Solve the equation for x by graphing.-4x-1 5x=4

Answers

Answer 1

Answer: Undefined

Step-by-step explanation:

slope is undefined

no y intercept

This line is vertical

Solve The Equation For X By Graphing.-4x-1 5x=4

Related Questions

Gail paid a total of $12,000 for stock that was $6 per share. If she sold all her shares for $18,000, how much profit on each share did she make?
A
$9
B
$3
С.
S2000
D
$6.000

Answers

Answer:

$3

Step-by-step explanation:

Given

Total Cost Price: $12,000

Unit Cost Price= $6

Total Selling Price = $18,000

Required

Determine the profit on each share

First, we need to determine the units of share bought;

Units = Total cost price / Unit Cost Price

[tex]Units = \frac{\$12000}{\$6}[/tex]

[tex]Units = 2000[/tex]

Next is to determine the selling price of each share; This is calculated as follows;

Unit Selling Price = Total Selling Price / Units Sold

[tex]Unit\ Selling\ Price = \frac{\$18000}{\$2000}[/tex]

[tex]Unit\ Selling\ Price = \$9[/tex]

The profit is the difference between the unit cost price and unit selling price

[tex]Profit = Unit\ Selling\ Price - Unit\ Cost\ Price[/tex]

[tex]Profit = \$9 - \$6[/tex]

[tex]Profit = \$3[/tex]

Find usubscript10 in the sequence -23, -18, -13, -8, -3, ...

Answers

Step-by-step explanation:

utilise the formula a+(n-1)d

a is the first number while d is common difference

Answer:

22

Step-by-step explanation:

Using the formular, Un = a + (n - 1)d

Where n = 10; a = -23; d = 5

U10 = -23 + (9)* 5

U10 = -23 + 45 = 22

A regular polygon inscribed in a circle can be used to derive the formula for the area of a circle. The polygon area can be expressed in terms of the area of a triangle. Let s be the side length of the polygon, let r be the hypotenuse of the right triangle, let h be the height of the triangle, and let n be the number of sides of the regular polygon. polygon area = n(12sh) Which statement is true? As h increases, s approaches r so that rh approaches r². As r increases, h approaches r so that rh approaches r². As s increases, h approaches r so that rh approaches r². As n increases, h approaches r so that rh approaches r².

Answers

Answer:

Option (D)

Step-by-step explanation:

Formula to get the area of a regular polygon in a circle will be,

Area = [tex]n[\frac{1}{2}\times (\text{Base})\times (\text{Height})][/tex]

        = [tex]n[\frac{1}{2}\times (\text{s})\times (\text{h})][/tex]

Here 'n' is the number of sides.

If n increases, h approaches r so that 'rh' approaches r².

In other words, if the number of sides of the polygon gets increased, area of the polygon approaches the area of the circle.

Therefore, Option (4) will be the answer.

In this exercise it is necessary to have knowledge about polygons, so we have to:

Letter D

Then using the formula for the area of ​​a regular polygon we find that:

[tex]A=n(1/2*B*H)\\=n(1/2*S*H)[/tex]

So from this way we were not able to identify the option that best corresponds to this alternative.

See more about polygons at  brainly.com/question/17756657

one third multiplied by the sum of a and b

Answers

Answer:

1/3(a+b)

hope it helps :>

a+b/3
This is the answer of ur question

Hey market sales six cans of food for every seven boxes of food the market sold a total of 26 cans and boxes today how many of each kind did the market sale

Answers

Answer:

It sold 14 cans boxes of food and 12 cans of food.

Step-by-step explanation:

The factor for the food cans depend upon every seven food boxes .So, the same no. of sets of food cans will be sold.

Let the no. of sets of food boxes be x.

According to the question,

6x+7x=26

13x=26

x=26/13

x=2

No. of food cans =6x=6×2=12 cans

No. of food boxes=7x=7×2=14 boxes

Please mark brainliest ,if it is truly the best ! Thank you!

