Answer:
D) d ≥ 2.18
Step-by-step explanation:
d – 0.31 ≥ 1.87
d >_ 1.87 + 0.31
d >_ 2.18
Suppose that a local TV station conducts a survey of a random sample of 120 registered voters in order to predict the winner of a local election. The Democrat candidate was favored by 62 of the respondents.
Required:
a. Construct and interpret a 99% CI for the true proportion of voters who prefer the Republican candidate.
b. If a candidate needs a simple majority of the votes to win the election, can the Republican candidate be confident of victory? Justify your response with an appropriate statistical argument.
Answer:
a) The 99% CI for the true proportion of voters who prefer the Republican candidate is (0.3658, 0.6001). This means that we are 99% sure that the true population proportion of all voters who prefer the Republican candidate is (0.3658, 0.6001).
b) The upper bound of the confidence interval is above 0.5 = 50%, which meas that the candidate can be confidence of victory.
Step-by-step explanation:
Question a:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
Sample of 120 registered voters in order to predict the winner of a local election. The Democrat candidate was favored by 62 of the respondents.
So 120 - 62 = 58 favored the Republican candidate, so:
[tex]n = 120, \pi = \frac{58}{120} = 0.4833[/tex]
99% confidence level
So [tex]\alpha = 0.01[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.01}{2} = 0.995[/tex], so [tex]Z = 2.575[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.4833 - 2.575\sqrt{\frac{0.4833*0.5167}{120}} = 0.3658[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.4833 + 2.575\sqrt{\frac{0.4833*0.5167}{120}} = 0.6001[/tex]
The 99% CI for the true proportion of voters who prefer the Republican candidate is (0.3658, 0.6001). This means that we are 99% sure that the true population proportion of all voters who prefer the Republican candidate is (0.3658, 0.6001).
b. If a candidate needs a simple majority of the votes to win the election, can the Republican candidate be confident of victory? Justify your response with an appropriate statistical argument.
The upper bound of the confidence interval is above 0.5 = 50%, which meas that the candidate can be confidence of victory.
Find the value of x.
If a $6 per unit tax is introduced in this market, then the new equilibrium quantity will be
Answer:
soory i dont know just report me if you angry
8.113 as a fraction PLEASE HELPP
Answer:
8 113/1000(as a mixed number) 8113/1000(as an improper fraction)
Step-by-step explanation:
1. Convert 0.113 to a fraction...113/1000
2. As there is no further simplification needed, add 8 to 113/1000....8 113/1000
3. To convert 8 113/1000 from a mixed number to an improper fraction, multiply 8 (the whole number) and 1,000(the denominator)...8,000. Then add 113 (the numerator) to 8,000...8113. After that, you put 8113 over the denominator of the previous mixed number, getting 8113/1000 as the improper fraction.
The product of two positive integer numbers is 70 and the sum of the same two numbers is 17. Find the
numbers.
Answer:
7 and 10
Step-by-step explanation:
7 * 10 = 70
7 + 10 = 17
Answer:
10 and 7
Step-by-step explanation:
call them a and b, respectively
so a*b=70 -> b=70/a
a+b=17 ->a+70/a=17 ->a=10 b =7
A tire manufacturer has a 60,000 mile warranty for tread life. The company wants to make sure the average tire lasts longer than 60,000 miles. The manufacturer tests 250 tires and finds the mean life for these tires to be 64,500 miles.What is the alternative hypothesis being tested in this example
Answer:
The alternative hypothesis being tested in this example is that the tire life is of more than 60,000 miles, that is:
[tex]H_1: \mu > 60,000[/tex]
Step-by-step explanation:
A tire manufacturer has a 60,000 mile warranty for tread life. The company wants to make sure the average tire lasts longer than 60,000 miles.
At the null hypothesis, we test if the tire life is of at most 60,000 miles, that is:
[tex]H_0: \mu \leq 60,000[/tex]
At the alternative hypothesis, we test if the tire life is of more than 60,000 miles, that is:
[tex]H_1: \mu > 60,000[/tex]
II. Round to the nearest hundred.
11. 582
12. 1,234
13. 640
14. 770
15. 1,104 can you please tell what the answer?
