Answer:
0.8989
Step-by-step explanation:
Using the Newton's Raphson approximation formula.
Xn+1 = Xn - f(Xn)/f'(Xn)
Given f(x) = x³-2x+2
f'(x) = 3x²-2
If the initial value X1 = 2
X2 = X1 - f(X1)/f'(X1)
X2 = 2 - f(2)/f'(2)
f(2) = 2³-2(2)+2
f(2) = 8-4+2
f(2) = 6
f'(2) = 3(2)²-2
f'(2) = 10
X2 = 2- 6/10
X2 = 14/10
X2 = 1.4
X3 = X2 - f(X2)/f'(X2)
X3 = 1.4 - f(1.4)/f'(1.4)
f(1.4) = 1.4³-2(1.4)+2
f(1.4) = 2.744-2.8+2
f(1.4) = 1.944
f'(1.4) = 3(1.4)²-2
f'(1.4) = 3.880
X3 = 1.4- 1.944/3.880
X3 = 1.4 - 0.5010
X3 = 0.8989
Hence the value of X3 is 0.8989
A. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 1; B: the numbers add to 4; C: at least one of the numbers is 1; and D: the numbers do not add to 10. Express the given event in symbols.
The red die shows 1 and the numbers add to 4.
How many elements does it contain?
B. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 3; B: the numbers add to 2; C: at least one of the numbers is 1; and D: the numbers do not add to 10. Express the given event in symbols. HINT [See Example 5.]
The numbers do not add to 2.
How many elements does it contain?
C. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 1; B: the numbers add to 2; C: at least one of the numbers is 3; and D: the numbers do not add to 11. Express the given event in symbols. HINT [See Example 5.]
Either the numbers add to 11 or the red die shows a 1.
How many elements does it contain?
D. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 4; B: the numbers add to 5; C: at least one of the numbers is 1; and D: the numbers do not add to 9. Express the given event in symbols. HINT [See Example 5.]
Either the numbers add to 5, or they add to 9, or at least one of them is 1.
How many elements does it contain?
Answer:
1. elements it contains = (1,3)
2. elements it contains = 35
3. elements it contains = 8
4. elements it contains = 17
Step-by-step explanation:
A. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 1; B: the numbers add to 4; C: at least one of the numbers is 1; and D: the numbers do not add to 10. Express the given event in symbols.
The red die shows 1 and the numbers add to 4.
How many elements does it contain?
B. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 3; B: the numbers add to 2; C: at least one of the numbers is 1; and D: the numbers do not add to 10. Express the given event in symbols. HINT [See Example 5.]
The numbers do not add to 2.
How many elements does it contain?
C. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 1; B: the numbers add to 2; C: at least one of the numbers is 3; and D: the numbers do not add to 11. Express the given event in symbols. HINT [See Example 5.]
Either the numbers add to 11 or the red die shows a 1.
How many elements does it contain?
D. Suppose two dice (one red, one green) are rolled. Consider the following events. A: the red die shows 4; B: the numbers add to 5; C: at least one of the numbers is 1; and D: the numbers do not add to 9. Express the given event in symbols. HINT [See Example 5.]
Either the numbers add to 5, or they add to 9, or at least one of them is 1.
How many elements does it contain?
NB. Attached is the solution to the problems stated above
(2²)³+(2³)²/4
Simplificar
━━━━━━━☆☆━━━━━━━
▹ Answer
80
▹ Step-by-Step Explanation
(2²)³ + (2³)² ÷ 4
Rewrite:
2⁶ + 2⁶ ÷ 2²
Divide:
2⁶ + 2⁴
Factor:
(2² + 1) * 2⁴
Evaluate:
(4 + 1) * 2⁴
Calculate:
5 * 16
= 80
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
What is the factorization of the polynomial below? 9x^2+12x+4
Answer:
(3x+2)^2
Step-by-step explanation:
2 lines intersect a horizontal line to form 8 angles. Labeled clockwise, starting at the top left, the angles are: A, B, C, D, E, F, G, D. Which of the pairs of angles are vertical angles and thus congruent? ∠A and ∠G ∠A and ∠B ∠C and ∠F ∠D and ∠H
Answer:
∠A and ∠G is the pair of vertical angles.