A machine used to fill​ gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of ounces and a standard deviation of ounce. You randomly select cans and carefully measure the contents. The sample mean of the cans is ounces. Does the machine need to be​ reset? Explain your reasoning. ▼ Yes No ​, it is ▼ very unlikely likely that you would have randomly sampled cans with a mean equal to ​ounces, because it ▼ lies does not lie within the range of a usual​ event, namely within ▼ 1 standard deviation 2 standard deviations 3 standard deviations of the mean of the sample means.

Answers

Complete question is;

A machine used to fill gallon-sized paint cans is regulated so that the amount of paint dispensed has a mean of 128 ounces and a standard deviation of 0.20 ounce. You randomly select 35 cans and carefully measure the contents. The sample mean of the cans is 127.9 ounces. Does the machine need to be? reset? Explain your reasoning.

(yes/no)?, it is (very unlikely/ likely) that you would have randomly sampled 35 cans with a mean equal to 127.9 ?ounces, because it (lies/ does not lie) within the range of a usual? event, namely within (1 standard deviation, 2 standard deviations 3 standard deviations) of the mean of the sample means.

Answer:

Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

Step-by-step explanation:

We are given;

Mean: μ = 128

Standard deviation; σ = 0.2

n = 35

Now, formula for standard error of mean is given as;

se = σ/√n

se = 0.2/√35

se = 0.0338

Normally, the range of values should be within 2 standard deviations of mean. In this case, normal range of values will be;

μ ± 2se = 128 ± 0.0338

This gives; 127.9662, 128.0338

So, Yes, we should reset the machine because it is unusual to have a mean equal to 127.9 from a random sample of 35 as the mean of 127.9 doesn't fall within range of a usual event with 2 standard deviations of the mean of the sample means.

which of the following not between -10 and -8

-17/2
-7
-9
-8.5​

Answers

The answer is -7 because -17/2=-8.5 and 9 and 8.5 are both in between -10 and -8

Answer:

-7

Step-by-step explanation:

This is best read on the number line.

Look at the picture.

[tex]-\dfrac{17}{2}=-8\dfrac{1}{2}=-8.5[/tex]

Which of the following represents "next integer after the integer n"? n + 1 n 2n

Answers

Answer:

n + 1

Step-by-step explanation:

Starting with the integer 'n,' we represent the "next integer" by n + 1.

Identify the decimals labeled with the letters A, B, and C on the scale below. Letter A represents the decimal Letter B represents the decimal Letter C represents the decimal

Answers

[tex]10[/tex] divisions between $389$ and $390$ so each division is $\frac{390-389}{10}=0.1$

A is 8 division from $389$, so, A is $389+8\times 0.1=389.8$

similarly, C is one division behind $389$ so it is $389-1\times 0.1=388.9$

and B is $390.3$

Suppose that a sample mean is .29 with a lower bound of a confidence interval of .24. What is the upper bound of the confidence interval?

Answers

Answer:

The upper bound of the confidence interval is 0.34

Step-by-step explanation:

Here in this question, we want to calculate the upper bound of the confidence interval.

We start by calculating the margin of error.

Mathematically, the margin of error = 0.29 -0.24 = 0.05

So to get the upper bound of the confidence interval, we simply add this margin of error to the mean

That would be 0.05 + 0.29 = 0.34

Find the principal invested if $495 interest was earned in 3 years at an interest rate of 6%.

Answers

Answer: $2750

Step-by-step explanation:

Formula to calculate interest : I = Prt , where P = Principal amount , r = rate of interest ( in decimal) , t= time.

