Therefore, the solution to the system of equations is: x = 1/5 and y = 8.
What is equation?An equation is a mathematical statement that asserts the equality of two expressions. Equations contain variables, which are symbols that represent unknown or varying quantities, and constants, which are known values. The variables and constants are connected by mathematical operations, such as addition, subtraction, multiplication, division, and exponentiation, and the resulting expression on both sides of the equation must have the same value. Equations are used to solve problems, find unknowns, and express relationships between quantities. Some common types of equations include linear equations, quadratic equations, polynomial equations, exponential equations, and trigonometric equations.
Here,
We have the following system of equations:
y = 10x + 6
2y + 5x = 17
Using substitution method, we can substitute the expression for y in the second equation with the expression for y in the first equation:
2(10x + 6) + 5x = 17
Simplifying:
20x + 12 + 5x = 17
25x = 5
x = 5/25 = 1/5
Now we can substitute this value of x into either of the two original equations to find the corresponding value of y. Using the first equation:
y = 10(1/5) + 6
y = 2 + 6
y = 8
To know more about equation,
https://brainly.com/question/28243079
#SPJ1
Isosceles Trapezoids: Only one pair of opposite sides are _______
Answer:
equal
Step-by-step explanation:
James have 18 litres of water. He poured unequally into 3 tank
I. Poured three quarter of water from tank one into tank 2
II. Poured half of the water that is now in tank 2 into tank 3
III. Poured one third of water that is now in tank 3 into tank 1
Find how much water is in each tanks
Answer:
ames have 18 litres of water. He poured unequally into 3 tank
I. Poured three quarter of water from tank one into tank 2
II. Poured half of the water that is now in tank 2 into tank 3
III. Poured one third of water that is now in tank 3 into tank 1
Find how much water is in each tanks
Step-by-step explanation:
Let's start with the amount of water in tank 1 as x liters.
I. Poured three quarter of water from tank one into tank 2, so tank 1 now has 1/4 of x liters and tank 2 has 3/4 of x liters.
II. Poured half of the water that is now in tank 2 into tank 3, so tank 2 now has 3/8 of x liters and tank 3 has 3/8 of x liters.
III. Poured one third of water that is now in tank 3 into tank 1, so tank 3 now has 1/3 * 3/8 * x = 1/8 * x liters and tank 1 has 1/4 * x + 1/8 * x = 3/8 * x liters.
We know that James poured 18 liters of water into the three tanks, so the sum of the water in the three tanks must be 18 liters.
3/8 * x + 3/8 * x + 1/8 * x = 18
Simplifying the equation, we get:
7/8 * x = 18
x = 18 * 8 / 7 = 20.57 (rounded to two decimal places)
Therefore, the amount of water in each tank is:
Tank 1: 3/8 * x = 7.71 liters
Tank 2: 3/8 * x = 7.71 liters
Tank 3: 1/8 * x = 2.57 liters
4. What is the solution to 2 + 3(2a + 1) = 3(a + 2)?
Answer:
a=1/3
Step-by-step explanation:
First, expand the brackets by doing multiplication:
2+6a+3=3a+6
Then, move the unknown to the left and the numbers to the right:
3a=6-5
3a=1
a=1/3
The solution to the given equation is -1.
What is an equation?In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign =.
The solution of an equation is the set of all values that, when substituted for unknowns, make an equation true.
The given equation is 2+3(2a+1)=3(a+2)
2+6a+3=3a+2
6a+5=3a+2
6a-3a=2-5
3a=-3
a=-1
Therefore, the solution to the given equation is -1.
To learn more about an equation visit:
https://brainly.com/question/14686792.
#SPJ2
Radioactive decay tends to follow an exponential distribution; the half-life of an isotope is the time by which there is a 50% probability that decay has occurred. Cobalt-60 has a half-life of 5.27 years. (a) What is the mean time to decay? (b) What is the standard deviation of the decay time? (c) What is the 99th percentile? (d) You are conducting an experiment which first involves obtaining a single cobalt-60 atom, then observing it over time until it decays. You then obtain a second cobalt-60 atom, and observe it until it decays; and then repeat this a third time. What is the mean and standard deviation of the total time the experiment will last?
The exponential distribution is a probability distribution that models the time between events in a Poisson process, where events occur randomly and independently at a constant average rate.