Step-by-step explanation:
From the figure attached,
Two lines 'm' and 'n' are two parallel lines. These lines intersect a horizontal line 'l'.
Since, "Pair of opposite angles formed at the point of intersection are the vertical angles and equal in measure."
Therefore, Opposite angles ∠A ≅ ∠G, ∠B ≅ ∠H, ∠C ≅ ∠E and ∠D ≅ ∠F are the vertical angles.
From the given options,
∠A and ∠G is the pair representing the pair of vertical angles and thus congruent.
Answer:
a
Step-by-step explanation:
I'm not sure about this one please I need someone to help me.
Answer:
The corresponding graph is Graph A.
Step-by-step explanation:
Part 1: Rewriting the inequality and solving for d
To start, the inequality will need simplified.
[tex]9-4d\geq -3\\\\-4d\geq -12\\\\\frac{-4d}{-4} \geq \frac{-12}{-4} \\\\d \leq 3[/tex]
Because simplifying the inequality involved dividing by a negative number, the sign must be flipped.
Part 2: Determining the graph for the inequality
Now, refer to the rules for graphing inequalities.
If the sign is simply < or >, the graph will start at the number that it begins at and the circle will be open.If the sign is ≤ or ≥, the graph will start at the number that it begins at and the circle will be closed.Therefore, because [tex]d \leq 3[/tex], the graph will start at 3 as a closed dot. Then, it will go left because values must be equal to 3 or less than 3.
Therefore, the graph that represents this is Graph A.
Answer:
Graph A
I hope this helps!
Theresa bought 2 pineapples for $6. She be wants to find the constant of proportionality in terms of dollars per pineapple. She modeled this proportional relationship on a number line diagram, as shown.
Part A
Using the diagram, find the constant of proportionality in terms of dollars per pineapple.
Answer:
$3 per pineapple
Step-by-step explanation:
Hey there!
If 2 pineapples are $6,
6 / 2 = 3
So 1 pineapple is $3.
Hope this helps :)
Answer:
3 dollars for 1 pineapple
Step-by-step explanation:
well 2 pinapples is 6 bucks. so 2x=6, and to get x, just divide each side by 2. 6/2=3.
Question: 2. Musah Stands At The Centre Of A Rectangular Field. He First Takes 50 Steps North, Then 25 Steps West And Finally 50 Steps On A Bearing Of 3150 Sketch Musah's Movement Mark 41 Ii. How Far West Is Musah's Final Point From The Centre? [Mark 41 Iv. How Far North Is Musah's Final Point From The Centre? Mark 41 Describe How You Would Guide A JHS Student
Answer:
60.36 steps West from centre
85.36 steps North from centre
Step-by-step explanation:
Refer to attached
Musah start point and movement is captured in the picture.
1. He moves 50 steps to North, 2. Then 25 steps to West, 3. Then 50 steps on a bearing of 315°. We now North is measured 0°or 360°, so bearing of 315° is same as North-West 45°.
Note. According to Pythagorean theorem, 45° right triangle with hypotenuse of a has legs equal to a/√2.
How far West Is Musah's final point from the centre?
25 + 50/√2 ≈ 60.36 stepsHow far North Is Musah's final point from the centre?
50 + 50/√2 ≈ 85.36 steps1.
The ratio of the numbers of sides of two regular polygons is 1:2 .If each interior angle of the first
polygon is 1200 then the measure of each interior angle of the second polygon
is
(1)1400
(2)1350
(3)1500
(4)1600
first polygon
ext. angle=180°-120°
=60°
[tex]ext \: ang = \frac{360}{n} [/tex]
n=360°/60°
n=6
second polygon
n=2(6)=12
ext. ang= 360°/n = 360°/12° = 30°
int. ang = 180°-30°= 150°
answer is C
If the ratio of the numbers of sides of two regular polygons is 1:2 and each interior angle of first angle is 120° then the measure of each interior angle of the second polygon is 150° which is option 3).