Given:  I= $495

t= 3 years

r= 6% = 0.06

Then, according to the above formula:

[tex]495 = P (0.06\times3)\\\\\Rightarrow\ P=\dfrac{495}{0.18}\\\\\Rightarrow\ P=2750[/tex]

Hence, the principal invested = $2750

Findℒ{f(t)}by first using a trigonometric identity. (Write your answer as a function of s.)f(t) = 12 cost −π6

Answers

Answer:

[tex]L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ][/tex]

Step-by-step explanation:

Given that:

[tex]f(t) = 12 cos (t- \dfrac{\pi}{6})[/tex]

recall that:

cos (A-B) = cos AcosB + sin A sin B

[tex]f(t) = 12 [cos\ t \ cos \dfrac{\pi}{6}+ sin \ t \ sin \dfrac{\pi}{6}][/tex]

[tex]f(t) = 12 [cos \ t \ \dfrac{3}{2}+ sin \ t \ sin \dfrac{1}{2}][/tex]

[tex]f(t) = 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t)[/tex]

[tex]L(f(t)) = L ( 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t) ][/tex]

[tex]L(f(t)) = 6 \sqrt{3} \ L [cos \ (t) ] + 6\ L [ sin \ (t) ][/tex]

[tex]L(f(t)) = 6 \sqrt{3} \dfrac{S}{S^2 + 1^2}+ 6 \dfrac{1}{S^2 +1^2}[/tex]

[tex]L(f(t)) = \dfrac{6 \sqrt{3} +6 }{S^2+1}[/tex]

[tex]L(f(t)) = \dfrac{6( \sqrt{3} \ S +1 }{S^2+1}[/tex]

[tex]L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ][/tex]

You are ordering two pizzas. A pizza can be small, medium, large, or extra large, with any combination of 8 possible toppings (getting no toppings is allowed, as is getting all 8). How many possibilities are there for your two pizzas

Answers

Answer:

1048576

Step-by-step explanation:

Given the following :

Pizza order :

Size = small, medium, large, or extra large = 4 possible sizes

Toppings = any combination of 8 possible toppings (getting no toppings is allowed, as is getting all 8).

Combination of Toppings = 2^8

Four different sizes of pizza = 4

Number of possibilities in ordering for a single pizza :

(4 * 2^8) = 4 * 256 = 1024

Number of possibilities in ordering two pizzas :

(4 * 2^8)^2

(2^2 * 2^8)^2

From indices :

[2^(2+8)]^2

[2^(10)]^2

2^(10*2)

2^20

= 1048576

At a local high school, the student population is growing at 12% a year. If the original population was 242 students, how long will it take the population to reach 300 students? Round to the nearest tenth of a year.

Answers

Answer: 2 years

Step-by-step explanation:

The exponential growth function is given by :-

[tex]y=A(1+r)^x[/tex] (i)

, where A = initial value , r = rate of growth and  x= time period.

As per given ,

A= 242

r= 12% = 0.12

To find : t when y= 300.

Put all the values in (i)

[tex]300=242(1+0.12)^x\\\\\Rightarrow\ \dfrac{300}{242}=(1.12)^x\\\\\Rightarrow\ 1.23967=(1.12)^x[/tex]

Taking log on both sides , we get

[tex]\log (1.2396) = t \log (1.12)\\\\\Rightarrow\ 0.09328=t(0.049218)\\\\\Rightarrow t=\dfrac{0.09328}{0.049218}=\approx2[/tex]

hence, it will take 2 years.



Type the missing number in this sequence:
1,
4,
,64, 256,
1,024

Answers

Answer:

16

Step-by-step explanation:

The sequence is 1, 4,...,64, 256, 1024

Notice that:

● 1 = 2^0

● 4 = 2^2

● 64 = 2^6

● 256 = 2^8

● 1024 = 2^10

Notice that we add 2 each time to the exponent so the missing number is:

● 2^(2+2) = 2^4 = 16

Find a cubic polynomial with integer coefficients that has $\sqrt[3]{2} + \sqrt[3]{4}$ as a root.

