Answer:
It would change to 0.04802
Step-by-step explanation:
from this question we have that n became 400
40% of 400
= 160
p* = 160/400
= 0.4
1 - p* =
= 1 - 0.4
= 0.6
at confidence level,
1 - 0.95
= 0.05
alpha/2 = 0.025
z= 1.96
margin of error. E
= 1.96 x √[(0.4 x 0.6)/400]
= 1.96 x 0.0245
= 0.04802
M.E = 0.04802
8. (01.02)
Given that f(x) = x2 + 2x + 3 and g(x)
X+4.
3
solve for f(g(x)) when x = 2.
2
5
11
33
Answer:
51.
Step-by-step explanation:
f(x) = x^2 + 2x + 3 and g(x) = x + 4.
f(g(x)) = (x + 4)^2 + 2(x + 4) + 3
= x^2 + 4x + 4x + 16 + 2x + 8 + 3
= x^2 + 8x + 16 + 2x + 11
= x^2 + 10x + 27.
x = 2.
f(g(2)) = 2^2 + 10 * 2 + 27
= 4 + 20 + 27
= 31 + 20
= 51.
Hope this helps!
A box is 1 m high, 2.5 m long, and 1.5 m wide, what is its volume?
Answer:
3.75
Step-by-step explanation:
[tex]v = lbh \\ 2.5 \times 1.5 \times 1 \\ = 3.75[/tex]
The volume of the rectangular prism will be 3.75 cubic meters.
What is the volume of the rectangular prism?Let the prism with a length of L, a width of W, and a height of H. Then the volume of the prism is given as
V = L x W x H
A box is 1 m high, 2.5 m long, and 1.5 m wide.
Then the volume of the rectangular prism will be
V = L x W x H
V = 1 x 2.5 x 1.5
V = 3.75 cubic meters
Thus, the volume of the rectangular prism will be 3.75 cubic meters.
More about the volume of the rectangular prism link is given below.
https://brainly.com/question/21334693
#SPJ2
Kevin's total payroll deductions are 30% of his earnings. If his deductions add up to $369 for a two week period, how much were his earnings for the period?
Answer:
His earnings for the period= $123
Step-by-step explanation:
Kevin's total payroll deductions are 30% of his earnings. His deductions add up to $369 for a two week period.
If 30% of his earnings = $369
His earnings = x
30/100 * x= 369
X= 369*100/30
X= 123*10
X=$ 1230
His earnings for the period= $123
Emily made a pot cream of pumpkin soup for thanksgiving dinner she put 5 cups of cream in the soup she poured the soup into 24 small bowl show much cream measured in oz is used for each small bowl of soup?
Answer:
each bowl can contain 5/3 oz. of soup.
Step-by-step explanation:
1 cup = 8 oz.
8 oz.
5 cups x -------------- = 40 oz.
1 cup
to get the measurement of each bowl,
40 oz. divided into 24 bowls.
therefore, each bowl can contain 5/3 oz. of soup.
Express the function F in the form f∘g. (Enter your answers as a comma-separated list. Use non-identity functions for f(x) and g(x).)
F(x) = (x − 1)4
Answer:
[tex]f(x) = x^{4}[/tex], [tex]g(x) = x-1[/tex]
Step-by-step explanation:
Let be [tex]F(x) = f\circ g (x) = (x-1)^{4}[/tex], then expression for [tex]f(x)[/tex] and [tex]g(x)[/tex] are, respectively:
[tex]f(x) = x^{4}[/tex] and [tex]g(x) = x-1[/tex]
A random sample of 1003 adult Americans was asked, "Do you think televisions are a necessity or a luxury you could do without?" Of the 1003 adults surveyed, 521 indicated that televisions are a luxury they could do without. Construct and interpret a 95% confidence interval for the population proportion of adult Americans who believe that televisions are a luxury they could do without out.