It is commonly used in reliability theory, queuing theory, and other fields to model the failure or waiting times of systems.
(a) The mean time to decay for Cobalt-60 is 5.27 years.
(b) The standard deviation of the decay time is 2.6355 years.
(c) The 99th percentile is 13.6825 years.
(d) The mean time of the experiment is 15.8175 years and the standard deviation is 4.86788 years.
Note: The answers are calculated based on the exponential distribution of radioactive decay with a half-life of 5.27 years for Cobalt-60.
To learn more about “exponential distribution ” refer to the https://brainly.com/question/22692312
#SPJ11
Marcus bought a booklet of tickets to use at the amusement park. He used 25% of the tickets on rides, 1 2 of the tickets on video games, and the rest of the tickets in the batting cage. Marcus says he used 23% of the tickets in the batting cage. Do you agree? Complete the explanation.
Answer: Do not agree.
Step-by-step explanation:
To determine if we agree with Marcus, we need to verify if the percentages he used on rides, video games, and batting cage add up to 100%.
Marcus used 25% of the tickets on rides and 1/2 on video games. So, the total percentage of tickets he used is:
25% + 1/2 × 100% = 25% + 50% = 75%
This means that Marcus should have used 25% of the tickets in the batting cage. If he said he used 23% of the tickets in the batting cage, then we do not agree with him.
If the angles of a pentagon are xº, x°, 2xº, (2x +
40), (2x+10)º, find the value of the biggest
angle
Answer:
285°
Step-by-step explanation:
x + x + 2x + 2x + 40 + 2x + 10 = (5 - 2)180
8x + 50 = 540
8x = 490
x = 61.25
2x + 40 = 2(61.25) + 40 = 285
Answer:
Step-by-step explanation:
Interior angles in a pentagon equal 540°.
Simplify
x°,x°,2x°, (2x+40) and (2x+10) = 8x+50
Calculate x
8x + 50 = 540
8x = 540 - 50 = 490
x = 490/8
x = 61.25°
Calculate largest angle
2x + 40, where x = 61.25°
=162.5°
a credit risk study found that an individual with good credit score has an average debt of $15,000. if the debt of an individual with good credit score is normally distributed with standard deviation $3,000, determine the shortest interval that contains 95% of the debt values.
The shortest interval that contains 95% of the debt values is $9,492.02 to $20,507.98
How do we calculate the interval values?Given that a credit risk study found that an individual with good credit score has an average debt of $15,000 and the debt of an individual with good credit score is normally distributed with standard deviation $3,000.
Then the 95% confidence interval can be calculated as follows:
Upper limit: µ + Zσ
Lower limit: µ - Zσ
Where
µ is the mean ($15,000)Z is the z-scoreσ is the standard deviation ($3,000).The z-score corresponding to a 95% confidence interval can be found using the standard normal distribution table.
The area to the left of the z-score is 0.4750 and the area to the right is also 0.4750.
The z-score corresponding to 0.4750 can be found using the standard normal distribution table as follows:z = 1.96Therefore
Upper limit: µ + Zσ= $15,000 + 1.96($3,000) = $20,880
Lower limit: µ - Zσ= $15,000 - 1.96($3,000) = $9,120.02
The shortest interval that contains 95% of the debt values is $9,492.02 to $20,507.98.
See more about confidence interval at: https://brainly.com/question/15712887
#SPJ11
8hr/2days=28hr/?days
 choose all the shapes with at least one pair of perpendicular sides
According to the image, we can infer that the shapes which have at least 1 pair of perpendicular sides are the top leftmost trapezium and the bottom-center rectangle.
What is the definition of perpendicular sides?Perpendicular sides is a term to refer to a shape with a special characteristic. These shapes have two sides connected through an angle or vertex of 90°. So, to select the correct shapes we have to take into account this feature. According to the above, the correct shapes would be:
The top leftmost trapezium. The bottom-center rectangle.Learn more about perpendicular in: https://brainly.com/question/11707949
#SPJ1
A circular flower garden has an area of 314m². A sprinkler at the center of the garden can cover an area of 12 m. Will the sprinkler water the entire garden?
Step-by-step explanation:
No,
if the sprinkler covers a distance of 12 m meaning the 12 m is the diameter...then to find the area that it covers we use the formula for the circle since it's circular
A=πr2
A=3.142*36
A=113.112 cm3
What is the answer to this math problem? I can’t seem to figure it out.