Answer:
582-600
1,234-1,200
640-600
770-800
1,104-1,100
simplify the following without using calculator
√50 + √98
Answer:
The exact answer is 12*√2, if you need approximately answer it is 12*1.4= 16.8
Step-by-step explanation:
√50 + √98 = √(25*2)+√(49*2)= √25√2+√49*√2= 5√2+7*√2=12*√2
Mr Makgato sells his car for R42 000.00. The total commission is 7.2% of the selling price of which the broker receives 2 thirds and the salesperson receives the rest. How much does the broker receive?
Answer:
2016
Step-by-step explanation:
using USA dollars:
$42000 x .072 (7.2%) = 3024 total commission
3024 x 2/3 = 2016 brokers amount
у
х
9
3
Find the value of y.
9514 1404 393
Answer:
(d) 6√3
Step-by-step explanation:
There are several ways to work multiple-choice problems. One of the simplest is to choose the only answer that makes any sense. Here, that is 6√3.
y is the hypotenuse of the medium-sized right triangle, so will be longer than that triangle's longest leg. y > 9
The only answer choice that meets this requirement is ...
y = 6√3
__
In this geometry, all of the right triangles are similar. This means corresponding sides have the same ratio. For y, we're interested in the ratio of long leg to hypotenuse.
long leg/hypotenuse = y/(9+3) = 9/y
y² = 9(9+3) = 9·4·3
y = 3·2·√3 . . . . . . take the square root
y = 6√3
__
Additional comments
You may notice that y is the root of the product of the longer hypotenuse segment (9) and the whole hypotenuse (9+3 = 12). We can say that y is the "geometric mean" of these segment lengths. Similarly (pun only partially intended), x will be the root of the product of the short segment (3) and the whole hypotenuse (12)
x = √(3·12) = 6
This is another "geometric mean" relation.
Further, the altitude will be the geometric mean of the two segments of the hypotenuse:
h = √(9·3) = 3√3
A way to summarize all of these relations is to say that the legs of the right triangle that are not the hypotenuse are equal to the geometric mean of the segments of the hypotenuse that the leg intercepts.
x = √(3·12)
y = √(9·12)
h = √(3·9)
For an avid bird watcher, the probability of spotting a California Condor while birdwatching in the Grand Canyon area is 0.3. The probability of being able to take a clear picture of the bird suppose one is able to spot it is 0.8. What is the probability that the bird watcher is able to take a clear picture of a California Condor
Answer:
the probability of taking a clear picture of a California candor is .24
In a nationwide survey conducted by a reputable research center, a sample of adults in a certain country were asked whether they favor a plan to break up a small collection of megabanks, which controlled about % of the banking industry; % of those sampled responded in the affirmative. According to the report, "the margin of sampling error is / percentage points with a % level of confidence." Find and interpret a % confidence interval for the percentage of all adults in the country who favor a plan to break up the megabanks.
Answer:
(42% ; 48%)
We are 99% confident that the percentage of all adults in the country who favor a plan to break up the megabanks is between 42% and 48%
Step-by-step explanation:
The confidence interval is used to estimate the range of values for which the population value may lie at a certain level of confidence.
Given that :
Phat = 45%
Margin of error = ±3%
The confidence interval is defined as :
C. I = Phat ± margin of error
C. I = 45% ± 3%
Lower boundary :
45% - 3% = 42%
Upper boundary :
45% + 3% = 48%
C.I = (42% ; 48%)
We are 99% confident that the percentage of all adults in the country who favor a plan to break up the megabanks is between 42% and 48%
Yooooo HELPPP
with this question plz
Answer:
Step-by-step explanation:
(x-2)(x+4)=x^2+4x-2x-8=0=> x =2, x=0
Answer:
A
Step-by-step explanation:
Desde cierto paradero se transportan 300 pasajeros en
4 microbuses. ¿Cuántos micros se deben aumentar para
que por cada 3 micros se transporten 90 pasajeros?
Se necesitan 10 micros si queremos que cada 3 micros transporten 90 pasajeros.
En principio, sabemos que 300 pasajeros pueden transportarse en 4 microbuses.