Answer:
The 95% confidence interval is [tex]0.503 < p < 0.535[/tex]
The interpretation is that there is 95% confidence that the true population proportion lie within the confidence interval
Step-by-step explanation:
From the question we are told that
The sample size is n = 1003
The number that indicated television are a luxury is k = 521
Generally the sample mean is mathematically represented as
[tex]\r p = \frac{k}{n}[/tex]
[tex]\r p = \frac{521}{1003}[/tex]
[tex]\r p = 0.519[/tex]
Given the confidence level is 95% then the level of significance is mathematically evaluated as
[tex]\alpha = 100 - 95[/tex]
[tex]\alpha = 5\%[/tex]
[tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table, the value is
[tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
The margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \sqrt{ \frac{\r p (1- \r p )}{n} }[/tex]
=> [tex]E = 1.96 * \sqrt{ \frac{ 0.519 (1- 0.519 )}{1003} }[/tex]
=> [tex]E = 0.016[/tex]
The 95% confidence interval is mathematically represented as
[tex]\r p -E < p < \r p +E[/tex]
=> [tex]0.519 - 0.016 < p < 0.519 + 0.016[/tex]
=> [tex]0.503 < p < 0.535[/tex]
22/25of a number is what percentage of that number?
Answer:
88%.
Step-by-step explanation:
Multiply the fraction by 100:
(22/25) * 100
= 22 * 4
= 88%.
Assume a random sample of size n is from a normal population. Assume a single sample t test is used to for hypothesis testing. The null hypothesis is that the population mean is zero versus the alternative hypothesis that it is not zero. If the sample size is decreased, and the Type I error rate is unchanged, then the Type II error rate will increase.a. Trueb. False
Answer:
true
Step-by-step explanation:
type 1 and type 2 are not independent of each other - as one increases, the other decreases
Gavin goes to the market and buys one rectangle shaped board. The length of the board is 16 cm and width of board is 10 cm. If he wants to add a 2 cm wooden border around the board, what will be the area of the rectangle board?
Answer:
The answer is 216
Step-by-step explanation:
if there is a 2 cm border, that means that the sides will both become 2 centimeters longer. so (16+2)*(10*2) = 18*12 = 216.
The population of Jacksonville is 836,507. What is the population rounded to the
nearest hundred thousand?
A. 900,000
O
B. 850,000
C. 840,000
o D. 800,000
Answer:
D. 800,000
Step-by-step explanation:
It is D because you find the hundred thousand place which is the 8, the you go to the number next door which is 3, if the 3 is 5 or greater the 8 will become a 9 or if it is not then it will stay the same. And everything to the left stays the same, everything to the right turns into zeros.
What is the value of x?
Answer:
58
Step-by-step explanation:
By the property of intersecting secants outside of a circle, we have:
x° = 1/2( 141° - 25°) = 1/2 * 116° = 58°
Therefore, x = 58
What is the missing statement in step 10 of the proof?
Answer:
c/sin C = b/sin C
Step-by-step explanation:
Look at the statement in the previous step and the reason in this step.
c sin B = b sin C
Divide both sides by sin B sin C:
(c sin B)/(sin B sin C) = (b sin C)/(sin B sin C)
c/sin C = b/sin B
Find the missing side of the triangle. A. √321 yd B. √221 yd C. 3√38 yd D. √21 yd
Answer:
(B) [tex]\sqrt{221}[/tex] yards
Step-by-step explanation:
Since this is a right triangle, we can use the Pythagorean Theorem to find the length of x.
The Pythagorean Theorem states that [tex]a^2 + b^2 = c^2[/tex], where a and b are our legs and c is the hypotenuse.
We need to find c, and we already know a and b, so let's substitute.
[tex]10^2 + 11^2 = c^2\\\\100+121=c^2\\\\221=c^2\\\\c=\sqrt{221}[/tex]
Hope this helped!
What is 2 cm converted to feet?
Answer:
0.065617 ft
Step-by-step explanation:
Answer:
0.0656168 feet.
Step-by-step explanation:
2 lines intersect a horizontal line to form 8 angles. Labeled clockwise, starting at the top left, the angles are: A, B, C, D, E, F, G, D. Which of the pairs of angles are vertical angles and thus congruent? ∠A and ∠G ∠A and ∠B ∠C and ∠F ∠D and ∠H
Answer:
∠A and ∠G is the pair of vertical angles.
Step-by-step explanation:
From the figure attached,
Two lines 'm' and 'n' are two parallel lines. These lines intersect a horizontal line 'l'.
Since, "Pair of opposite angles formed at the point of intersection are the vertical angles and equal in measure."