What is regular polygon?A regular polygon is a polygon whose all sides are equal to each other.
How to find interior angle?We have been given ratio of sides of two polygon that is 1:2 and the interior angle of first polygon that is 120 degrees.
Exterior angle will be 180-120=60°
We know that exterior angle =360/n where n is the sides of the polygon.
60=360/n
n=360/60
n=6
Number of sides of other polygon=2*6=12
Exterior angle=360/n
=360/12
=30
Interior angle=180-30=150°
Hence the interior angle of the second polygon is 150 degrees.
Learn more about regular polygon at https://brainly.com/question/1592456
#SPJ2
Many elementary school students in a school district currently have ear infections. A random sample of children in two different schools found that 16 of 42 at one school and 18 of 34 at the other have ear infections. At the 0.05 level of significance, is there sufficient evidence to support the claim that a difference exists between the proportions of students who have ear infections at the two schools? Group of answer choices
Answer:
Step-by-step explanation:
The summary of the given data includes;
sample size for the first school [tex]n_1[/tex] = 42
sample size for the second school [tex]n_2[/tex] = 34
so 16 out of 42 i.e [tex]x_1[/tex] = 16 and 18 out of 34 i.e [tex]x_2[/tex] = 18 have ear infection.
the proportion of students with ear infection Is as follows:
[tex]\hat p_1 = \dfrac{16}{42}[/tex] = 0.38095
[tex]\hat p_2 = \dfrac{18}{34}[/tex] = 0.5294
Since this is a two tailed test , the null and the alternative hypothesis can be computed as :
[tex]H_0 :p_1 -p_2 = 0 \\ \\ H_1 : p_1 - p_2 \neq 0[/tex]
level of significance ∝ = 0.05,
Using the table of standard normal distribution, the value of z that corresponds to the two-tailed probability 0.05 is 1.96. Thus, we will reject the null hypothesis if the value of the test statistics is less than -1.96 or more than 1.96.
The test statistics for the difference in proportion can be achieved by using a pooled sample proportion.
[tex]\bar p = \dfrac{x_1 +x_2}{n_1 +n_2}[/tex]
[tex]\bar p = \dfrac{16 +18}{42 +34}[/tex]
[tex]\bar p = \dfrac{34}{76}[/tex]
[tex]\bar p = 0.447368[/tex]
[tex]\bar p + \bar q = 1 \\ \\ \bar q = 1 -\bar p \\ \\\bar q = 1 - 0.447368 \\ \\\bar q = 0.552632[/tex]
The pooled standard error can be computed by using the formula:
[tex]S.E = \sqrt{ \dfrac{ \bar p \bar q}{ n_1} + \dfrac{\bar p \bar p}{n_2} }[/tex]
[tex]S.E = \sqrt{ \dfrac{ 0.447368 * 0.552632}{ 42} + \dfrac{ 0.447368 * 0.447368}{34} }[/tex]
[tex]S.E = \sqrt{ \dfrac{ 0.2472298726}{ 42} + \dfrac{ 0.2001381274}{34} }[/tex]
[tex]S.E = \sqrt{ 0.01177284105}[/tex]
[tex]S.E = 0.1085[/tex]
The test statistics is ;
[tex]z = \dfrac{\hat p_1 - \hat p_2}{S.E}[/tex]
[tex]z = \dfrac{0.38095- 0.5294}{0.1085}[/tex]
[tex]z = \dfrac{-0.14845}{0.1085}[/tex]
z = - 1.368
Decision Rule: Since the test statistics is greater than the rejection region - 1.96 , we fail to reject the null hypothesis.
