Answer:
The upper bound of the confidence interval is 0.34
Step-by-step explanation:
Here in this question, we want to calculate the upper bound of the confidence interval.
We start by calculating the margin of error.
Mathematically, the margin of error = 0.29 -0.24 = 0.05
So to get the upper bound of the confidence interval, we simply add this margin of error to the mean
That would be 0.05 + 0.29 = 0.34
In a stable matching problem, if every man has a different highest-ranking woman on his preference list, and given that women propose, then it is possible that, for some set of women's preference lists, all men end up with their respective highest-ranking woman.a. Trueb. False
Answer:
True
Step-by-step explanation:
The statement given above in the question is correct. It is mentioned that men are free to create a list of women's according to their preferences. There will be order sequence of women and men places them in queue of their preference. The men proposes the women with highest ranking in the list then it is possible that all men gets their preferred choice.
Use the order of operations to simplify this expression 1.2x3.5x4.1= What
[tex] 1.2\times3.5\times4.1=[(1+0.2)(3+0.5)](4+0.1)[/tex]
$=[1\times3+1\times0.5+0.2\times3+0.2\times0.5](4+0.1)$
$=(3+0.5+0.6+0.1)(4+0.1)$
$=(4.2)(4+0.1)=(4+0.2)(4+0.1)$
$=4\times4+4\times0.1+0.2\times4+0.2\times0.1$
$=16+0.4+0.8+0.02=17.22$
nishan bought 7 marbles Rs.x per each. if he gave Rs.100 to the shop keeper. what is the balance he would receive?
i will rate you brainliest
Answer:
Option (2)
Step-by-step explanation:
In an arithmetic progression,
[tex]a_1,a_2,a_3.........a_{n-1},a_n[/tex]
First term of the progression,
a = [tex]a_1[/tex]
Common difference 'd' = [tex](a_2-a_1)[/tex]
Recursive formula for the sequence,
a = [tex]a_1[/tex]
[tex]a_n=a_{n-1}+d[/tex]
By applying these rules in the recursive formula,
[tex]a_1=\frac{4}{5}[/tex]
[tex]a_n=a_{n-1}+\frac{3}{2}[/tex]
Common difference 'd' = [tex]\frac{3}{2}[/tex]
Therefore, Option (2) will be the answer.
A rotating light is located 16 feet from a wall. The light completes one rotation every 2 seconds. Find the rate at which the light projected onto the wall is moving along the wall when the light's angle is 20 degrees from perpendicular to the wall.
Answer:
a
Step-by-step explanation:
answer is a on edg
For lunch, Kile can eat a sandwich with either ham or a bologna and with or without cheese. Kile also has the choice of drinking water or juice with his sandwich. The total number of lunches Kile can choose is
Answer:
8
Step-by-step explanation:
Ham with or without cheese-2 choices
Bologna with or without cheese-2 choices
Bologna with cheese with water or juice-2 choices
Bologna without cheese with juice or water-2 choices
Ham with cheese with juice or water -2 choices
Ham without cheese with juice or water -2 choices
2+2+2+2=8
Kile has 8 choices for lunch
A table has five bowls. None of the quantities in the bowls are prime, though the last two bowls are empty. Two of the quantities are squares, and when added to the remaining number, the sum is 21. What are the amounts in the first three bowls?
Since two of the quantities are squares and the sum of all of three is equal 21, then the possible values of those two quantities are: 1,4,9,16
Let's consider each possibility
1 and 4
21-1-4=16, but 16 is also square and there can be only two square so NO
1 and 9
21-1-9=11, but 11 is prime, so NO
1 and 16
21-1-16=4... 4 is a square ,so NO
4 and 9
21-4-9=8 , 8 is not prime and not a square, so YES
4 and 16
21-4-16=1, but 1 is a square ,so NO
9 and 16
9+16=25>21 so.. NO
Therefore, the amounts in the first three bowls are 4,8,9.
Find the doubling time of an investment earning 8% interest if interest is compounded continuously. The doubling time of an investment earning 8% interest if interest is compounded continuously is ____ years.