Entonces, el numero de pasajeros que va por cada micro será el cociente entre el numero de pasajeros y el numero de micros:
N = 300/4 = 75
Queremos responder:
¿Cuántos micros se deben aumentar para que por cada 3 micros se transporten 90 pasajeros?
Definamos X como el numero de grupos de 3 micros que tendriamos en esta situación.
Entonces 300 sobre X, debe ser igual a 90 (el numero de pasajeros que va en cada grupo de 3 micros)
300/X = 90
300 = 90*X
300/90 = X = 3.33...
Notar que el número total de micros sera 3 veces X:
3*X = 3*3.33.... = 10
Se necesitan 10 micros.
Si queres leer más sobre el tema, podes ver.
https://brainly.com/question/23854869
A baseball fan wanted to know if there is a difference between the number of games played in a World Series when the American League won the series versus when the National League won the series. From 1922 to 2012, the population standard deviation of games won by the American League was 1.14, and the population standard deviation of games won by the National League was 1.11. Of 19 randomly selected World Series games won by the American League, the mean number of games won was 5.76. The mean number of 17 randomly selected games won by the National League was 5.42.
Required:
Conduct a hypothesis test use the 10% significance level.
Answer:
correct u did it
Step-by-step explanation:
told me
To conduct a hypothesis test to determine if there is a significant difference between the number of games won by the American League and the National League in the World Series, we can follow these steps:
Step 1: State the null and alternative hypotheses:
Null hypothesis (H0): There is no significant difference between the mean number of games won by the American League and the National League.
Alternative hypothesis (Ha): There is a significant difference between the mean number of games won by the American League and the National League.
Step 2: Determine the significance level:
In this case, the significance level is given as 10%, which means α = 0.10.
Step 3: Conduct the hypothesis test:
To conduct the hypothesis test, we can use a two-sample t-test because we have two independent samples and we do not have information about the population parameters.
Step 4: Calculate the test statistic and p-value:
Using the provided sample means, standard deviations, and sample sizes, we can calculate the test statistic and p-value using statistical software or a calculator.
Step 5: Compare the p-value to the significance level:
If the p-value is less than the significance level (α), we reject the null hypothesis and conclude that there is a significant difference between the mean number of games won by the American League and the National League. If the p-value is greater than the significance level, we fail to reject the null hypothesis.
Since the calculation of the test statistic and p-value requires specific values from the samples, such as the sample sizes, it is not possible to perform the exact calculation without those values. Additionally, the information provided in the question does not specify whether the data follows a normal distribution or other assumptions required for the t-test.
To conduct the hypothesis test accurately, it is recommended to use statistical software or consult a statistician who can perform the calculations using the provided sample means, standard deviations, and sample sizes.
To know more about hypotenuse , here
https://brainly.com/question/2217700
#SPJ2
Susan randomly selected a sample of plants to determine the average height of the total 35 plants in her garden. She measured the heights (in inches) of 12 randomly selected plants and recorded the data:
1.0, 1.4, 1.8, 2.0, 2.5, 3.5, 4.2, 4.5, 4.8, 5.0, 5.3, 6.0
What is the sample mean of the heights of the plants in Susan's garden?
Answer:
3.5 inches
Step-by-step explanation:
Sample mean basically means that we need to find the average of the samples.
So the formula for finding average is
Number of observations/ Number of Occurrences
So when we add the values together we get
42.
So there are 12 numbers
So, 42/12 =
3.5 inches
The sample mean of the heights of the plants in Susan's garden is
3.5 inches.
Here,
Susan randomly selected a sample of plants to determine the average height of the total 35 plants in her garden.
She measured the heights (in inches) of 12 randomly selected plants and recorded the data:
1.0, 1.4, 1.8, 2.0, 2.5, 3.5, 4.2, 4.5, 4.8, 5.0, 5.3, 6.0
We have to find the sample mean of the heights of the plants in Susan's garden.
What is Average?
Average value in a set of given numbers is the middle value, calculate as dividing the total of all values by the number of values.