Conclusion: There is insufficient evidence to support the claim that a difference exists between the proportions of students who have ear infections at the two schools
Bob Nale is the owner of Nale's Texaco GasTown. Bob would like to estimate the mean number of litres (L) of gasoline sold to his customers. Assume the number of litres sold follows the normal distribution with a standard deviation of 18 L. From his records, he selects a random sample of 18 sales and finds the mean number of litres sold is 56.
a. What is the point estimate of the population mean? (Round the final answer to the nearest whole number.)
The point estimate of the population mean is
litres.
b. Develop a 80% confidence interval for the population mean. (Round the final answers to 3 decimal places.)
The 80% confidence interval for the population mean is between
and
.
c. Interpret the meaning of part (b).
If 100 such intervals were determined, the population
mean
would be included in about
intervals.
Answer:
a
The point estimate of the population mean is [tex]\= x = 56[/tex]
b
The 80% confidence level is [tex]50.57 < \mu < 61.43[/tex]
c
There is 80% confidence that the true population mean lies within the confidence interval.
Step-by-step explanation:
From the question we are told that
The sample size is n = 18
The standard deviation is [tex]\sigma = 18 \ L[/tex]
The sample mean is [tex]\= x = 56[/tex]
Generally the point estimate of the population mean is equivalent to the sample mean whose value is [tex]\= x = 56[/tex]
Given that the confidence interval is 80% then the level of significance is mathematically represented as
[tex]\alpha = 100 - 80[/tex]
[tex]\alpha = 20 \%[/tex]
[tex]\alpha = 0.20[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table
The value is [tex]Z_{\frac{ \alpha }{2} } = 1.28[/tex]
Generally the margin of error is mathematically evaluated as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]
=> [tex]E = 1.28 * \frac{18 }{\sqrt{18} }[/tex]
=> [tex]E = 5.43[/tex]
Generally the 80% confidence interval is mathematically represented as
[tex]\= x - E < \mu < \= x + E[/tex]
=> [tex]56 - 5.43 < \mu < 56 + 5.43[/tex]
=> [tex]50.57 < \mu < 61.43[/tex]
The interpretation is that there is 80% confidence that the true population mean lies within the limit
Please answer this correctly without making mistakes
Answer:
6 1/6 pounds
Step-by-step explanation:
since 2/3 coverted into sixths is 4/6, and 14-6 is 8, and 1/2 into sixths is 3/6, 4/6-3/6 is 1/6. You put the whole in the front and you have 6 1/6
Find n for the arithmetic sequence for which sn=345, u1=12 and d = 5 .
Answer:
n = 10
Step-by-step explanation:
The sum to n terms of an arithmetic sequence is
[tex]S_{n}[/tex] = [tex]\frac{n}{2}[/tex] [ 2a₁ + (n - 1)d ]
where a₁ is the first term and d the common difference
Here a₁ = 12 and d = 5 and [tex]S_{n}[/tex] = 345, thus
[tex]\frac{n}{2}[/tex] [ (2 × 12) + 5(n - 1) ] = 345 ( multiply both sides by 2 )
n( 24 + 5n - 5) = 690 ← distribute and simplify left side
n(19 + 5n) = 690
19n + 5n² = 690 ( subtract 690 from both sides )
5n² + 19n - 690 = 0 ← in standard form
(5n + 69)(n - 10) = 0 ← in factored form
Equate each factor to zero and solve for n
5n + 69 = 0 ⇒ 5n = - 69 ⇒ n = - [tex]\frac{69}{5}[/tex]
n - 10 = 0 ⇒ n = 10
However, n > 0 , thus n = 10
Hospitals typically require backup generators to provide electricity in the event of a power outage. Assume that emergency backup generators fail 18% of the times when they are needed. A hospital has two backup generators so that power is available if one of them fails during a power outage. Required:a. Find the probability that both generators fail during a power outage.b. Find the probability of having a working generator in the event of a power outage. Is that probability high enough for the hospital?c. Is that probability high enough for the hospital?
Answer:
a. 0.36
b. 0.1296
c. No.