Answer:
X
Step-by-step explanation:
We first must check the total amount of breakfast. Y happens to have 130 instead of 125. Now, we see that W and Z have a majority on strawberries with oatmeal, which is not what we are looking for. The last answer we have is X, where there is a majority of oatmeal + blueberries and there is a total of 125 breakfasts.
Hope this helps!
A landscaper needs to mix a 80% pesticide solution with 35 gal of a 30% pesticide solution to obtain a 55% pesticide solution. How many gallons of the 80%
solution must he use?
By answering the question the answer is Therefore, landscapers should equation use 35 gallons of an 80% pesticide solution.
What is equation?In mathematics, an equation is a statement that two expressions are equal. The equation consists of her two sides divided by an algebraic equation (=). For example, the argument "2x + 3 = 9" asserts that the statement "2x + 3" equals the value "9". The goal of solving an equation is to find the values of the variables to make the equation true. Simple or complex equations, regular or nonlinear, and equations involving one or more factors are all possible. For example, the expression "[tex]x2 + 2x - 3 = 0\\[/tex]" squares the variable x. Lines are used in many areas of mathematics, including algebra, calculus, and geometry.
Let's say a landscaper needs to use x gallons of an 80% pesticide solution.
The amount of pesticide for an 80% solution is 0.8 x gallons and the amount of pesticide for a 30% solution is 0.3 (35) = 10.5 gallons.
After mixing the two solutions, the total amount of pesticides in the mixture is 0.8 x + 10.5 gallons and the total volume of the mixture is x + 35 gallons.
Since we need a 55% pesticide solution, we can set the following formula:
[tex]0.8x10.5 0.55(x+35)0.8x10.5 0.55x+19.250.25x = 8.75x = 35[/tex]
Therefore, landscapers should use 35 gallons of an 80% pesticide solution.
To know more about equation visit:
brainly.com/question/649785
#SPJ1
Select all of the reasons that the range is an appropriate measure of variability to describe the variation in the hours slept by eighth graders.
A double box plot showing hours sleeping. For seventh graders, the left whisker is at 7.5, the left edge of the box is at eight, the line inside the box is at 8.5, the right edge of the box is at nine, and the right whisker is at 9.5. For eighth graders, the left whisker is at seven, the left end of the box is at 7.5, the line inside the box is at eight, the right end of the box is at 8.5, and the right whisker is at nine. Screen reader support enabled.
All of the reasons that the range is an appropriate measure of variability to describe the variation in the hours slept by eighth graders include the following:
A. The data are evenly distributed between 7 hours and 9 hours.
D. There is no outlier in the data.
What is a range?In Mathematics, a range can be defined as the difference between the highest number and the lowest number contained in a data set.
Mathematically, the range of a data set can be calculated by using the following mathematical equation;
Range = Highest number - Lowest number
By critically observing the double box-and-whisker plots or box plot for the variation in the hours slept by eighth graders, we can logically deduce that there is no outlier in the data because they are evenly distributed and centered about the mean.
In conclusion, the box-and-whisker plot or box plot is symmetrical.
Read more on boxplot here: brainly.com/question/29648407
#SPJ1
Answer:
Step-by-step explanation:
Yeah what the other guy said
successful firms must focus on the quality of the products and services they offer. which of the following factors does not contribute to the quest for quality?
a. Global competition
b. Consumer expectations
c. Technological advances
d. All the answer choices are correct
Among the given factors, global competition does not contribute to the quest for quality. The correct answer is Option A.
Why does a successful firm need to focus on quality?In today's business environment, quality has become an important factor that can make or break a company's success. A successful firm must focus on the quality of the products and services they offer, as this can help them maintain their competitive advantage and ensure customer loyalty.
Quality is important for a variety of reasons, including customer satisfaction, reduced costs, increased productivity, and increased revenue. When firms focus on quality, they can provide better products and services to their customers, which can lead to increased customer loyalty and repeat business. This can help firms build a strong reputation in the market and maintain a competitive advantage.
How does global competition contribute to the quest for quality?Global competition has made it necessary for firms to focus on quality to maintain their competitive advantage. When firms face global competition, they need to ensure that their products and services are of high quality to compete effectively in the global market. High-quality products and services can help firms differentiate themselves from their competitors and gain a competitive advantage. This can help firms increase their market share and revenue.