Answers

Find the powers [tex]a=\sqrt{2}+\sqrt{3}[/tex]

$a^{2}=5+2 \sqrt{6}$

$a^{3}=11 \sqrt{2}+9 \sqrt{3}$

The cubic term gives us a clue, we can use a linear combination to eliminate the root 3 term $a^{3}-9 a=2 \sqrt{2}$ Square $\left(a^{3}-9 a\right)^{2}=8$ which gives one solution. Expand we have $a^{6}-18 a^{4}-81 a^{2}=8$ Hence the polynomial $x^{6}-18 x^{4}-81 x^{2}-8$ will have a as a solution.

Note this is not the simplest solution as $x^{6}-18 x^{4}-81 x^{2}-8=\left(x^{2}-8\right)\left(x^{4}-10 x^{2}+1\right)$

so fits with the other answers.

Answer:

[tex]y^3 -6y-6[/tex]

Please help ! I’ll mark you as brainliest if correct.

Answers

Answer:

D = -87Dx = 174Dy = -435Dz = 0(x, y, z) = (-2, 5, 0)

Step-by-step explanation:

The determinant of the coefficient matrix is ...

  [tex]D=\left|\begin{array}{ccc}2&5&3\\4&-1&-4\\-5&-2&6\end{array}\right|\\\\=2(-1)(6)+5(-4)(-5)+3(4)(-2)-2(-4)(-2)-5(4)(6)-3(-1)(-5)\\\\=-12+100-24-16-120-15=\boxed{-87}[/tex]

The other determinants are found in similar fashion after substituting the constants on the right for each of the above matrix columns, in turn.

Those determinants are ...

  [tex]D_x=\left|\begin{array}{ccc}21&5&3\\-13&-1&-4\\0&-2&6\end{array}\right|=174[/tex]

  [tex]D_y=\left|\begin{array}{ccc}2&21&3\\4&-13&-4\\-5&0&6\end{array}\right|=-435[/tex]

  [tex]D_z=\left|\begin{array}{ccc}2&5&21\\4&-1&-13\\-5&-2&0\end{array}\right|=0[/tex]

The solutions are ...

  x = 174/-87 = -2

  y = -435/-87 = 5

  z = 0

That is, (x, y, z) = (-2, 5, 0).

A bag of 100 hard candies included 30 butterscotch, 40 peppermint, 15 strawberry, 10 orange, and 5 banana. The probability that the first candy pulled out of the bag will be butterscotch or strawberry is .45
a) true
b) false

Answers

Answer:

true

Step-by-step explanation:

there is 100 candies. That means we can easily turn the amount of each type of candy into a percent. there was 30 butterscotch which means that is 30 percent. There was 15 strawberry which means that is 15 percent. add that and you get 45. This is a shortcut and i advise you use the way your teacher taught you.

[tex]|\Omega|=100\\|A|=30+15=45\\\\P(A)=\dfrac{45}{100}=0.45[/tex]

So TRUE

Layla is going to drive from her house to City A without stopping. Layla plans to drive
at a speed of 30 miles per hour and her house is 240 miles from City A. Write an
equation for D, in terms of t, representing Layla's distance from City A t hours after
leaving her house.

Answers

Answer:

D = 240 - 30t

Step-by-step explanation:

If the equation represents her distance from City A, we need to include 240 in the equation to represent the distance to the city.

Then, we need to subtract 30t from 240 in the equation because 30t represents how far she will have traveled in t hours.

So, D = 240 - 30t is the equation that will represent Layla's distance from the city.

Question 1: A triangle has sides with lengths 5, 6, and 7. Is the triangle right, acute, or obtuse?
A)Right
B)Obtuse
C)Can't be determined
D) Acute

Question 2: A 15-foot statue casts a 20-foot shadow. How tall is a person who casts a 4-foot-long shadow?
A)0.33 feet
B)3.75 feet
C)3 feet
D)5 feet

Question 3: A triangle has sides with lengths 17, 12, and 9. Is the triangle right, acute, or obtuse?
A)Acute
B)Right
C)Can't be determined
D)Obtuse

Question 4: Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends?
A)21.34 ft.
B)21.93 ft.
C)27.73 ft.
D)19.21 ft.