Step-by-step explanation:
1. Note the probability of emergency backup generators to fail when they are needed = 18% or 0.18. Thus,
a. Probability of both emergency backup generators failing = P (G1 and G2 fails) where G represents the generators.
= P (G1 falls) x P ( G2 fails)
= 0.18 x 0.18
= 0.36
b. The probability of having a working generator in the event of a power outage = G1 fails x G2 works + G2 works x G2 fails
= 0.36 x 0.18 + 0.18 x 0.36
= 0.1296
c. Looking at the probability of any of the generators working, it is not meeting safety standards as lives could be lost if the backup generators needed to perform an emergency surgery operation fails.
PLEASE HELP ASAP! - 14 POINTS
Answer:
False
Step-by-step explanation:
the answer is false because
year 1 to 2 is $18
year 2 to 3 is $17
year 3 to 4 is $18
year 4 to 5 is $17
false because simple interest always has the same money not a pattern
Kevin's total payroll deductions are 30% of his earnings. If his deductions add up to $369 for a two week period, how much were his earnings for the period?
Answer:
His earnings for the period= $123
Step-by-step explanation:
Kevin's total payroll deductions are 30% of his earnings. His deductions add up to $369 for a two week period.
If 30% of his earnings = $369
His earnings = x
30/100 * x= 369
X= 369*100/30
X= 123*10
X=$ 1230
His earnings for the period= $123
A girl has 98 beads, and all but 14 were lost. how many beads did she loose?
Answer:
84 beads
Step-by-step explanation:
She had 98 beads and lost all but fourteen. So it would be 98 - 14 which would get you 84 beads that the girl has lost
Help me please ?! ❤️❤️
Answer:
Hey there!
Point K has coordinates of (-2, -5)
Hope this helps :)
Answer:
Point K
Step-by-step explanation:
Since they're asking us to find (-2,-5) first we need to move 2 points to the left and then 5 points down.
Solve for x if 2(1+3x)=14
Answer:
x=2
Step-by-step explanation:
2(1+3x)=14
Divide each side by 2
2/2(1+3x)=14/2
1+3x = 7
Subtract 1 from each side
3x =7-1
3x = 6
Divide by 3
3x/3 = 6/3
x =2
distance between 2,-5 and 3,-7
Answer:
√5
Step-by-step explanation:
[tex](2 ,-5) = (x_1,y_1)\\(3,-7)=(x_2,y_2)\\\\d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\ \\d = \sqrt{(3-2)^2 +(-7-(-5))^2}\\ \\d = \sqrt{(1)^2+(-7+5)^2}\\ \\d = \sqrt{(1)^2 + (-2)^2}\\ \\d = \sqrt{1 +4}\\ \\d = \sqrt{5}[/tex]
Is y = 8x -15 a function?
Answer:
Hey there!
A function only has one y value for every x value, so this is a function. Additionally, all linear equations (that are in the y=mx+b form) are functions.
Hope this helps :)
What is the value of x?
Answer:
58
Step-by-step explanation:
By the property of intersecting secants outside of a circle, we have:
x° = 1/2( 141° - 25°) = 1/2 * 116° = 58°
Therefore, x = 58
15P! NEED TODAY! WILL MARK BRAINLIEST! HELP! 15P! NEED TODAY! WILL MARK BRAINLIEST! HELP! You need to solve a system of equations. You decide to use the elimination method. Which of these is not allowed? Equation 1: 2x - 3y = 12 Equation 2: -2x + y = 8 A. Add the left side of equation 2 to the left side of equation 1. B. Multiply equation 2 by 3. Then substract the result from equation 1. C. Add equation 2 to equation 1.
Answer:
(A)
Step-by-step explanation:
That rule isn't used in the elimination methods for systems of equations, but, rather, it is used in substitution methods. The other rules are used in elimination.
Please tell me if I got it wrong. I really hope it is correct.