Therefore, Opposite angles ∠A ≅ ∠G, ∠B ≅ ∠H, ∠C ≅ ∠E and ∠D ≅ ∠F are the vertical angles.
From the given options,
∠A and ∠G is the pair representing the pair of vertical angles and thus congruent.
Answer:
a
Step-by-step explanation:
2 divided by ___=42 two divided by what equals 42?
A. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 1; B: the numbers add to 4; C: at least one of the numbers is 1; and D: the numbers do not add to 10. Express the given event in symbols.
The red die shows 1 and the numbers add to 4.
How many elements does it contain?
B. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 3; B: the numbers add to 2; C: at least one of the numbers is 1; and D: the numbers do not add to 10. Express the given event in symbols. HINT [See Example 5.]
The numbers do not add to 2.
How many elements does it contain?
C. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 1; B: the numbers add to 2; C: at least one of the numbers is 3; and D: the numbers do not add to 11. Express the given event in symbols. HINT [See Example 5.]
Either the numbers add to 11 or the red die shows a 1.
How many elements does it contain?
D. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 4; B: the numbers add to 5; C: at least one of the numbers is 1; and D: the numbers do not add to 9. Express the given event in symbols. HINT [See Example 5.]
Either the numbers add to 5, or they add to 9, or at least one of them is 1.
How many elements does it contain?
Answer:
1. elements it contains = (1,3)
2. elements it contains = 35
3. elements it contains = 8
4. elements it contains = 17
Step-by-step explanation:
A. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 1; B: the numbers add to 4; C: at least one of the numbers is 1; and D: the numbers do not add to 10. Express the given event in symbols.
The red die shows 1 and the numbers add to 4.
How many elements does it contain?
B. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 3; B: the numbers add to 2; C: at least one of the numbers is 1; and D: the numbers do not add to 10. Express the given event in symbols. HINT [See Example 5.]
The numbers do not add to 2.
How many elements does it contain?
C. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 1; B: the numbers add to 2; C: at least one of the numbers is 3; and D: the numbers do not add to 11. Express the given event in symbols. HINT [See Example 5.]
Either the numbers add to 11 or the red die shows a 1.
How many elements does it contain?
D. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 4; B: the numbers add to 5; C: at least one of the numbers is 1; and D: the numbers do not add to 9. Express the given event in symbols. HINT [See Example 5.]
Either the numbers add to 5, or they add to 9, or at least one of them is 1.
How many elements does it contain?
NB. Attached is the solution to the problems stated above
a theater has (2x+1) rows of seats, with (x-3) seats in each row. how many seats are in the theater?
A. 2x^2- 5x- 3
B. 2x^2+ 5x- 3
C. 2x^2- 7x+ 3
D. 2x^2- 7x- 3
(2x+1)(x-3)
y(x-3) .... let y = 2x+1
y*x+y(-3) .... distribute
xy - 3y
x( y ) - 3( y )
x( 2x+1 ) - 3( 2x+1) ... replace y with 2x+1
2x^2 + x - 6x - 3 ..... distribute
2x^2 - 5x - 3
Answer is choice A
Suppose a vine maple grows in height linearly. Four weeks after it is planted it stands 10.67 inches, and after seven weeks it is 15.67 inches tall. Write an equation that models the growth, in inches, of the vine maple as a function of time, in weeks. 1. What is the slope of the function? 2. How tall was the tree when it was first planted? 3. Write the function 4. How tall will the vine maple be after 16 weeks?
Answer:
Height (z)= 4+(5/3)(z)
Where z is the number of weeks
1). Slope = 4
2). Height= 5.67 inches
3).Height (z)= 4+(5/3)(z)
4).Height= 30.67 inches
Step-by-step explanation:
At week four
10.67= x+4y
Week 7
15.67= x+7y
Solving both equation simultaneously
3y= 5
Y= 5/3
15.67= x+7y
15.67= x+7(5/3)
15.67-35/3= x
15.67-11.67= x
4= x
The modeled equation is
Height (z)= 4+5/3(z)
Where z is the number of weeks
Slope of the function as compared to y= mx+c is 4
The first week of it's plantation
Height (z)= 4+5/3(z)
Height (1)= 4+5/3(1)
Height= 5.67 inches
After 16 weeks
Height (z)= 4+(5/3)(z)
Height (16)= 4+(5/3)(16)
Height= 30.67 inches
Find an equation for the line tangent to the curve at the point defined by the given value of d²y/dx².