Answers

Answer:

Question 1 = D) Acute

Question 2 = C)3 feet

Question 3 = D) Obtuse

Question 4 = C)27.73 ft.

Step-by-step explanation:

Question 1: A triangle has sides with lengths 5, 6, and 7. Is the triangle right, acute, or obtuse?

In order to be able to accurately classify that a triangle with 3 given sides is either a right , acute or obtuse angle, we use the Pythagoras Theorem

Where:

If a² + b² = c² = Right angle triangle

If a² +b² > c² = Acute triangle.

If a² +b² < c² = Obtuse triangle.

It is important to note that the length ‘‘c′′ is always the longest.

Therefore, for the above question, we have lengths

5 = a, 6 = b and c = 7

a² + b² = c²

5² + 6² = 7²

25 + 36 = 49

61 = 49

61 ≠ 49, Hence 61 > 49

Therefore, this is an Acute Triangle

Question 2: A 15-foot statue casts a 20-foot shadow. How tall is a person who casts a 4-foot-long shadow?

This is question that deals with proportion.

The formula to solve for this:

Height of the statue/ Length of the shadow of the person = Height of the person/ Length of the shadow of the person

Height of the statue = 15 feet

Length of the shadow of the person = 20 feet

Height of the person = unknown

Length of the shadow of the person = 4

15/ 20 = Height of the person/4

Cross Multiply

15 × 4 = 20 × Height of the person

Height of the person = 15 × 4/20

= 60/20

Height of the person = 3 feet

Therefore, the person is 3 feet tall.

Question 3: A triangle has sides with lengths 17, 12, and 9. Is the triangle right, acute, or obtuse?

In order to be able to accurately classify that a triangle with 3 given sides is either a right , acute or obtuse angle, we use the Pythagoras Theorem

Where:

If a² + b² = c² = Right angle triangle

If a² +b² > c² = Acute triangle.

If a² +b² < c² = Obtuse triangle.

It is important to note that the length ‘‘c′′ is always the longest.

Therefore, for the above question, we have lengths 17, 12, 9

9 = a, 12 = b and c = 17

a² + b² = c²

9² + 12² = 17²

81 + 144 = 289

225 = 289

225 ≠ 289

225 < 289

Hence, This is an Obtuse Triangle.

Question 4: Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends?

To calculate how far apart the two friends are we use the formula

Distance = √ ( Length² + Breadth²)

We are given dimensions: 12ft by 25ft

Length = 12ft

Breadth = 25ft

Distance = √(12ft)² + (25ft)²

Distance = √144ft²+ 625ft²

Distance = √769ft²

Distance = 27.730849248ft

Approximately ≈27.73ft

Therefore, the friends are 27.73ft apart.

Use the two highlighted points to find the
equation of a trend line in slope-intercept
form.

Answers

Answer: y=(4/3)x+2/3

Step-by-step explanation:

Slope-intercept form is expressed as y=mx+b

First, find the slope (m):

m= rise/run or vertical/horizontal or y/x (found between the highlighted points)

m = 4/3

Second, find b:

Use one of the highlighted points for (x, y)

2=4/3(1)+b

6/3=4/3+b

2/3=b

b=2/3

Plug it into the equation:

You get y=(4/3)x+2/3 :)

The age of some lecturers are 42,54,50,54,50,42,46,46,48 and 48 calculate the mean age and standard deviation

Answers

Answer:

Mean age: 48

Standard deviation: 4

Step-by-step explanation:

a) Mean

The formula for Mean = Sum of terms/ Number of terms

Number of terms

= 42 + 54 + 50 + 54 + 50 + 42 + 46 + 46 + 48+ 48/ 10

= 480/10

= 48

The mean age is 48

b) Standard deviation

The formula for Standard deviation =

√(x - Mean)²/n

Where n = number of terms

Standard deviation =

√[(42 - 48)² + (54 - 48)² + (50 - 48)² +(54 - 48)² + (50 - 48)² +(42 - 48)² + (46 - 48)² + (46 - 48)² + (48 - 48)² + (48 - 48)² / 10]