What are the factors that contribute to the quest for quality?Several factors contribute to the quest for quality. These include:
Consumer expectations: Customers have high expectations when it comes to quality. They expect products and services to be of high quality, and they are willing to pay a premium for quality.Technological advances: Technological advances have made it possible for firms to produce high-quality products and services. Firms can use technology to automate production processes, improve quality control, and reduce defects.Global competition: Global competition has made it necessary for firms to focus on quality to maintain their competitive advantage.Regulations: Regulations require firms to meet certain quality standards. Firms that fail to meet these standards can face legal action and damage to their reputation.Learn more about Global competition here: https://brainly.com/question/29479819
#SPJ11
You want to measure the height of an antenna on the top of a 125-foot building. From a point in front of the building, you measure the angle of elevation to the top of the building to be 68° and the angle of elevation to the top of the antenna to be 71°. How tall is the antenna, to the nearest tenth of a foot?
The antenna which is having an angle of elevation 71° from the front of the it is on is 19.67 feet tall to the nearest tenth of foot.
What is an angle of elevationThe angle of elevation is the angle between the horizontal line and the line of sight which is above the horizontal line.
To get the height of the antenna, we subtract the height of the building from the height from the bottom of the building to the top of the antenna.
we shall represent the distance from the point of observation to the building with x and the height from the bottom of the building to the top of the antenna with y. so that;
tan 68° = 125/x {opposite/adjacent}
x = 125/ tan 68° {cross multiplication}
x = 50.5033
tan 71° = y/50.5033
y = 50.5033 × tan 71°
y = 144.6722
height of the antenna = 144.6722 - 125
height of the antenna = 19.6722
Therefore, the antenna which is having an angle of elevation 71° from the front of the it is on is 19.67 feet tall to the nearest tenth of foot.
Know more about angle of elevation here:https://brainly.com/question/2096694
#SPJ1
Schools have different ways of fund raising. The parents and the SGB of Progress High School agree that each learner should donate an amount to the school. The money is payable during the first month of the year. 1.1 Use TABLE 1 to answer the questions that follow. Write down the donation per leamer. 1.2 TABLE 1: INCOME IN RANDS OF FUND RAISING Number of learners that paid Income (R) 1 200 1.3 1.5 Calculate the missing value A. 10 2 000 20 45 215 4 000 9 000 A [Adapted from original school financial books ] Use TABLE 1 and write down the dependent variable. 1.4 Write the income received from 10 leamers to the income received from 45 learners, in a ratio in its simplest form. (3) (2) (2) (2) have The SGB chairperson claims that if 80% of the leamers paid, the school would raised more than R170 000. There are 1 100 learners enrolled at the school. Verify, by showing ALL calculations, whether his statement is valid. (4)
Answer: 1.1. The donation per learner cannot be determined from the given table.
1.2. TABLE 1: INCOME IN RANDS OF FUNDRAISING
Number of learners that paid Income (R)
1 200
1.3. To calculate the missing value A, we need to add up all the given incomes and subtract it from the total income for 45 learners, which is 45 x A. Then we can solve for A:
Total income = 200 + 150 + 10(2,000) + 20(45) + A + 4,000 + 9,000
Total income = 45A
45A = 25,150
A = 558.89
Therefore, the missing value A is R558.89.
1.4. The dependent variable in the table is the income received from fundraising.
To find the ratio of income received from 10 learners to income received from 45 learners, we need to divide the income received from 10 learners by the income received from 45 learners and simplify the fraction:
Income from 10 learners = R1,100 (since each learner donates R110)
Income from 45 learners = R215
Ratio = Income from 10 learners : Income from 45 learners
= 1,100 : 215
= 20 : 3 (in its simplest form)
The total number of learners enrolled at the school is 1,100. If 80% of the learners paid, then the number of learners who paid is:
80% of 1,100 = 0.8 x 1,100 = 880 learners
The minimum income that the school can raise if 80% of the learners paid is when each of the 880 learners paid the minimum donation, which is R150:
Minimum income = 880 x 150 = R132,000
Since R132,000 is less than R170,000, the SGB chairperson's statement is not valid.