A. Add the left side of equation 2 to the left side of equation 1.
B. Multiply equation 2 by 3. Then subtract the result from equation 1.
C. Add equation 2 to equation 1.
What is 2 cm converted to feet?
Answer:
0.065617 ft
Step-by-step explanation:
Answer:
0.0656168 feet.
Step-by-step explanation:
8. (01.02)
Given that f(x) = x2 + 2x + 3 and g(x)
X+4.
3
solve for f(g(x)) when x = 2.
2
5
11
33
Answer:
51.
Step-by-step explanation:
f(x) = x^2 + 2x + 3 and g(x) = x + 4.
f(g(x)) = (x + 4)^2 + 2(x + 4) + 3
= x^2 + 4x + 4x + 16 + 2x + 8 + 3
= x^2 + 8x + 16 + 2x + 11
= x^2 + 10x + 27.
x = 2.
f(g(2)) = 2^2 + 10 * 2 + 27
= 4 + 20 + 27
= 31 + 20
= 51.
Hope this helps!
Heights of men on a baseball team have a bell-shaped distribution with a mean of and a standard deviation of . Using the empirical rule, what is the approximate percentage of the men between the following values? a.166 cm and 202 cm b. 172cm and 196cm
Let assume that the mean is 184 and the standard deviation is 6
Heights of men on a baseball team have a bell-shaped distribution with a mean 184 of and a standard deviation of 6 . Using the empirical rule, what is the approximate percentage of the men between the following values? a.166 cm and 202 cm b. 172 cm and 196cm
Answer:
P(156<X<202) = 99.7%
P(172<X<196) = 95.5%
Step-by-step explanation:
Given that :
Heights of men on a baseball team have a bell-shaped distribution with a mean of and a standard deviation of . Using the empirical rule, what is the approximate percentage of the men between the following values? a.166 cm and 202 cm b. 172 cm and 196cm
For a.
Using the empirical rule, what is the approximate percentage of the men between the following values 166 cm and 202 cm.
the z score can be determined by using the formula:
[tex]z = \dfrac{X - \mu}{\sigma}[/tex]
[tex]z(166) = \dfrac{166-184}{6}[/tex]
[tex]z(166) = \dfrac{-18}{6}[/tex]
z(166) = -3
[tex]z(202) = \dfrac{202-184}{6}[/tex]
[tex]z(202) = \dfrac{18}{6}[/tex]
z(202) = 3
P(156<X<202) = P( μ - 3σ < X < μ + 3σ )
P(156<X<202) = P( - 3 < Z < 3)
P(156<X<202) = P( Z < 3) - P(Z < -3)
P(156<X<202) = 0.99865- 0.001349
P(156<X<202) = 0.997301
P(156<X<202) = 99.7%
For b.
b. 172 cm and 196cm
[tex]z = \dfrac{X - \mu}{\sigma}[/tex]
[tex]z(172) = \dfrac{172-184}{6}[/tex]
[tex]z(172) = \dfrac{-12}{6}[/tex]
z(172) = -2
[tex]z(196) = \dfrac{196-184}{6}[/tex]
[tex]z(196) = \dfrac{12}{6}[/tex]
z(196) = 2
P(172<X<196) = P( μ - 2σ < X < μ + 2σ )
P(172<X<196) = P( - 2 < Z < 2)
P(172<X<196) = P( Z < 2) - P(Z < -2)
P(172<X<196) = 0.9772 - 0.02275
P(172<X<196) = 0.95445
P(172<X<196) = 95.5%
PLEASE HELP!!!!!!
Look at the triangle ABC.
A (4.5)
5
4
3
2
1
C (4.1)
B (2.1)
1 2 3
4 5
--5 -4 -3 -2 -1 0
-1
-2
-3
-4
-5
What is the length of the side AB of the triangle?
2
20
38
=========================================
Explanation:
Count out the spaces, or use subtraction, to find the horizontal side BC is 2 units long. Similarly, you'll find the vertical side AC is 4 units long.