= √-6² + 6² + 2² + 6² + 2² + -6² + -2² + -2² + 0² + 0²/10

=√36 + 36 + 4 + 36 + 4 + 36 + 4 + 4 + 0 + 0/ 10

=√160/10

= √16

= 4

The standard deviation of the ages is 4

solve this equation 4log√x - log 3x =log x^2​

Answers

Answer:

[tex]x = \frac{1}{3} [/tex]

Step-by-step explanation:

*Move terms to the left and set equal to zero:

4㏒(√x) - ㏒(3x) - ㏒(x²) = 0

*simplify each term:

㏒(x²) - ㏒(3x) - ㏒(x²)

㏒(x²÷x²) -㏒(3x)

㏒(x²÷x² / 3x)

*cancel common factor x²:

㏒([tex]\frac{1}{3x}[/tex])

*rewrite to solve for x :

10⁰ = [tex]\frac{1}{3x}[/tex]

1 = [tex]\frac{1}{3x}[/tex]

1 · x = [tex]\frac{1}{3x}[/tex] · x

1x = [tex]\frac{1}{3}[/tex]

*that would be our answer, however, the convention is to exclude the "1" in front of variables so we are left with:

x = [tex]\frac{1}{3}[/tex]

The cost, C, in United States Dollars ($), of cleaning up x percent of an oil spill along the Gulf Coast of the United States increases tremendously as x approaches 100. One equation for determining the cost (in millions $) is:

Answers

Complete Question

On the uploaded image is a similar question that will explain the given question

Answer:

The value of k is  [tex]k = 214285.7[/tex]

The percentage  of the oil that will be cleaned is [tex]x = 80.77\%[/tex]

Step-by-step explanation:

From the question we are told that

   The  cost of cleaning up the spillage is  [tex]C = \frac{ k x }{100 - x }[/tex]  [tex]x \le x \le 100[/tex]

     The  cost of cleaning x =  70% of the oil is  [tex]C = \$500,000[/tex]

   

Now at  [tex]C = \$500,000[/tex] we have  

       [tex]\$ 500000 = \frac{ k * 70 }{100 - 70 }[/tex]

       [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]\$ 500000 = \frac{ k * 70 }{30 }[/tex]

      [tex]k = 214285.7[/tex]

Now  When  [tex]C = \$900,000[/tex]

       [tex]x = 80.77\%[/tex]

       

 

Transform the given parametric equations into rectangular form. Then identify the conic.

Answers

Answer:

Solution : Option B

Step-by-Step Explanation:

We have the following system of equations at hand here.

{ x = 5 cot(t), y = - 3csc(t) + 4 }

Now instead of isolating the t from either equation, let's isolate cot(t) and csc(t) --- Step #1,

x = 5 cot(t) ⇒ x - 5 = cot(t),

y = - 3csc(t) + 4 ⇒ y - 4 = - 3csc(t) ⇒ y - 4 / - 3 = csc(t)

Now let's square these two equations. We know that csc²θ - cot²θ = 1, so let's subtract the equations  as well. --- Step #2

 

( y - 4 / - 3 )² = (csc(t))²

- ( x - 5 / 1 )² = (cot(t))²  

___________________

(y - 4)² / 9 - x² / 25 = 1

And as we are subtracting the two expressions, this is an example of a hyperbola. Therefore your solution is option b.

How do you compress this?