Step-by-step explanation:
(13-12p) × (13+12p)
...
Answer:
169 - 144p²
Step-by-step explanation:
(13 - 12p) × (13 + 12p)
each term in the second factor is multiplied by each term in the first factor
13(13 + 12p) - 12p(13 + 12p) ← distribute parenthesis
= 169 + 156p - 156p - 144p² ← collect like terms
= 169 - 144p²
are these equivalent
10-2x -2x10
the set of all continuous real-valued functions defined on a closed interval (a, b] in ir is denoted by c[a , b]. this set is a subspace of the vector space of all real-val ued functions defined on [a, b]. a. what facts about continuous functions should be proved in order to demonstrate that c [a , b] is indeed a subspace as claimed? (these facts are usually discussed in a calculus class.) b. show that {fin c[a ,b]: f(a )
Let f be a continuous function in c[a, b] such that f(a) = 200. Then for all real numbers c, the scalar multiple cf is also a continuous function in c[a, b]. Specifically, cf(a) = c(200) = 200c.
To demonstrate that c[a, b] is a subspace, the following facts must be proved:
1. If f and g are both continuous functions in c[a, b], then the sum f + g is also a continuous function in c[a, b].
2. If f is a continuous function in c[a, b], then the scalar multiple cf is also a continuous function in c[a, b], where c is a real number.
3. The zero vector of c[a, b] is the constant zero function.
for such more questions on continuous function
https://brainly.com/question/30089268
#SPJ11
Juanita’s Social Security full monthly retirement benefit is $2,128. She started collecting Social Security at age 65. Her benefit is reduced since she started collecting before age 67. Using the reduction percents from Example 1, find her approximate monthly Social Security benefit to the nearest dollar.EXAMPLE 1Marissa from Example 2. What will her monthly benefit be, since she did not wait until age 67 to receive full retirement benefits?SOLUTION Age 67 is considered to be full retirement age if you were born in 1945. If you start collecting Social Security before age 67, your full retirement benefit is reduced, according to the following schedule.• If you start at collecting benefits at 62, the reduction is about 30%.• If you start at collecting benefits at 63, the reduction is about 25%.• If you start at collecting benefits at 64, the reduction is about 20%.• If you start at collecting benefits at 65, the reduction is about 13.3%.• If you start at collecting benefits at 66, the reduction is about 6.7%.Marissa’s full retirement benefit was $1,130.40. Since she retired at age 65, the benefit will be reduced about 13.3%.Find 13.3% of $1,130.40, and round to the nearest cent.0.133 x 1,130.40Subtract to find the benefit Marissa would receive.1,130.40 x 150.34Marissa’s benefit would be about $980.06.EXAMPLE 2Marissa reached age 62 in 2007. She did not retire until years later. Over her life, she earned an average of $2,300 per month after her earnings were adjusted for inflation. What is her Social Security full retirement benefit?
Juanita's approximate monthly Social Security benefit is $1,844.90 to the nearest dollar.
What is social security benefits retirement age?The age at which a person is qualified to receive their full retirement payment under Social Security is determined by their lifetime earnings history. The complete retirement age for anybody born in 1960 or later is 67. The complete retirement age is steadily lowered for people born before 1960, and is 65 for those born in 1937 or before.
Given that, Juanita started collecting benefits at age 65.
Thus, her benefits reduced by 13.3%.
0.133 x $2,128 = $283.10
Deducting the reduction amount from the total:
$2,128 - $283.10 = $1,844.90
Hence, Juanita's approximate monthly Social Security benefit is $1,844.90 to the nearest dollar.
Learn more about social security benefits here:
https://brainly.com/question/20911574
#SPJ1
Put the steps in correct order to prove that if n is a perfect square, then n + 2 is not a perfect square.1).Lets assume m ≥ 1.2) If m = 0, then n + 2 = 2, which is not a perfect square. The smallest perfect square greater than n is (m + 1)^2.3) Hence, n + 2 is not a perfect square4) Expand (m + 1)^2 to obtain (m + 1)^2 = m2 + 2m + 1 = n + 2m + 1 > n + 2 + 1 > n + 2.5) .Assume n = m2, for some nonnegative integer m
The following is the correct sequence of steps to prove that if n is a perfect square, then n + 2 is not a perfect square:
Step 1: Assume n = m², for some non-negative integer m.
