by-step explanation:
1. Let h , p and b are the hypotenuse , perpendicular and base of a right - angled triangle respectively.
From Pythagoras theorem,
[tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex]
Here, we know that the hypotenuse is always greater than perpendicular and base,
h = 46 , p = 40 , b = 9
⇒[tex] \sf{ {46}^{2} = {40}^{2} + {9}^{2} }[/tex]
⇒[tex]2116 = 1600 + 81[/tex]
⇒[tex] \sf{2116 ≠ 1681}[/tex]
Thus , the relation [tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex] is not satisfied by h = 46 , p = 40 , b = 9
So, The set of numbers 9 , 40 , 46 is not Pythagorean triple.
------------------------------------------------------
2. 16 , 30 , 34
h = 34 , p = 30 , b = 16
[tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex]
⇒[tex] \sf{ {34}^{2} = {30}^{2} + {16}^{2} }[/tex]
⇒[tex] \sf{1156 = 900 + 256}[/tex]
⇒[tex] \sf{1156 = 1156}[/tex]
The relation [tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex] is satisfied by the particular values of h , p and b i.e h = 34 , p = 30 , b = 16
So, the set of numbers 16 , 30 , 34 is a Pythagorean triple.
------------------------------------------------------
3. 10, 24 , 26
h = 26 , p = 24 , b = 10
[tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex]
⇒[tex] \sf{ {26}^{2} = {24}^{2} + {10}^{2} }[/tex]
⇒[tex] \sf{676 = 576 + 100}[/tex]
⇒[tex] \sf{676 = 676}[/tex]
The relation [tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex] is satisfied by the particular values of h , p and h i.e h = 26 , p = 24 , b = 10
So, the set of numbers 10, 24 , 26 is the Pythagorean triple.
-----------------------------------------------------
4. 50 , 120 , 130
h = 130 , p = 120 , b = 50
[tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex]
⇒[tex] \sf{ {130}^{2} = {120}^{2} + {50}^{2} }[/tex]
⇒[tex] \sf{16900 = 14400 + 2500}[/tex]
⇒[tex] \sf{16900 = 16900}[/tex]
The relation [tex] \sf{ {h}^{2} = {p}^{2} + {b}^{2} }[/tex] is satisfied by the particular values of h , p and b i.e h = 130 , p = 120 , b = 50
So, the set of numbers 50, 120 , 130 is the Pythagorean triple.
-----------------------------------------------------
In this way, to satisfy the Pythagoras Theorem , the hypotenuse ( h ) , perpendicular ( p ) and the base ( b ) of a right - angles triangle should have the particular values in order. These values of h , p and b are called Pythagorean triple.
Hope I helped!
Best regards!!
Please answer quickly! A radio telescope has a parabolic surface, as shown below. A parabola opening up with vertex at the origin is graphed on the coordinate plane. The height of the parabola from top to bottom is 1 meter and its width from left to right is 20 meters. If the telescope is 1 m deep and 20 m wide, how far is the focus from the vertex?
Answer:
Basing on the description, a parabola checking with vertex at origin, the formula with vertex at origin can be used, x^2 = 4py. p is the focus therefore with the dimensions given, we get yourself a 0.25 and this is the distance of the focus to the vertex.
A
man paid 15600
for a new
car. He
was given a discount of
7%. Find the marked price
of the car
hope it helps.I was reading the same chapter
ABC is an equilateral triangle, solve y
Answer:
y is 60⁰
because all sides are equal
Answer:
60 degrees
Step-by-step explanation:
In an equilateral triangle, the angles are equiangluar and the sides are equal.
180 degrees in a triangle/3 sides =
= 60 degrees per side
Which of the following is an irrational number?
5 / 4
√5 / 7
1/ 8
3 / 5
Answer: [tex]\sqrt{5} /7[/tex]
Step-by-step explanation:
5/4 is not an irrational number because it is already in a fraction the same as 1/8 and 3/5.
The square root of 5 is not rational because it cannot be converted to a fraction or in other words is not a perfect square.
Answer:√5 / 7
Step-by-step explanation:
What is the perimeter of this polygon?
A(2, 3)
B(-4, 0)
C(0,-4)
D(4,0)
Answer:2,3 hope it help you
Step-by-step explanation:
Answer:
21.627
Step-by-step explanation:
get the distance between all points then add
find the perimeter of the quadrant whose radius is 21cm
Answer:
75 cm
Step-by-step explanation:
∅=90° , r = 21 cm
Arc length= (2πr∅)/360
=(2π×21×90)/360
=33 cm
Perimeter= arc length + 2(radius)
=33+2(21)
=33 + 42
= 75 cm
If x3 + ax2 – bx + 10 is divisible by x2 – 3x + 2,
find the values of
1) a-b
2) 2a-b
One type of fabric costs $31.25 for 5 square yards. Another type of fabric costs $71.50 for 11
square yards. Is the relationship between the number of square yards and the cost
proportional between the two types of fabric?
Answer:
as ratio of two type of fabric is different .
hence, the relationship between the number of square yards and the cost
is not proportional between the two types of fabric
Step-by-step explanation:
For a relation to be proportional
a:b = c:d
in other form
a/b = c/d
______________________________________________
Ratio for first type of fabric
cost of fabric/ area of fabric = 31.25/5 = 6.25
Ratio for other type of fabric
cost of fabric/ area of fabric = 71.50/11 = 6.5
as ratio of two type of fabric is different .
hence, the relationship between the number of square yards and the cost
is not proportional between the two types of fabric
In which direction must the graph of Ax) = x be shifted to produce the graph of g(x) = f(x) - 4?
ОА. up
OB. down
O c. left and down
OD. right and up
Answer: B. down
Step-by-step explanation:
Translation rules:
For a function h(x):
h(x+c) is a left-shift by c units.h(x-c) is a right-shift by c units.h(x)+c is a up-shift by c units.h(x)-c is a down-shift by c units.Here, the graph of f(x) becomes the graph of g(x) =f(x)-4 which is similar to "h(x)-c".
That means , f(x) is shifted 4 units down to become g(x).
So, correct option : B. down