Answer:
Step-by-step explanation:
Using FV = PV(1 + r)^n where FV = future value, PV = present value, r = interest rate per period, and n = # of periods
1/PV (FV) = (PV(1 + r^n)1/PV divide by PV
ln(FV/PV) = ln(1 + r^n) convert to natural log function
ln(FV/PV) = n[ln(1 + r)] by simplifying
n = ln(FV/PV) / ln(1 + r) solve for n
n = ln(2/1) / ln(1 + .08) solve for n, letting FV + 2, PV = 1 and rate = 8% or .08 compound annually
n = 9
n = ln(2/1) / ln(1 + .08/12) solve for n, letting FV + 2, PV = 1 and rate = .08/12 compound monthly
n = 104 months or 8.69 years
n = ln(2/1) / ln(1 + .08/365) solve for n, letting FV + 2, PV = 1 & rate = .08/365 compound daily
n = 3163 days or 8.67 years
Alternatively
A = P e ^(rt)
Given that r = 8%
= 8/100
= 0.08
2 = e^(0.08t)
ln(2)/0.08 = t
0.6931/0.08 = t
t= 8.664yrs
t = 8.67yrs
Which ever approach you choose to use,you will still arrive at the same answer.
Please help with this
Answer:
B) x=80°
Step-by-step explanation:
This is a hexagon, so it has interior angles equaling 720°. (N-2)*180
So the equation would be
78+134+136+132+2x+x=720
480+3x=720
3x=720-480
3x=240
x=80°
Chapter: Simple linear equations Answer in steps
Answer:
6x-3=21
6x=24
x=4
........
6x+27=39
6x=39-27
6x=12
x=2
........
8x-10=14
8x=24
x=3
.........
6+6x=22
6x=22-6
x=3
......
12x-2=28
12x=26
x=3
.....
8-4x=16
-4x=8
x=-2
.....
4x-24=3x-3
4x-3x=24-3
x=21
....
9x+6=6x+12
9x-6x=12-6
3x=6
x=2
Answer:
Step-by-step explanation:
1. 3(2x - 1) = 21
= 6x - 3 = 21
= 6x = 24
= x = 24/6 = 4
------------------------------
2. 3(2x+9) = 39
= 6x + 27 = 39
= 6x = 39 - 27
= 6x = 12
= x = 12/6 = 2
--------------------------------
3. 2(4x - 5) = 14
= 8x - 10 = 14
= 8x = 14+10
= x = 3
-------------------------------
Translate and solve: 82 less than a is at least -82
Answer:
a≥0
Step-by-step explanation:
a-82≥-82
a≥-82+82
a≥0
Which expression is equivalent to x+y+x+y+3(y+5)
Answer:
2x + 5y + 15
Step-by-step explanation:
add like terms
(x+x) + (y+y)+3y+15
2x+2y+3y+15
2x + 5y + 15
i hope this helps!
How dose this input and output table work?
Aswer:I am sure of the answer it is 6 and 42
Step-by-step explanation:
5+30=3512+30=4230+30=6036+30=6640+30=60What is the value of 1 in 1,255 is what times the value of the 1 in 82,175
Answer:
100,000
You take 1,000 because it's in the thousandths place of 1,255. The value of that one is 1,000 so you multiply that times 100, which is the value of 1 in 82,175.
Answer:
Step-by-step explanation:
A sequence of 1 million iid symbols(+1 and +2), Xi, are transmitted through a channel and summed to produce a new random variable W. Assume that the probability of transmitting a +1 is 0.4. Show your work
a) Determine the expected value for W
b) Determine the variance of W
Answer:
E(w) = 1600000
v(w) = 240000
Step-by-step explanation:
given data
sequence = 1 million iid (+1 and +2)
probability of transmitting a +1 = 0.4
solution
sequence will be here as
P{Xi = k } = 0.4 for k = +1
0.6 for k = +2
and define is
x1 + x2 + ................ + X1000000
so for expected value for W
E(w) = E( x1 + x2 + ................ + X1000000 ) ......................1
as per the linear probability of expectation
E(w) = 1000000 ( 0.4 × 1 + 0.6 × 2)
E(w) = 1600000
and
for variance of W
v(w) = V ( x1 + x2 + ................ + X1000000 ) ..........................2
v(w) = V x1 + V x2 + ................ + V X1000000
here also same as that xi are i.e d so cov(xi, xj ) = 0 and i ≠ j
so
v(w) = 1000000 ( v(x) )
v(w) = 1000000 ( 0.24)
v(w) = 240000
Use the gradient to find the directional derivative of the function at P in the direction of Q. g(x, y, z) = xye^z, P(2, 4, 0), Q(0, 0, 0)
Answer: Find answer in the attached files
Step-by-step explanation:
Find the vector and parametric equations for the line through the point P(0, 0, 5) and orthogonal to the plane −1x+3y−3z=1. Vector Form: r
Answer:
Note that orthogonal to the plane means perpendicular to the plane.