Step 2: If m = 0, then n + 2 = 2, which is not a perfect square. The smallest perfect square greater than n is (m + 1)².
Step 3: Expand (m + 1)² to obtain (m + 1)² = m² + 2m + 1 = n + 2m + 1 > n + 2 + 1 > n + 2.
Step 4: Let's assume m ≥ 1.
Step 5: Hence, n + 2 is not a perfect square.
The first step in the sequence involves making an assumption to start the proof. The second step entails the derivation of the smallest perfect square greater than n. In the third step, we expand the (m + 1)² expression to get n + 2m + 1. The fourth step is an important one, as it shows that m must be greater than or equal to 1.
In the final step, we conclude that n + 2 is not a perfect square.
To know more about the "perfect square": https://brainly.com/question/1538726
#SPJ11
Enter the correct answer in the box.
Write this expression in simplest form.
Don’t include any spaces or multiplication symbols between coefficients or variables in your answer.
16h^(10/2) *remove the root sign
16h^5 *simplify the exponent
Answer: 16h^5
Step-by-step explanation: im correct
Simplify (cos^2a - cot^2a)/(sin^2a - tan^2a)
Answer:
The simplified expression is sec^2a
Step-by-step explanation:
We can start by using the trigonometric identities:
cot^2 a + 1 = csc^2 a
tan^2 a + 1 = sec^2 a
Using these identities, we can rewrite the expression as:
(cos^2 a - cot^2 a)/(sin^2 a - tan^2 a)
= (cos^2 a - (csc^2 a - 1))/(sin^2 a - (sec^2 a - 1))
= (cos^2 a - csc^2 a + 1)/(sin^2 a - sec^2 a + 1)
Now we can use the identity:
sin^2 a + cos^2 a = 1
to rewrite the expression further:
= (1/sin^2 a - 1/sin^2 a cos^2 a)/(1/cos^2 a - 1/cos^2 a sin^2 a)
= (1 - cos^2 a)/(sin^2 a - sin^2 a cos^2 a)
= sin^2 a / sin^2 a (1 - cos^2 a)
= 1 / (1 - cos^2 a)
= sec^2 a
Therefore, the simplified expression is sec^2 a.
To make a fruit smoothie, Olivia uses 4 blueberries, 3 strawberries, 1 banana, 5 orange slices, and 2 slices of mango. What is the ratio of blueberries to banana?
Thus, the ratio for the number of blueberries to banana is 4:1.
Define about the ratios of the numbers?A ratio in mathematics is a correlation of at least two numbers that shows how big one is in comparison to the other. The dividend or number being divided is referred to as the antecedent, and the divisor or integer that is dividing is referred to as the consequent.
A ratio compares two numbers by division. Comparing one quantity to the total, for example the dogs that belong to all the animals in the clinic, is known as a part-to-whole analysis. These kinds of ratios occur considerably more frequently than you might imagine.
The given data for preparing fruit smoothie:
4 blueberries, 3 strawberries, 1 banana, 5 orange slices, and 2 slices of mango.
Then,
ratio of blueberries to banana:
blueberries/banana = 4/1
Thus, the ratio for the number of blueberries to banana is 4:1.
Know more about the ratios of the numbers
https://brainly.com/question/12024093
#SPJ1
A chemical company makes two brands of antifreeze. The first brand is 35% pure antifreeze, and the second brand is 60% pure antifreeze. In order to obtain 110 gallons of a mixture that contains 55% pure antifreeze, how many gallons of each brand of antifreeze must be used?
22 gallons of the first brand (35% pure antifreeze) and 88 gallons of the second brand (60% pure antifreeze) to make 110 gallons of a mixture that contains 55% pure antifreeze.
Let x be the number of gallons of the first brand (35% pure antifreeze) needed, and y be the number of gallons of the second brand (60% pure antifreeze) needed to make the desired mixture.
We know that the total volume of the mixture is 110 gallons and the desired concentration of antifreeze is 55%.
