Answer:
91Step-by-step explanation:
The mean the the average of 5 numbers. If the next score is x, then the mean is:
(85 + 78 + 77 + 69 + x)/5 = 80Solve it for x:
309 + x = 80*5x = 400 - 309x = 91It is given that,
The mean is the average of 5 numbers.
Then if the,
Next score is x the mean will be.
We can solve now,
→ (85 +78 +77 + 69 + x)/5 = 80
→ (309 + x)/5 = 80
→ 309 + x = 80 × 5
→ 309 + x = 400
→ x = 400 - 309
→ x = 91
Hence, the next score is 91.
What is the domain of this function y= 1/ square root 2-x
Answer:
Domain:
( − ∞ , 2 ] , { x | x ≤ 2 }
Range:
[ 0 , ∞ ) , { y | y ≥ 0 }
(sec theta - tan theta)²
Answer:
(sec θ - tan θ)²
= sec² θ –2 sec θ tan θ + tan² θ
There are eggs in a dozen. If a farmer's chickens produce an average of dozen eggs in a month, how many eggs are reported per month?
Complete Question:
There are 12 eggs in a dozen. If a farmer's chickens produce an average of 423 dozen eggs in a month, how many eggs are reported per month?
Answer:
The eggs reported per month are:
= 5,076 eggs.
Step-by-step explanation:
a) Data and Calculations:
A dozen eggs = 12 pieces of eggs
Average of dozen eggs produced in a month = 423
Therefore, the eggs that are reported per month should average 5,076 (12 * 423)
b) The arrangement or measurement of eggs in dozens makes it easier to calculate the number of eggs produced in the farm each period. The result is obtained by multiplying the average of dozen eggs produced by 12.
express the ratio as a fraction in the lowest terms 100cm:5m
Step-by-step explanation:
we know that 1m=100cm
so 1m:5m(final)
1:5
Answer:
1/5
Step-by-step explanation:
Since 100cm = 1m
then
100cm:5m becomes 1m:5m
which in fraction is 1/5
The average THC content of marijuana sold on the street is 9.6%. Suppose the THC content is normally distributed with standard deviation of 1%. Let X be the THC content for a randomly selected bag of marijuana that is sold on the street. Round all answers to 4 decimal places where possible,
a. What is the distribution of X? X ~ N(
9.6
Correct,
1
Correct)
b. Find the probability that a randomly selected bag of marijuana sold on the street will have a THC content greater than 9.8.
c. Find the 67th percentile for this distribution.
%
Answer:
Im sorry but why is this a question? Like what school gives this out
19. The sum of a number m and a number n, multiplied by ninety-one 20. Forty-one times the difference when six is subtracted from a num- bera 21. A number r divided by the difference between eighty-three and ten 22. The total of a number p and twelve, divided by eighteen 23. The product of a number c and three more than the sum of nine and twelve 24. The sum of a number y and ten, divided by the difference when a number x is decreased by five. I need to convert all of them into expressions. PLEASE HELP.
Answer:
Step-by-step explanation:
19.
The numbers are m and n
Sum of m and n = m + n
Sum is multiplied by 91 = 91 x ( m + n )
20.
Let the number be = m
Six subtracted from the number = m - 6
41 times the difference = 41 x ( m - 6)
21.
Let the number be = r
Difference between 83 and 10 = 83 - 10 = 73
[tex]The \ number\ divided \ by\ the \ difference \ = \frac{r}{73}[/tex]
22.
Total of p and 23 = p + 12
[tex]Total \ divided \ by \ 18 = \frac{p + 12 }{18}[/tex]
23.
The product of c and 3 = 3c
Sum of 9 and 12 = 21
Product is more than Sum = 3c + 21
24.
Sum of y and 10 = y + 10
Number x decreased by 5 = x - 5
[tex]Sum \ divided \ by \ difference = \frac{ y + 10 }{x - 5}[/tex]
appoint a planning committee with five different members. There are 14 qualified candidates, and officers can also serve on the committee. What is the probability of randomly selecting the committee members and getting the five youngest of the qualified candidates?