Step-by-step explanation:
-1x+3y-3z=1 can also be written as -1x+3y-3z=0
The direction vector of the plane -1x+3y-3z-1=0 is (-1,3,-3).
Let us find a point on this line for which the vector from this point to (0,0,5) is perpendicular to the given line. The point is x-0,y-0 and z-0 respectively
Therefore, the vector equation is given as:
-1(x-0) + 3(y-0) + -3(z-5) = 0
-x + 3y + (-3z+15) = 0
-x + 3y -3z + 15 = 0
Multiply through by - to get a positive x coordinate to give
x - 3y + 3z - 15 = 0
Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit. (If the quantity diverges, enter DIVERGES.) an = 1/sqrt(n)
This sequence converges to 0.
Proof: Recall that
[tex]\displaystyle\lim_{n\to\infty}\frac1{\sqrt n}=0[/tex]
is to say that for any given [tex]\varepsilon>0[/tex], there is some [tex]N[/tex] for which [tex]\left|\frac1{\sqrt n}-0\right|=\frac1{\sqrt n}<\varepsilon[/tex] for all [tex]n>N[/tex].
Let [tex]N=\left\lceil\frac1{\varepsilon^2}\right\rceil[/tex]. Then
[tex]n>\left\lceil\dfrac1{\varepsilon^2}\right\rceil\ge\dfrac1{\varepsilon^2}[/tex]
[tex]\implies\dfrac1n<\varepsilon^2[/tex]
[tex]\implies\dfrac1{\sqrt n}<\varepsilon[/tex]
as required.
Help me I’m stuck please
Answer:
choice 1,2,4,5 from top to bottom
Step-by-step explanation:
1:the points given are in the line where both planes intersect
2:point H is not on any plane
3:in the diagram point F is on plane R so false
4:if you connect the points given they will intersect so not collinear
5:the points F and G are on the plane R
6:so F is on plane R but H is not on any do false
Which geometric sequence has a first term equal to 55 and a common ratio of -5? {-55, 11, -2.2, 0.44, …} {55; 275; 1,375; 6,875; …} {55, 11, 2.2, 0.44, …} {55; -275; 1,375; -6,875; …}
Answer:
The answer is 55, -275, 1375, -6875......
Step-by-step explanation:
which expression have a value of 2/3
A: 8+(24 divided by 12) X 4
B:8+24 divided by (12X4)
C: 8+24 divided 12X4
D: (8+24) divided (12X4)
Solve for x: 7 > x/4
Answer: x < 28
Step-by-step explanation:
PLEASE HELPPPPP!!!!!!!!!!!!!!!Which relationships have the same constant of proportionality between y and x as the following graph?Choose two answers!!
Answer:
B, E
Step-by-step explanation:
You can use these strategies to compare the given graph and the other representations.
A & B) See if the point (x, y) = (8, 6) marked on the first graph works in the given equation.
A -- 6y = 8x ⇒ 6(6) = 8(8) . . . FALSE
B -- y = (3/4)x ⇒ 6 = (3/4)8 . . . True
__
C) Compare this graph to the given graph. They don't match.
__
D & E) Plot a point from the table on the given graph and see where it falls.
D -- The point (x, y) = (3, 4) lies above the line on the given graph.
E -- The point (x, y) = (4, 3) lies on the given graph.
_____
Choices B and E have the same constant of proportionality as shown in the given graph.