We can set up two equations based on the amount of antifreeze and the total volume of the mixture:
0.35x + 0.6y = 0.55(110) (amount of antifreeze)
x + y = 110 (total volume)
Simplifying the first equation, we get:
0.35x + 0.6y = 60.5
Now we can use substitution or elimination to solve for x and y. Here's one way to use substitution method
x + y = 110 (equation 1)
x = 110 - y (solve for x)
0.35x + 0.6y = 60.5 (equation 2, substitute x)
0.35(110 - y) + 0.6y = 60.5 (substitute x into equation 2)
38.5 - 0.35y + 0.6y = 60.5 (distribute 0.35)
0.25y = 22 (combine like terms)
y = 88 (divide both sides by 0.25)
So we need 88 gallons of the second brand (60% pure antifreeze). To find the amount of the first brand (35% pure antifreeze), we can substitute y back into equation 1:
x + y = 110
x + 88 = 110
x = 22 gallons
Learn more about substitution method here
brainly.com/question/14619835
#SPJ4
find bases for the null spaces of the matrices given in exercises 9 and 10. refer to the remarks that follow example 3 in section 4.2.
In summary, to find the null spaces of the matrices given in exercises 9 and 10, use the Gauss-Jordan elimination method and refer to the Remarks that follow example 3 in section 4.2 of the text. This will give the dimension of the null space and the number of free variables.
In exercises 9 and 10, the null space of the given matrices can be found by solving the homogeneous linear system of equations. In order to do this, use the Gauss-Jordan elimination method. Refer to example 3 in section 4.2 of the text for a detailed explanation. Afterwards, use the Remarks that follow the example to determine the dimension of the null space and the number of free variables.
The null space of a matrix is the set of all vectors that produce a zero vector when the matrix is multiplied by the vector. Therefore, to find the null space of a matrix, the homogeneous linear system of equations needs to be solved. The Gauss-Jordan elimination method involves adding multiples of one row to another to get a row with all zeroes. After this is done for all the rows, the equations can be solved for the free variables. The number of free variables will determine the dimension of the null space. Refer to example 3 in section 4.2 of the text for more details.
The Remarks that follow the example are important when determining the dimension of the null space and the number of free variables. In the Remarks, it is mentioned that the number of free variables is equal to the number of columns with a zero row. Therefore, after using the Gauss-Jordan elimination method to get the row with all zeroes, the number of columns with a zero row can be counted. This will give the dimension of the null space and the number of free variables.
for such more questions on Gauss-Jordan elimination
https://brainly.com/question/20536857
#SPJ11
Write the line equation of (5,-12) and (0,-2)
Answer:
To find the equation of the line passing through the points (5,-12) and (0,-2), we first need to find the slope of the line:
slope = (change in y) / (change in x)
slope = (-2 - (-12)) / (0 - 5)
slope = 10 / (-5)
slope = -2
Now that we have the slope, we can use the point-slope form of the line equation to find the equation of the line:
y - y1 = m(x - x1)
where m is the slope, and (x1, y1) is one of the given points on the line.
Let's use the point (5,-12):
y - (-12) = -2(x - 5)
y + 12 = -2x + 10
y = -2x - 2
Therefore, the equation of the line passing through the points (5,-12) and (0,-2) is y = -2x - 2.
A random experiment can result in one of the outcomes {a,b,€,d} with probabilities P({a}) = 0.4, P({b}) = 0.1, P({c}) = 0.3, and P({d}) 0.2. Let A denote the event {a,b}, B the event {b,c,d}, and the event {d} From the previous information , P(A UBUC)= QUESTION 31 A random experiment can result in one of the outcomes {a,b,€,d} with probabilities P({a}) = 0.4, P({b}) = 0.1, P({c}) = 0.3, and P({d}) 0.2. Let A denote the event {a,b}, B the event {b,c,d}, and C the event {d} From the previous information , P(Anenc)=
The data we get from the question is a random experiment can result in one of the outcomes {a,b,c,d} with probabilities from that information, P(A U B U C) = 0.8.