Use the pythagorean theorem to find the length of segment AB.
a^2 + b^2 = c^2
2^2 + 4^2 = c^2
4 + 16 = c^2
20 = c^2
c^2 = 20
c = sqrt(20)
We stop here since it matches with choice B.
-----------------
Optionally, we can simplify like so
sqrt(20) = sqrt(4*5)
sqrt(20) = sqrt(4)*sqrt(5)
sqrt(20) = 2*sqrt(5)
Answer:
The answer is [tex]\sqrt{20}[/tex].
Step-by-step explanation:
Use the Pythagorean Theorem.
[tex]2^{2} + 4^{2} = c^{2} \\4+16 = c^{2} \\\sqrt{20} = c[/tex]
Use the graph showing Debra's account balance to answer the question that follows. ^
About how long will it take for Debra's account balance to equal $60?
A - 6 months
B - 6 years
C - 3 months
D - 3 years
Answer: 2 years
Step-by-step explanation:
In the given graph, we have
Account Balance ($) on y-axis
Time (years) on x-axis.
To know the time taken to get a balance of $60 , we check the point corresponding to 60 at y-axis and then join it to the line of the function and stop.
Then from there we drop a line to x-axis.
We get x=2.
That is it will take 2 years to get $60 balance in Debra's account.
So the correct answer is 2 years.
A player at a fair pays Rs. 100 to roll a dice. The player receives Rs. 50 if the number of dots facing up is equal to 5, Rs. 200 if the number is 6, but nothing otherwise. Find the expected value of the reward Y. What is the expected value of the gain? Find out the standard deviation of Y.
Answer:
The dice has 6 options:
if the outcome is 5, player wins 50
if the outcome is 6, player wins 200
if the outcome is another number, the player does not win anything.
Now, remember that the expected value can be written as:
E = ∑xₙpₙ
where xₙ is the event n, and pₙ is the probability of that event.
for a dice, the probabilty for each number is 1/6
The expected value is:
E = (1/6)*(0 + 0 + 0 + 0 + 50 + 200) = 41.66
The expected gain will be E - 100 (because the player pays 100 in order to play)
Then the expected gain is:
G = 41.66 - 100 = -58.33
The standard deviation can be written as:
s = √( ∑(x - x)^2/n)
where x is the mean, in this case the mean is:
(200 + 50 + 4*0)/6 = 41.66 and n = 6.
s = √( (1/6)*(4*(0 - 41.66)^2 + (50 - 41.66)^2 + (200 - 41.66)^2) ) = 73
So we have a lot of standard deviation on Y.
a theater has (2x+1) rows of seats, with (x-3) seats in each row. how many seats are in the theater?
A. 2x^2- 5x- 3
B. 2x^2+ 5x- 3
C. 2x^2- 7x+ 3
D. 2x^2- 7x- 3
(2x+1)(x-3)
y(x-3) .... let y = 2x+1
y*x+y(-3) .... distribute
xy - 3y
x( y ) - 3( y )
x( 2x+1 ) - 3( 2x+1) ... replace y with 2x+1
2x^2 + x - 6x - 3 ..... distribute
2x^2 - 5x - 3
Answer is choice A
What is the probability that a randomly selected individual on this campus weighs more than 166 pounds? (express in decimal form and round final answer to 4 decimal places)
Answer:
hello attached is the missing part of your question and the answer of the question asked
answer : 0.2951
Step-by-step explanation:
Given data:
number of persons allowed in the elevator = 15
weight limit of elevator = 2500 pounds
average weight of individuals = 152 pounds
standard deviation = 26 pounds
probability that an individual selected weighs more than 166 pounds
std = 26 , number of persons(x) = 15, average weight of individuals(u) = 152 pounds
p( x > 166 ) = p( x-u / std, 166 - u/ std )
= p ( z > [tex]\frac{166-152}{26}[/tex] )
= 1 - p( z < 0.5385 )
p( x > 166 ) = 1 - 0.70488 = 0.2951