Answer:
[tex]Pr = \frac{1}{2002}[/tex]
Step-by-step explanation:
See comment for complete question;
Given
[tex]n = 14[/tex]
[tex]r = 5[/tex] -- committee members
[tex]k = 4[/tex] ---- officers (i.e. president, CEO, COO and CFO)
Required
Probability of selecting 5 youngest qualified members
First, we calculate the number of ways the committee can be appointed;
Any 5 members can be part of the committee; This means that we won't consider the order.
So, the number of ways is:
[tex]^{14}C_5[/tex]
This gives:
[tex]^{14}C_5 = \frac{14!}{9!5!}[/tex]
So, we have:
[tex]^{14}C_5 = \frac{14*13*12*11*10*9!}{9!*5*4*3*2*1}[/tex]
[tex]^{14}C_5 = \frac{14*13*12*11*10}{5*4*3*2*1}[/tex]
[tex]^{14}C_5 = \frac{240240}{120}[/tex]
[tex]^{14}C_5 = 2002[/tex]
There can only be a set of 5 young people. So, the probability is:
[tex]Pr = \frac{1}{2002}[/tex]
Plzz prove this tomorrow is my test plzz help me
Step-by-step explanation:
this is the correct answer for the question
Ghgshsvssbdbdbbdbxbxbxbdbdbdbdbdndndjd
So a Quadratic function,A quadratic function is one of the form f(x) = ax2 + bx + c, where a, b, and c are numbers with a not equal to zero
Which ordered pair (a, b) is the solution to the given system of linear equations? 3a+b= 10 -4a-2b=2
(1,7)
(3, 1)
(11, -23)
(23, -11)
Hello,
answer C (11,-23)
[tex]\left\{\begin{array}{ccc}3a+b&=&10\\-4a-2b&=&2\end{array}\right.\\\\\\\left\{\begin{array}{ccc}6a+2b&=&20\\-4a-2b&=&2\end{array}\right.\\\\\\\left\{\begin{array}{ccc}3a+b&=&10\\2a&=&22\end{array}\right.\\\\\\\left\{\begin{array}{ccc}a&=&11\\b&=&10-3*11\end{array}\right.\\\\\\\left\{\begin{array}{ccc}a&=&11\\b&=&-21\end{array}\right.\\[/tex]
Answer: C. (11,-23)
Step-by-step explanation:
use the figure below to find the answer. find y.
9514 1404 393
Answer:
y = 7√2
Step-by-step explanation:
We are given the side opposite the angle, and we want to find the hypotenuse. The relevant trig relation is ...
Sin = Opposite/Hypotenuse
sin(45°) = 7/y
y = 7/sin(45°) = 7/(1/√2)
y = 7√2
__
Additional comment
In this 45°-45°-90° "special" right triangle, the two legs are the same length. Thus, ...
x = 7
Select the correct answer. What is the range of the function shown on the graph above?
A. -8
B.-2y <-7
C. -7 Sy < -2
D. -9
Answer: The answer would be D
Step-by-step explanation:
2 - (-8) + (-3) =
O A) 12
OB) 7
O C
C) 14
OD 1
Answer:
B)7
Step-by-step explanation:
2-(-8)=10
10+(-3)=7
Fifteen dozen eggs were needed for baking four wedding cakes. The first cake
needed one dozen eggs, and each successive cake needed twice as many eggs as the
previous cake. How many eggs were used to make the fourth cake?
Answer:
96 eggs
Step-by-step explanation:
A dozen is equal to 12 eggs, so 15 dozen is equal to 180 eggs
(Because 15*12 = 180)
We already know how many eggs are required for the 1st cake: 12 eggs.
Then it says "each successive cake needs twice as many eggs as the previos cake".
(Successive means the cake directly after the previous cake)
Here's how we find the number of eggs needed for the 2nd cake:
The 1st cake needed 12 eggs, and because the 2nd cake is directly after the 1st cake, we are going to need two times the amount of 12 eggs.
This equation represents the above scenario:
12*2 = 24
So we need 24 eggs for the 2nd cake.