The given probabilities of events and outcomes are:
P({a}) = 0.4,P({b}) = 0.1,P({c}) = 0.3,P({d}) 0.2
So the given events are:
A = {a,b},B = {b,c,d},C = {d}
We have to find P(A U B U C) Using the formula of the probability of the union of two events,
we get:
P(A U B U C) = P(A) + P(B) + P(C) - P(A ∩ B) - P(A ∩ C) - P(B ∩ C) + P(A ∩ B ∩ C)
Now we will find the values of all probabilities:
P(A) = P({a}) + P({b})
= 0.4 + 0.1
= 0.5
P(B) = P({b}) + P({c}) + P({d})
= 0.1 + 0.3 + 0.2
= 0.6
P(C) = P({d})
= 0.2
P(A ∩ B) = P({b})
= 0.1
P(A ∩ C) = P({d})
= 0.2
P(B ∩ C) = P({d})
= 0.2
P(A ∩ B ∩ C) = 0
(No common event) Put all the above values in the formula:
P(A U B U C) = P(A) + P(B) + P(C) - P(A ∩ B) - P(A ∩ C) - P(B ∩ C) +
P(A ∩ B ∩ C)
= 0.5 + 0.6 + 0.2 - 0.1 - 0.2 - 0.2 + 0
= 0.8
Therefore, P(A U B U C) = 0.8 is the required probability.
To learn more about outcomes with probabilities: https://brainly.com/question/25688842
#SPJ11
Can someone help me with this
Answer:
corn dogs: $1.25fries: $3.50Step-by-step explanation:
You want to know the cost of corn dogs and the cost of chili-cheese fries when 2 dogs and 3 fries cost $13, while 4 dogs and 1 fries cost $8.50.
SetupThe cost of each purchase can be represented by the equations ...
2d +3f = 134d +f = 8.50SolutionSubtracting the second equation from twice the first gives ...
2(2d +3f) -(4d +f) = 2(13) -(8.50)
5f = 17.50 . . . . . . simplify
f = 3.50 . . . . . . . divide by 5
4d = 8.50 -f = 5.00 . . . . use the second equation to find d
d = 1.25 . . . . . . divide by 4
Corn dogs cost $1.25; chili-cheese fries cost $3.50.
__
Additional comments
Many calculators provide a number of methods of solving systems of equations. The use of an augmented matrix of the equation coefficients is perhaps one of the simplest.
The second equation is a good choice for writing an expression for f in terms of d: f = 8.50 -4d. This expression can be substituted into the first equation if you want to solve the system by substitution, rather than elimination. Making that substitution gives 2d +3(8.50 -4d) = 13, and that simplifies to -10d = -12.50 after subtracting 25.50 from both sides.
Use the integration capabilities of a graphing utility to approximate to two decimal places the area of the surface formed by revolving the polar equation over the given interval about the polar axis. r = 7 cos(20), [0, Phi/4]
The approximate area of the surface formed by revolving the polar equation over the given interval about the polar axis is 67.59 square units.
To solve the question, we can use the integration capabilities of a graphing utility to approximate to two decimal places the area of the surface formed by revolving the polar equation over the given interval about the polar axis. Polar curve is a type of curve that is made up of points that represent polar coordinates (r, θ) instead of Cartesian coordinates.
A polar curve can be represented in parametric form, but it is often more convenient to use the polar equation for a curve. According to the question, r = 7 cos(20), [0, Phi/4] is the polar equation and we need to find the approximate area of the surface formed by revolving the polar equation over the given interval about the polar axis.
To solve the problem, follow these steps: Convert the polar equation to a rectangular equation. The polar equation r = 7 cos(20) is converted to a rectangular equation using the following formulas: x = r cos θ, y = r sin θx = 7 cos (20°) cos θ, y = 7 cos (20°) sin θx = 7 cos (θ - 20°) cos 20°, y = 7 cos (θ - 20°) sin 20°
Sketch the curve in the plane. We can sketch the curve of r = 7 cos(20) by plotting the points (r, θ) and then drawing the curve through these points. Use the polar equation to set up the integral for the volume of the solid of revolution.
The volume of the solid of revolution is given by the formula: V = ∫a b πf2(x) dx where f(x) = r, a = 0, and b = Φ/4.We can find the volume of the solid of revolution using the polar equation: r = 7 cos(20) => r2 = 49 cos2(20) => x2 + y2 = 49 cos2(20)Thus, f(x) = √(49 cos2(20) - x2) = 7 cos(20°) sin(θ - 20°)
So, V = ∫a b πf2(x) dx = ∫0 Φ/4 π(7 cos(20°) sin(θ - 20°))2 dθStep 4: Use a graphing utility to evaluate the integral to two decimal places. Using a graphing utility to evaluate the integral, we get V ≈ 67.59.
Learn more about Interval
brainly.com/question/30486507
#SPJ11