Now,
The recorded data is;
1.0, 1.4, 1.8, 2.0, 2.5, 3.5, 4.2, 4.5, 4.8, 5.0, 5.3, 6.0
To find the sample mean of the heights of the plants in Susan's garden we have to find the average of the recorded data.
Formula for average = [tex]\frac{sum of number of observation}{ number of occurrence}[/tex]
Hence, Average = [tex]\frac{1.0+ 1.4+1.8+2.0+ 2.5+3.5+4.2+4.5+ 4.8+ 5.0+ 5.3+ 6.0}{12} = \frac{42}{12} = 3.5[/tex]
Therefore, The sample mean of the heights of the plants in Susan's garden is 3.5 inches.
Learn more about the average visit:
https://brainly.com/question/22905678
#SPJ2
Is -8 an irrational number?
yes or no
no bc it is not no no no no no no no
Two cards are drawn without replacement from a standard deck of 5252 playing cards. What is the probability of choosing a red card for the second card drawn, if the first card, drawn without replacement, was a club
Answer:
The probability is 0.51
Step-by-step explanation:
We want to find the of choosing a red card for the second card drawn, given that the first card drawn without replacement, was a club.
Then we need to assume that the first card drawn was a club, so now we have a deck of 51 cards with:
13 hearts
13 diamonds
13 spades
12 clubs.
Now with this deck, the probability of drawing a red card is equal to the quotient between the number of red cards and the total number of cards in the deck.
We have 26 red cards (13 hearts + 13 diamonds)
And there is a total of 51 cards in the deck, then the probability of drawing a red card now is:
P = 26/51 =0.51
The probability is 0.51
What is 24/9 in simplest form
Answer:
2 2/3
Step-by-step explanation:
hope this helps :)
don't be afraid to ask questions
Silicone implant augmentation rhinoplasty is used to correct congenital nose deformities. The success of the procedure depends on various biomechanical properties of the human nasal periosteum and fascia. An article reported that for a sample of 10 (newly deceased) adults, the mean failure strain (%) was 24.0, and the standard deviation was 3.2.
Required:
a. Assuming a normal distribution for failure strain, estimate true average strain in a way that converys information about precision and reliability.
b. Predict the strain for a single adult in a way that conveys information about precision and reliability. How does the prediction compare to the estimate calculated in part (a)?
Solution :
Given information :
A sample of n = 10 adults
The mean failure was 24 and the standard deviation was 3.2
a). The formula to calculate the 95% confidence interval is given by :
[tex]$\overline x \pm t_{\alpha/2,-1} \times \frac{s}{\sqrt n}$[/tex]
Here, [tex]$t_{\alpha/2,n-1} = t_{0.05/2,10-1}$[/tex]
= 2.145
Substitute the values
[tex]$24 \pm 2.145 \times \frac{3.2}{\sqrt {10}}$[/tex]
(26.17, 21.83)
When the [tex]\text{sampling of the same size}[/tex] is repeated from the [tex]\text{population}[/tex] [tex]n[/tex] infinite number of [tex]\text{times}[/tex], and the [tex]\text{confidence intervals}[/tex] are constructed, then [tex]95\%[/tex] of them contains the [tex]\text{true value of the population mean}[/tex], μ in between [tex](26.17, 21.83)[/tex]
b). The formula to calculate 95% prediction interval is given by :
[tex]$\overline x \pm t_{\alpha/2,-1} \times s \sqrt{1+\frac{1}{n}}$[/tex]
[tex]$24 \pm 2.145 \times 3.2 \sqrt{1+\frac{1}{10}}$[/tex]
(31.13, 16.87)
Lesson 1 Skills Practice
Lines For Exercises 1-12, use the figure at the right. In that figure, line m is parallel.
Classify each pair of angles as alternate interior, alternate exterior, or corresponding.
Pictures Below.
9514 1404 393
Answer:
alternate interior: (2, 4), (3, 5)alternate exterior: (1, 7), (43°, 6)corresponding: (1, 5), (2, 6), (3, 7), alternate interior: (2, 4), (3, 5)corresponding: (1, 5), (2, 6), (3, 7), (43°, 4)4)
Step-by-step explanation:
In this geometry, "corresponding" angles are in the same direction from the point of intersection of the transversal with the parallel line.