Now we repeat this process for the 3rd cake, finding twice the amount of eggs from the 2nd cake to find the amount of eggs needed for the 3rd cake:
24*2 = 48
And we repeat it once more for the 4th cake, using the eggs from the 3rd cake:
48*2 = 96
So here's the list of how many eggs are required for each of the cakes:
1st cake: 12
2nd cake: 24
3rd cake: 48
4th cake: 96
If you add all the eggs from each of the cakes, you will get 180, which is the number of eggs needed for all four cakes. So our answer is correct.
Hope this helps (●'◡'●)
Craig made a mobile using geometric shapes including triangles shaped as shown. For what value of X and Y can you use a triangle congruence theorem to show that the triangles are congruent? Which triangle congruence theorem can you use? Explain.
.
.
.
May you also show the work? Please help. Thank you.
Answer:
x = 3
y = 8
Step-by-step explanation:
In the given triangle FGH,
m∠F + m∠G + m∠H = 180° [Triangle sum theorem]
60° + 90° + m∠H = 180°
m∠H = 30°
If the given triangles FGH and TUV are congruent, their corresponding sides will be equal in measure.
m∠F = m∠T
7y + 4 = 60°
7y = 56
y = 8
GH ≅ UV
8x - 12 = 12
8x = 24
x = 3
Using the AAS congruence theorem, the values of x and y that show that both triangles are congruent are: x = 3 and y = 8.
What is the AAS Congruence Theorem?According to the angle-angle-side congruence theorem (AAS), two triangles are congruent if they have two corresponding congruent angles and one pair of corresponding non-included sides that are congruent.
Thus, by the AAS theorem, we have:
8x - 12 = 12
8x = 12 + 12
8x = 24
x = 3
Also,
7y + 4 = 60
7y = 60 - 4
7y = 56
y = 8
Therefore, using the AAS congruence theorem, the values of x and y that show that both triangles are congruent are: x = 3 and y = 8.
Learn more about AAS congruence theorem on:
https://brainly.com/question/3168048
what number must you add to complete the square x^2+12x=40
Step-by-step explanation:
x²+12x=40
(x+6)²-6²-40=0
(x+6)²-76 = 0
What is the value of x?
2
3
6
7
Geometry B - 5.0 - Extended – 2
Answer:
I think 6.............,..........
An RLC series circuit has an applied voltage of 240 volts. R = 48 ohm, XL = 100 ohm, and XC = 36 ohm. What is the circuit impedance (Z)?
9514 1404 393
Answer:
48 +j64 ohms
Step-by-step explanation:
The impedance of a series circuit is the sum ...
R + jXl -jXc
= 48 +j100 -j36
= 48 +j64 . . . . ohms
_____
Additional comment
"j" is the electrical engineer's name for √-1, because "i" is used to represent current.
Use the definition of a Taylor series to find the first four nonzero terms of the series for f(x) centered at the given value of a.
f(x)= 7x e^x, a= 0
Hi there!
[tex]\large\boxed{p(x) = 7x + 7x^2 + \frac{7}{2}x^3 + \frac{7}{6}x^4}[/tex]
Recall a Taylor series centered at x = 0:
[tex]p(x) = f(0) + f'(0)(x) + \frac{f''(0)}{2}x^{2} + \frac{f'''(0)}{3!}x^{3} + ...+ \frac{f^n}{n!}x^n[/tex]
Begin by finding the derivatives and evaluate at x = 0:
f(0) = 7(0)e⁰ = 0
f'(x) = 7eˣ + 7xeˣ f'(0) = 7e⁰ + 7(0)e⁰ = 7
f''(x) = 7eˣ + 7eˣ + 7xeˣ f''(0) = 7(1) + 7(1) + 0 = 14
f'''(x) = 7eˣ + 7eˣ + 7eˣ + 7xeˣ f'''(0) = 21
f⁴(x) = 7eˣ + 7eˣ + 7eˣ + 7eˣ + 7xeˣ f⁴(0) = 28
Now that we calculated 4 non-zero terms, we can write the Taylor series:
[tex]p(x) = 0 + 7x + \frac{14}{2}x^2 + \frac{21}{3!}x^3 + \frac{28}{4!}x^4[/tex]
Simplify:
[tex]p(x) = 7x + 7x^2 + \frac{7}{2}x^3 + \frac{7}{6}x^4[/tex]
The programming code below shows an ''if-else'' function. After the code is run, the variable ''y'' is equal to _______.