Answer:
B and E
Step-by-step explanation:
A population of bacteria P is changing at a rate of dP/dt = 3000/1+0.25t where t is the time in days. The initial population (when t=0) is 1000. Write an equation that gives the population at any time t. Then find the population when t = 3 days.
Answer:
- At any time t, the population is:
P = 375t² + 3000t + 1000
- At time t = 3 days, the population is:
P = 13,375
Step-by-step explanation:
Given the rate of change of the population of bacteria as:
dP/dt = 3000/(1 + 0.25t)
we need to rewrite the given differential equation, and solve.
Rewriting, we have:
dP/3000 = (1 + 0.25t)dt
Integrating both sides, we have
P/3000 = t + (0.25/2)t² + C
P/3000 = t + 0.125t² + C
When t = 0, P = 1000
So,
1000/3000 = C
C = 1/3
Therefore, at any time t, the population is:
P/3000 = 0.125t² + t + 1/3
P = 375t² + 3000t + 1000
At time t = 3 days, the population is :
P = 375(3²) + 3000(3) + 1000
= 3375 + 9000 + 1000
P = 13,375
Question 2 Rewrite in simplest radical form 1 x −3 6 . Show each step of your process.
Answer:
√(x)
Step-by-step explanation:
(1)/(x^-(1/2)) that's 3 goes into -3 leaving 1 and goes into 6 leaving 2
1/2 is same as 2^-1
so therefore we can simplify the above as
x^-(-1/2)
x^(1/2)
and 4^(1/2)
is same as √(4)
so we conclude as
√(x)
I will rate brainly if you answer this The number of weekly social media posts varies directly with the square root of the poster’s age and inversely with the cube root of the poster’s income. If a 16-year-old person who earns $8,000 makes 64 posts in a week, what is the value of k?
Answer:
[tex]\large \boxed{\sf \bf \ \ k=320 \ \ }[/tex]
Step-by-step explanation:
Hello,
The number of weekly social media posts varies directly with the square root of the poster’s age and inversely with the cube root of the poster’s income.
If a 16-year-old person who earns $8,000 makes 64 posts in a week, what is the value of k?
[tex]64=\dfrac{\sqrt{16}}{\sqrt[3]{8000}}\cdot k=\dfrac{4}{20}\cdot k=\dfrac{1}{5}\cdot k=0.2\cdot k\\\\k=64*5=320[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
A city is holding a referendum on increasing property taxes to pay for a new high school. In a survey of 434 likely voters, 202 said that they would vote "yes" on the referendum. Create a 95% confidence interval for the proportion of likely voters who would vote "yes" on the referendum. Use a TI-83, TI-83 plus, or TI-84 calculator, rounding your answers to three decimal places.
Answer: 0.418 < p < 0.512
Step-by-step explanation: A 95% conifdence interval for a population proportion is given by:
[tex]p + z\sqrt{\frac{p(1-p)}{n} }[/tex]
where:
p is the proportion
z is score in z-table
n is sample size
The proportion for people who said "yes" is
[tex]p=\frac{202}{434}[/tex] = 0.465
For a 95% confidence interval, z = 1.96.
Calculating
[tex]0.465 + 1.96*\sqrt{\frac{0.465(0.535)}{434} }[/tex]
[tex]0.465 + 1.96*\sqrt{0.00057}[/tex]
0.465 ± 1.96*0.024
0.465 ± 0.047
Interval is between:
0.465 - 0.047 = 0.418
0.465 + 0.047 = 0.512
The interval with 95% of confidence is between 0.418 and 0.512.
To find ∫ (x − y) dx + (x + y) dy directly, we must parameterize C. Since C is a circle with radius 2 centered at the origin, then a parameterization is the following. (Use t as the independent variable.)
x = 2 cos(t)
y = 2 sin(t)
0 ≤ t ≤ 2π
With this parameterization, find the followings
dy=_____
dx=_____
Answer:
Step-by-step explanation:
Hello, please consider the following.
[tex]x=x(t)=2cos(t)\\\\dx=\dfrac{dx}{dt}dt=x'(t)dt=-2sin(t)dt[/tex]
and
[tex]y=y(t)=2sin(t)\\\\dy=\dfrac{dy}{dt}dt=y'(t)dt=2cos(t)dt[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
The values of dx and dy are give as -2sin(t)dt and 2cos(t)dt respectively. The answer to the given problem can be stated as,
dy = 2cos(t)dt
And, dx = -2sin(t)dt.