"Alternate" refers to angles on opposite sides of the transversal. "Interior" and "exterior" refer to angles between and outside of the parallel lines, respectively.
Here, we list all angle pairs in each classification, so you can answer questions 1-12 based on this list.
alternate interior: (2, 4), (3, 5)
alternate exterior: (1, 7), (43°, 6)
corresponding: (1, 5), (2, 6), (3, 7), (43°, 4)
__
Additional classifications are also used:
consecutive (same-side) interior: (2, 5), (3, 4)
consecutive (same-side) exterior: (1, 6), (43°, 7)
vertical: (1, 3), (2, 43°), (4, 6), (5, 7)
linear pairs: (1, 2), (1, 43°), (2, 3), (3, 43°), (4, 5), (4, 7), (5, 6), (6, 7)
please help! Here are the shopping times(in minuts) of nine shoppers at a local grocery store. complete the grouped frequency distribution for the data. in the distribution, the frequency of a class is the number of shopping times in that class.( Note that we are using a class width of 6.)
Answer:
The shopping time (in minutes) of the nine shoppers are:
15, 16, 18, 20, 22, 25, 27, 28, 29 (just to make it easier to read, I rearranged everything from least to greatest.)
We can see, that 3 shoppers shopped for 15-20 minutes.
And, 3 shoppers shopped for 21-26 minutes.
And finally, 3 shoppers shopped for 27-32 minutes.
So the answer for all 3 of the boxes is 3.
Let me know if this helps.
GIVING 25 POINTS AND BRAINIER IF ANSWERED!
What is one thing you would not do when finding the question in a word problem?
A. Look for a problem similar to the word problem you are trying to solve.
B. The question may not be directly stated.
C. So you can understand what the facts are in the word problem.
D. To define your strategy or game plan to solve the word problem.
Answer:
B. The question may not be directly stated.
Complete the Similarity statement below only if the triangles are similar.
Thank you for all the help guys
Answer:
a is the right answer thanksA line passes through the point (-2,4) and has a slope of 7. Write an equation for this line
Answer: y = 7x + 18
Step-by-step explanation:
y = mx + b, (-2,4), m = 7
4 = 7(-2) + b
4 = -14 + b
b = 18
y = 7x + 18
A group of hens lays 69 eggs in a single day. On one particular day, there were 7 brown eggs and 62 white eggs. If four eggs are selected at random, without replacement, what is the probability that all four are brown?
Answer:
The probability will 4.32%.
The probability that all four are brown is 35/8,64,501.
Given that, A group of hens lays 69 eggs in a single day. On one particular day, there were 7 brown eggs and 62 white eggs.
What is the probability without replacement?Probability without replacement means once we draw an item, then we do not replace it back to the sample space before drawing a second item. In other words, an item cannot be drawn more than once.
If four eggs are selected at random, without replacement, the probability that all four are brown is 7/69 × 6/68 × 5/67 × 4/66
= 7/69 × 3/34 × 5/67 × 2/33
=7/23 × 1/17 × 5/67 × 1/33
=35/8,64,501
Therefore, the probability that all four are brown is 35/8,64,501.
To learn more about the probability visit:
https://brainly.com/question/11234923.
#SPJ2
The expression y + y + 2y is equivalent to ??
because ??
Answer:
4y
They would have the same value if a number was substituted for y
Step-by-step explanation:
y+y+2y =
Combine like terms
4y
These are all like terms
They would have the same value if a number was substituted for y
Let y = 5
5+5+2(5) = 5+5+10 = 20
4(5) =20
A solid is formed by rotating the region bounded by y = x − x^2 and y = 0 about the line x = 2 . Use the shell method to find the volume of the solid.
Answer:
The volume of the resulting solid is π/2 cubic units.
Step-by-step explanation:
Please refer to the diagram below.
The shell method is given by:
[tex]\displaystyle V = 2\pi \int _a ^b r(x) h(x)\, dx[/tex]
Where the representative rectangle is parallel to the axis of revolution, r(x) is the distance from the axis of revolution to the center of the rectangle, and h(x) is the height of the rectangle.