int x, y;
x = 0; y = 0;
if (x < 0) { y = y + 1; }
else { y = y + 2; }
Answer:
2
Step-by-step explanation:
Since x=0, and it's not <0, the "else statement" is executed making y=0+2
There is a category called "computer and technology", maybe you can get better answers if you select that instead of "mathematics"
Sumas y restas w+y=9 3w-y=11
Answer:
w = 5
y = 4
Step-by-step explanation:
w+y=9
3w-y=11
4w = 20
w = 5
y = 4
Please help me and answer quick please
Answer:
b
Step-by-step explanation:
the function has exactly one x-intercept
3/8 + 1/4 + 1/2 - 2/3 =
Answer:
[tex]\frac{11}{24}[/tex]
Step-by-step explanation:
3/8 + 1/4 + 1/2 - 2/3
- > 1/4 = 2/8
3/8 + 2/8 + 1/2 - 2/3
5/8 + 1/2 - 2/3
- > 1/2 = 4/8
5/8 + 4/8 - 2/3
9/8 - 2/3
- > LCM of 8,3: 24
- > 9/8 = 27/24
- > 2/3 = 16/24
27/24 - 16/24
11/24
Hope this helps you.
Sketch the graph of each line.
7) 2x - y = -4
Answer:
check the attachment
Step-by-step explanation:
2x - y = - 4
- y = - 4 - 2x
y = 2x + 4
slope of the line = 2 with y - intercept 4
Jamal opens a savings account with a starting balance of $200 and plans to
deposit $75 each week after opening the account. His savings over time is
represented by the graph below. How would this graph change if Jamal
decided to deposit $100 each week instead?
the graph would steeper, meaning more savings over time
3/8-1/4=?
Answer ……..
Step 1: Find the LCD (Least Common Denominator)
The LCD between 4 and 8 is 8. Therefore, if I change all of the fractions to have a denominator of 8, the problem is as such:
3/8 - 2/8 = ?
Step 2: Subtract
3/8 - 2/8 = 1/8
Hope this helps!
Answer:
[tex]\frac{1}{8}[/tex] (1/8)
Step-by-step explanation:
1. The LCD & basics8·1=8
4·2=8
LCD=8
If the denominator is multiplied, the numerator also has to be multipled by the same value.
2. Solving[tex]\frac{3}{8} -\frac{2}{8} =\frac{1}{8}[/tex][tex]\frac{1}{8}[/tex]
Hope this helped! Please mark brainliest :)
How many x-intercepts are in the quadratic equation y = 7x2 − 2x − 1
Answer:
There are 2 x intercepts
Which statement about y=x^2-12x+35 is true?
A. The zeros are 7 and 5, because y=(x-7)(x-5)
B. The zeros are 7 and -5, because y=(x+7)(x-5)
c. The zeros are -7 and -5, because y=(x+7)(x+5)
D. The zeros are -7 and -5, because y=(x-7)(x-5)
Answer:The zeros are 7 and 5, because y=(x-7)(x-5)
Step-by-step explanation:
a circle has a radius that is 4 centimeters long. if a central angle has a measure of 3 radiants, what is the length of the arc that corresponds to the angle ?
A. 12 centimeters
B. 4 centimeters
C. 3 centimeters
D. 7 centimeters
Answer:
A number is right 12 centimetres
solve the inequality (3-z)/(z+1) ≥ 1 please show the steps and the interval notation. thank you!
Answer:
The solution (- infinity , 1].
Step-by-step explanation:
[tex]\frac{3 - z}{z + 1}\geq 1\\\\3 - z \geq z +1\\\\3-1 \geq2 z\\\\2 \geq 2 z\\\\z\leq 1[/tex]
So, the solution (- infinity , 1]