At this point. x = 2 cos t, y = 2 sin t, t=π/4
Answer:
Step-by-step explanation:
Given:
x = 2cost,
t = (1/2)arccosx
y = 2sint
dy/dx = dy/dt . dt/dx
dy/dt = 2cost
dt/dx = -1/√(1 - x²)
dy/dx = -2cost/√(1 - x²)
Differentiate again to obtain d²y/dx²
d²y/dx² = 2sint/√(1 - x²) - 2xcost/(1 - x²)^(-3/2)
At t = π/4, we have
(√2)/√(1 - x²) - (√2)x(1 - x²)^(3/2)
Solve for x: x/25 > 5
Answer:
x>125
Step-by-step explanation:
Answer:
x > 125
Step-by-step explanation:
Multiply each side by 25, so it now looks like this: x > 125I hope this helps!
According to the Empirical Rule, 99.7% of scores in a normal distribution fall within 2 standard deviations of the mean.
a. True
b. False
Answer:
False
Step-by-step explanation:
Here, we want to check the validity of the given statement. The statement is false.
Under the empirical rule, following a normal distribution, 99.7% of observed data lies within 3 standard deviations from the mean while 95% of observed data lies within 2 standard deviation from the mean and 68% of observed data lies within 1 standard deviation of the mean.
Please check attachment for diagrammatic representation of the empirical rule.
The time, X minutes, taken by Tim to install a satellite dish is assumed to be a normal random variable with mean 127 and standard deviation 20. Determine the probability that Tim will takes less than 150 minutes to install a satellite dish.
Answer: 0.8749
Step-by-step explanation:
Given, The time, X minutes, taken by Tim to install a satellite dish is assumed to be a normal random variable with mean 127 and standard deviation 20.
Let x be the time taken by Tim to install a satellite dish.
Then, the probability that Tim will takes less than 150 minutes to install a satellite dish.
[tex]P(x<150)=P(\dfrac{x-\text{Mean}}{\text{Standard deviation}}<\dfrac{150-127}{20})\\\\=P(z<1.15)\ \ \ [z=\dfrac{x-\text{Mean}}{\text{Standard deviation}}]\\\\=0.8749\ [\text{By z-table}][/tex]
hence, the required probability is 0.8749.
In a factory there are 100 units of a certain product, 5 of which are defective. We pick three units from the 100 units at random. What is the probability that none of them are defective
Answer:
Probability of picking all three non-defective units
= 7372/8085 (or 0.911812 to six decimals)
Step-by-step explanation:
Let
D = event that the picked unit is defective
N = event that the picked unit is not defective
Pick are without replacement.
We need to calculate P(NNN) using the multiplication rule,
P(NNN)
= 97/100 * 96/99 * 95/98
=7372/8085
= 0.97*0.969697*0.9693878
= 0.911812
The probability that none of the picked products are defective is;
P(None picked is defective) = 0.856
We are told that 5 are defective out of 100.This means the number of good products that are not defective are 95.
Probability of the first picked product not being defective is written as; P(First picked not defective) = 95/100Since the good ones have been picked, there will be 99 left of which the good ones are now 94. Thus, probability of second one not being defective = 94/99Since two good ones have been picked, there will be 98 left and 93 good ones left. Thus, probability of third one not being defective = 93/98Finally, Probability of none of the three being defective is;95/100 × 94/99 × 93/98 = 0.856
Read more at; https://brainly.com/question/14661097
Theresa bought 2 pineapples for $6. She be wants to find the constant of proportionality in terms of dollars per pineapple. She modeled this proportional relationship on a number line diagram, as shown.
Part A
Using the diagram, find the constant of proportionality in terms of dollars per pineapple.
Answer:
$3 per pineapple
Step-by-step explanation:
Hey there!
If 2 pineapples are $6,
6 / 2 = 3
So 1 pineapple is $3.
Hope this helps :)
Answer:
3 dollars for 1 pineapple
Step-by-step explanation:
well 2 pinapples is 6 bucks. so 2x=6, and to get x, just divide each side by 2. 6/2=3.