Answers

[tex]\displaystyle\\(a+b)^n\\T_{r+1}=\binom{n}{r}a^{n-r}b^r\\\\\\(x+2)^7\\a=2x\\b=3\\r+1=4\Rightarrow r=3\\n=5\\T_4=\binom{5}{3}\cdot (2x)^{5-3}\cdot3^3\\T_4=\dfrac{5!}{3!2!}\cdot 4x^2\cdot27\\T_4=\dfrac{4\cdot5}{2}\cdot 4x^2\cdot27\\\\T_4=1080x^2[/tex]

The value of y varies directly with x . Find the value of k when y 33.6 and x = 4.2

Answers

Answer:

k=8

Step-by-step explanation:

Since y and x are in direct proportions, the equation is

y= kx, where k is a constant.

when y= 33.6, x=4.2,

33.6= k(4.2)

k= 33.6 ÷4.2

k=8

Answer:

k=8

Step-by-step explanation:

logx-log(x-l)^2=2log(x-1)​

Answers

Answer:

  x = 1.00995066776

  x = 2.52925492433

Step-by-step explanation:

This sort of equation is best solved using a graphing calculator. For that purpose, I like to rewrite the equation as a function whose zeros we're seeking. Here, that becomes ...

  [tex]f(x)=\log{(x)}-\log{(x-1)}^2-2\log{(x-1)}[/tex]

The attached graph shows zeros at

  x = 1.00995066776 and 2.52925492433

_____

Comment on the equation

Note that we have taken the middle term to be the square of the log, rather than the log of a square. For the latter interpretation, see mberisso's answer at https://brainly.com/question/17210068

Comment on the answer refinement

We have used Newton's method iteration to refine the solutions to this equation. The solution near 1.00995 requires the initial guess be very close for that method to work properly. Fortunately, the 1.01 value shown on the graph is sufficient for the purpose.

10) How many possible outfit combinations come from six shirts, three
slacks, and five ties? *
A 15
B 18
C 30
D 90

Answers

Answer:

The answer is D)90

Hope I helped

cooks are needed to prepare for a large party. Each cook can bake either 5 Large cakes or 14 small cakes per hour . The kitchen is available for 3 hours and 29 large cakes and 260 cakes need to be baked . How many cooks are required to bake the required number of cakes during the time the kitchen is available?​

Answers

it was all about equating some values

to bake the required number of cakes during the available 3-hour time period, 7 cooks are required.

Let's determine the number of cooks required to bake the required number of cakes during the available time.

We have the following information:

- Each cook can bake either 5 large cakes or 14 small cakes per hour.

- The kitchen is available for 3 hours.

- We need to bake 29 large cakes and 260 cakes in total.

First, let's calculate the number of large cakes that can be baked by one cook in 3 hours:

1 cook can bake 5 large cakes/hour × 3 hours = 15 large cakes.

Next, let's calculate the number of small cakes that can be baked by one cook in 3 hours:

1 cook can bake 14 small cakes/hour × 3 hours = 42 small cakes.

Now, let's calculate the number of large cakes that can be baked by all the cooks in 3 hours:

Total number of large cakes = Number of cooks × Large cakes per cook per 3 hours

We need to bake 29 large cakes, so:

29 = Number of cooks × 15

Number of cooks = 29 / 15 ≈ 1.93

Since we can't have a fraction of a cook, we need to round up to the nearest whole number. Therefore, we need at least 2 cooks to bake the required number of large cakes.

Similarly, let's calculate the number of small cakes that can be baked by all the cooks in 3 hours:

Total number of small cakes = Number of cooks × Small cakes per cook per 3 hours

We need to bake 260 small cakes, so:

260 = Number of cooks × 42

Number of cooks = 260 / 42 ≈ 6.19

Again, rounding up to the nearest whole number, we need at least 7 cooks to bake the required number of small cakes.

Since we need to satisfy both requirements for large and small cakes, we choose the larger number of cooks required, which is 7 cooks.

Therefore, to bake the required number of cakes during the available 3-hour time period, 7 cooks are required.