What is the integration of a function?The integration can be defined as the inverse operation of differentiation. If a function is the integration of some function f(x) , then differentiation of that function is f(x).
The given integral over C is ∫ (x − y) dx + (x + y) dy.
And, the parameters for C are as follows,
x = 2cos(t)
y = 2sin(t)
0 ≤ t ≤ 2π
Now, on the basis of these parameters dx and dy can be found as follows,
x = 2cos(t)
Differentiate both sides with respect to t as follows,
dx/dt = 2d(cos(t))/dt
=> dx/dt = -2sin(t)
=> dx = -2sin(t)dt
And, y = 2sin(t)
Differentiate both sides with respect to t as follows,
dy/dt = 2d(sin(t))/dt
=> dy/dt = 2cos(t)
=> dy = 2cos(t)dt
Hence, the value of dx and dy as per the given parameters is -2sin(t)dt and 2cos(t)dt respectively.
To know more about integration click on,
https://brainly.com/question/18125359
#SPJ2
One way to calculate the target heart rate of a physically fit adult during exercise is given by the formula h=0.8( 220−x ), where h is the number of heartbeats per minute and x is the age of the person in years. Which formula is equivalent and gives the age of the person in terms of the number of heartbeats per minute?
Answer:
The answer is:
C. [tex]\bold{x = -1.25h+220}[/tex]
Step-by-step explanation:
Given:
[tex]h=0.8( 220-x )[/tex]
Where [tex]h[/tex] is the heartbeats per minute and
[tex]x[/tex] is the age of person
To find:
Age of person in terms of heartbeats per minute = ?
To choose form the options:
[tex]A.\ x=176-h\\B.\ x=176-0.8h\\C.\ x=-1.25h+220\\D.\ x=h-0.8220[/tex]
Solution:
First of all, let us have a look at the given equation:
[tex]h=0.8( 220-x )[/tex]
It is value of [tex]h[/tex] in terms of [tex]x[/tex].
We have to find the value of [tex]x[/tex] in terms of [tex]h[/tex].
Let us divide the equation by 0.8 on both sides:
[tex]\dfrac{h}{0.8}=\dfrac{0.8( 220-x )}{0.8}\\\Rightarrow \dfrac{1}{0.8}h=220-x\\\Rightarrow 1.25h=220-x[/tex]
Now, subtracting 220 from both sides:
[tex]\Rightarrow 1.25h-220=220-x-220\\\Rightarrow 1.25h-220=-x[/tex]
Now, multiplying with -1 on both sides:
[tex]-1.25h+220=x\\OR\\\bold{x = -1.25h+220}[/tex]
So, the answer is:
C. [tex]\bold{x = -1.25h+220}[/tex]
Find the derivative of the function f(x) = (x3 - 2x + 1)(x – 3) using the product rule.
then by distributing and make sure they are the same answer
Answer:
Step-by-step explanation:
Hello, first, let's use the product rule.
Derivative of uv is u'v + u v', so it gives:
[tex]f(x)=(x^3-2x+1)(x-3)=u(x) \cdot v(x)\\\\f'(x)=u'(x)v(x)+u(x)v'(x)\\\\ \text{ **** } u(x)=x^3-2x+1 \ \ \ so \ \ \ u'(x)=3x^2-2\\\\\text{ **** } v(x)=x-3 \ \ \ so \ \ \ v'(x)=1\\\\f'(x)=(3x^2-2)(x-3)+(x^3-2x+1)(1)\\\\f'(x)=3x^3-9x^2-2x+6 + x^3-2x+1\\\\\boxed{f'(x)=4x^3-9x^2-4x+7}[/tex]
Now, we distribute the expression of f(x) and find the derivative afterwards.
[tex]f(x)=(x^3-2x+1)(x-3)\\\\=x^4-2x^2+x-3x^3+6x-4\\\\=x^4-3x^3-2x^2+7x-4 \ \ \ so\\ \\\boxed{f'(x)=4x^3-9x^2-4x+7}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you