HCF of x minus 2 and X square + X - 6
Answer:
[tex] \boxed{ \sf{ \bold{ \huge{ \boxed{x - 2}}}}}[/tex]Step-by-step explanation:
[tex] \sf{x - 2} \: and \: { {x}^{2} + x - 6}[/tex]
To find the H.C.F of the algebraic expressions, they are to be factorised and a common factor or the product of common factors is obtained as their H.C.F
Let's solve
First expression = x - 2
Second expression = x + x - 6
Here, we have to find the two numbers which subtracts to 1 and multiplies to 6
= x + ( 3 - 2 ) x + 6
Distribute x through the parentheses
= x + 3x - 2x + 6
Factor out x from the expression
= x ( x + 3 ) - 2x + 6
Factor out -2 from the expression
= x ( x + 3 ) - 2 ( x + 3 )
Factor out x+3 from the expression
= ( x + 3 ) ( x - 2 )
Here, x - 2 is common in both expression.
Thus, H.C.F = x - 2
Hope I helped!
Best regards!!!
Answer:
x - 2
Step-by-step explanation:
by factorization method
1) x - 2
2) x^2 + x - 6
by splitting method
x^2 + 3x - 2x - 6
taking separate common from the first two terms and last two terms
x(x + 3) - 2(x + 3)
now writing x+3 once and the other term to get the right answer
(x + 3)(x - 2)
in both parts just see the similar term and write it as HCF
HCF= x - 2
and the second method by which you can get this answer is division method
g When conducting a one-way ANOVA, the _______ the between-treatment variability is when compared to the within-treatment variability, the __________the value of the F statistic will be which gives us ________ evidence against the null. (Choose all that apply)
Answer:
One - way ANOVA, the smaller the between treatment
The smaller the value of F statistic will give us significant evidence.
Step-by-step explanation:
ANOVA is a statistical technique designed to test mean of one or more quantitative populations. In two-way ANOVA it equals the block mean. Column block means square is three-way ANOVA. It is a statistical technique designed to test mean of one or more quantitative populations. In two-way ANOVA it equals the block mean. Column block means square is three-way ANOVA.
One-way ANOVA, the smaller the between treatment
The smaller the value of F statistic will give us significant evidence.
What is ANOVA?It should be the statistical technique that are made for testing the mean for one or more than one quantitative population. In two-way ANOVA it should be equivalent to the block mean. Here the column block represent the square be the three-way ANOVA.
Therefore, One-way ANOVA, the smaller the between treatment
The smaller the value of F statistic will give us significant evidence.
Learn more about evidence here: https://brainly.com/question/6764645?referrer=searchResults
Which option is correct and how would one solve for it?
Answer:
-3/5, -1, -5/3, -3, -7
Step-by-step explanation:
Let x go from 1 to 5
x =1 (1+2)/(1-6) = 3/-5 = -3/5
x =2 (2+2)/(2-6) = 4/-4 = -1
x =3 (3+2)/(3-6) = 5/-3 = -5/3
x =4 (4+2)/(4-6) = 6/-2 = -3
x =5 (5+2)/(5-6) = 7/-1 = -7
What is the probability that a randomly selected individual on this campus weighs more than 166 pounds? (express in decimal form and round final answer to 4 decimal places)
Answer:
hello attached is the missing part of your question and the answer of the question asked
answer : 0.2951
Step-by-step explanation:
Given data:
number of persons allowed in the elevator = 15
weight limit of elevator = 2500 pounds
average weight of individuals = 152 pounds
standard deviation = 26 pounds
probability that an individual selected weighs more than 166 pounds
std = 26 , number of persons(x) = 15, average weight of individuals(u) = 152 pounds
p( x > 166 ) = p( x-u / std, 166 - u/ std )
= p ( z > [tex]\frac{166-152}{26}[/tex] )
= 1 - p( z < 0.5385 )
p( x > 166 ) = 1 - 0.70488 = 0.2951
(2²)³+(2³)²/4
Simplificar
━━━━━━━☆☆━━━━━━━
▹ Answer
80
▹ Step-by-Step Explanation
(2²)³ + (2³)² ÷ 4
Rewrite:
2⁶ + 2⁶ ÷ 2²
Divide:
2⁶ + 2⁴
Factor:
(2² + 1) * 2⁴
Evaluate:
(4 + 1) * 2⁴
Calculate:
5 * 16
= 80
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━