Learn more about work here

https://brainly.com/question/13245573

#SPJ2

Other Questions
erekes Manufacturing Corporation has prepared the following overhead budget for next month. Activity level 3,200 machine-hours Variable overhead costs: Supplies $ 16,640 Indirect labor 29,120 Fixed overhead costs: Supervision 15,400 Utilities 6,600 Depreciation 7,600 Total overhead cost $ 75,360 The company's variable overhead costs are driven by machine-hours. What would be the total budgeted overhead cost for next month if the activity level is 3,100 machine-hours rather than 3,200 machine-hours A ball is thrown upward from a height of 432 feet above the ground, with an initial velocity of 96 feet per second. From physics it is known that the velocity at time t is v (t )equals 96 minus 32 t feet per second. a) Find s(t), the function giving the height of the ball at time t. b) How long will the ball take to reach the ground? c) How high will the ball go? Use the grouping method to factor x3 + x2 + 2x + 2. Use the diagram to complete the statement. Triangle J K L is shown. Angle K J L is a right angle. Angle J K L is 52 degrees and angle K L J is 38 degrees. Given JKL, sin(38) equals cos(38). cos(52). tan(38). tan(52). on terms of genetic similarity, which list is ordered from most similar to least similar b. cousin, uncle, mother, non twin sibling, identical twin What are responsibilities of entrepreneurs? Check all of the boxes that apply.to own businessesto work for companiesto be responsible for employeesto be responsible to stakeholdersWhat are responsibilities of employees? Check all of the boxes that apply.to own businessesto work for companiesto be responsible for employeesto be responsible to stakeholders. Determine whether the statement is true or false. If it is false, rewrite it as a true statement. A sampling distribution is normal only if the population is normal. Choose the correct answer below. A. The statement is false. A sampling distribution is normal only if n30. B. The statement is false. A sampling distribution is normal if either n30 or the population is normal. C. The statement is true. D. The statement is false. A sampling distribution is never normal. Why is the communication results circle linked to the circle labeled science and society I don't understand this question, somebody help One model of the length LACL of a person's anterior cruciate ligament, or ACL, relates it to the person's height h with the linear function LACL=0.04606h(41.29 mm) This relationship does not change significantly with age, gender, or weight. If a basketball player has a height of 2.13 m, approximately how long is his ACL? The writing form depicted in the image above illustrates which of the following advances in human civilization? The ability of the Sumerians to create published texts that were widely available to the masses The ability of the Sumerians to create published, , texts that were widely available to the masses The ability of the Sumerians to travel to other parts of the world using advanced wagon-wheel technology The ability of the Sumerians to travel to other, , parts of the world using advanced wagon-wheel, , technology The ability of the Sumerians to domesticate wild animals for human use The ability of the Sumerians to domesticate wild, , animals for human use The ability of the Sumerians to organize their society more effectively by keeping written records of economic transactions The ability of the Sumerians to organize their, , society more effectively by keeping written, , records of economic transactions -50 POINTS- (5/5) Which scatter plot represents the following data? what is the least common denominator of 1/8, 2/9, and 3/12 A. 864 B. 108 C. 72 D. 48 can somewon help me plz i want help A hydraulic lift raises a 2 000-kg automobile when a 500-N force is applied to the smaller piston. If the smaller piston has an area of 10 cm2, what is the cross-sectional area of the larger piston The MCAT is the admission exam that medical schools use as one of the criteria for accepting students. The exam is based on a scale of 0-45. The following data shows the MCAT scores for nine students.32 36 29 31 30 35 34 26 30The 35th percentile of this data set is:________ a. 31 b. 32 c. 31.5 d. 30 Find the range of f(x) = x + 4 for the domain {3, 2, 1, 1}. B(n)=2^n A binary code word of length n is a string of 0's and 1's with n digits. For example, 1001 is a binary code word of length 4. The number of binary code words, B(n), of length n, is shown above. If the length is increased from n to n+1, how many more binary code words will there be? The answer is 2^n, but I don't get how they got that answer. I would think 2^n+1 minus 2^n would be 2. Please help me! Thank you! How to do this question plz answer my question plz 65. Given a segment with endpoints A and C and midpoint. If A(5, 8), and M(-3,2). Find thelocation of C.