From the diagram, we can see that r(x) = (2 - x) and that h(x) is simply y. The limits of integration are from a = 0 to b = 1. Therefore:
[tex]\displaystyle V = 2\pi \int_0^1\underbrace{\left(2-x\right)}_{r(x)}\underbrace{\left(x - x^2\right)}_{h(x)}\, dx[/tex]
Evaluate:
[tex]\displaystyle \begin{aligned} V&= 2\pi \int_0 ^1 \left(2x-2x^2-x^2+x^3\right) \, dx\\ \\ &= 2\pi\int _0^1 x^3 -3x^2 + 2x \, dx \\ \\ &= 2\pi\left(\frac{x^4}{4} - x^3 + x^2 \Bigg|_0^1\right) \\ \\ &= 2\pi \left(\frac{1}{4} - 1 + 1 \right) \\ \\ &= \frac{\pi}{2}\end{aligned}[/tex]
The volume of the resulting solid is π/2 cubic units.
Answer:
pi/2
Step-by-step explanation:
I always like to draw an illustration for these problems.
For shells method think volume of cylinder=2pi×r×h
Integrate(2pi(2-x)(x-x^2) ,x=0...1)
Multiply
Integrate(2pi(2x-2x^2-x^2+x^3 ,x=0...1)
Combine like terms
Integrate(2pi(2x-3x^2+x^3) ,x=0...1)
Begin to evaluate
2pi(2x^2/2-3x^3/3+x^4/4) ,x=0...1
2pi(x^2-x^3+x^4/4), x=0...1
2pi(1-1+1/4)
2pi/4
pi/2
Many individuals over the age of 40 develop intolerance for milk and milk-based products. A dairy has developed a line of lactose-free products that are more tolerable to such individuals. To assess the potential market for these products, the dairy commissioned a market research study of individuals over 40 years old in its sales area. A random sample of 250 individuals showed that 86 of them suffer from milk intolerance. Based on the sample results, calculate a 90% confidence interval for the population proportion that suffers milk intolerance. Interpret this confidence interval. a) First, show that it is okay to use the 1-proportion z-interval. b) Calculate by hand a 90% confidence interval. c) Provide an interpretation of your confidence interval. d) If the level of confidence was 95% instead of 90%, would the resulting interval be narrower or wider
Answer:
a) To show that we can use the 1 proportion z-interval, we know that 250 ( size sample) is big enough to approximate the binomial distribution ( tolerance-intolerance) to a normal distribution.
b) See step by step explanation
CI 90 % = ( 0,296 ; 0,392)
c) We can support that with 90 % of confidence we will find the random variable between this interval ( 0,296 ; 0,392)
d) the CI 95 % will be wider
Step-by-step explanation:
Sample Information:
Sample size n = 250
number of people with milk intolerance x = 86
p₁ = 86 / 250 p₁ = 0.344 and q₁ = 1 - p₁ q₁ = 0,656
To calculate 90 % of Confidence Interval α = 10% α/2 = 5 %
α/2 = 0,05 z(c) from z-table is: z(c) = 1.6
Then:
CI 90 % = ( p₁ ± z(c) * SE )
SE = √ (p₁*q₁)/n = √ 0,225664/250
SE = 0,03
CI 90 % = ( 0,344 ± 1,6* 0,03 )
CI 90 % = ( 0,344 - 0,048 ; 0,344 + 0,048)
b) CI 90 % = ( 0,296 ; 0,392)
a) To show that we can use the 1 proportion z-interval, we know that 250 ( size sample) is big enough to approximate the binomial distribution ( tolerance-intolerance) to a normal distribution.
c) We can support that with 90 % of confidence we will find the random variable between this interval ( 0,296 ; 0,392) .
d) CI 95 % then significance level α = 5 % α/2 = 2.5 %
α/2 = 0,025 z(c) = 1.96 from z-table
SE = 0,03
And as 1.96 > 1.6 the CI 95 % will be wider
CI 95% = ( 0,344 ± 1.96*0,03 )
CI 95% = ( 0,344 ± 0,0588 )
CI 95% = ( 0,2852 ; 0,4028 )