Answer:
[tex]5i\sqrt{2}[/tex]
Step-by-step explanation:
If we want to convert [tex]\sqrt{-50}[/tex] into a radical simplified, we need to find two numbers that multiply to be -50 and one of them can be squared.
[tex]\sqrt{-50} = \sqrt{-25 \cdot 2}[/tex]
The square root of -25 is 5i.
So:
[tex]5i\sqrt{2}[/tex]
Hope this helped!
Answer: [tex]=5i\sqrt{2}[/tex]
Step-by-step explanation:
[tex]\sqrt{-50}=\sqrt{-1}\sqrt{50}[/tex]
[tex]\sqrt{-1}\sqrt{50}[/tex]
[tex]\sqrt{5^2\cdot \:2}[/tex]
[tex]=\sqrt{2}\sqrt{5^2}[/tex]
[tex]\sqrt{5^2}=5[/tex]
[tex]=5\sqrt{2}[/tex]
(a) Five friends are in a netball squad. In each game during the 21-round season, at least 3 of them are picked in the team. Prove that there will be at least 3 matches in which the same three friends are selected to play.
(b) How does the answer change if there are six friends instead of 5?
PLS ANSWER FAST!!!!
Answer:
(a) there are 10 sets of 3 friends, so in 21 games, at least one set must show 3 times
(b) there are 20 sets of 3 friends, so in 21 games, at least one set must show 2 times.
Step-by-step explanation:
(a) The number of combinations of 5 things taken 3 at a time is ...
5C3 = 5!/(3!·2!) = 5·4/2 = 10
There can be 10 games in which the same 3 friends do not show up. There can be 10 more games such that the same 3 friends show up exactly twice. In the 21st game, some set of 3 friends must show up 3 times.
__
(b) The number of combinations of 6 things taken 3 at a time is ...
6C3 = 6!/(3!·3!) = 6·5·4/(3·2) = 20
Hence, there can be 20 games in which the same 3 friends do not show up. In the 21st game, some set of 3 friends will show up a second time.
A fair die is tossed once, what is the probability of obtaining neither 5 nor 2?
Answer:
4/6 or 66.666...%
Step-by-step explanation:
If you want to find the probability of obtaining neither a 5 nor a 2 you find how many times they occur and add them together in this case 5 occurs once and 2 also occurs once out of 6 numbers so 1/6 + 1/6 equals 2/6, you now know that 4/6 of them won't be a 5 nor a 2 and because it is a fair die the likelihood of it falling on a number is the same for all sides so the answer is 4/6 or 66.67%.
Choose the algebraic description that maps ΔABC onto ΔA′B′C′ in the given figure. Question 9 options:
A) (x, y) → (x, y – 6)
B) (x, y) → (x – 6, y)
C) (x, y) → (x, y + 6)
D) (x, y) → (x + 6, y)
Answer:
B) (x, y) → (x – 6, y)
Step-by-step explanation:
Each x-value in the image is 6 less than in the pre-image. Each y-value is the same. That means x gets mapped to x-6, and y gets mapped to y:
(x, y) → (x – 6, y)
Find the solution of the inequality 5 > r - 3.
A) r<2
B) r = 2
C) r=8
(D) r < 8
Answer:
[tex]\huge\boxed{r<8}[/tex]
Step-by-step explanation:
[tex]5 > r - 3[/tex]
Adding 3 to both sides
[tex]5 + 3 > r[/tex]
[tex]8 > r\\OR \\r < 8[/tex]
Answer: D. r<8
Step-by-step explanation:
[tex]5>r-3[/tex]
add 3 to both sides
[tex]r-3+3<5+3[/tex]
[tex]5+3=8[/tex]
simplify
[tex]r<8[/tex]
Take your time! :) Not important, but I would like to know, I'm writing flashcards so I can remember when I start back in school. Can you explain how to get the LCM of two numbers,GCF of two numbers, and what's the difference?
Answer:
The LCM of two numbers is the least common multiple. You want to find the least possible number that is divisible by the two numbers. So, you can list the factors of the two numbers. If there are factors that are repeated, put the repeated factors to the side. With the remaining factors, multiply the factors by each other and the repeated factors.
For example, let's try to find the least common multiple between 10 and 15.
Factors of 10: 2 * 5
Factors of 15: 3 * 5
The repeated factor is 5.
2 and 3 are left over. 2 * 3 = 6. 6 * 5 = 30. So, that is the least common multiple.
The GCF of two numbers is the greatest common factor. You want to find the greatest factor that is included in both numbers. So, again, you can list the factors of the two numbers and find the greatest factor that is repeated between the two numbers.
For example, let's try to find the greatest common factor between 30 and 45.
Factors of 30: 1, 2, 3, 5, 6, 10, 15, 30
Factors of 45: 1, 3, 5, 9, 15, 45
Between the two numbers, shared factors are 1, 3, 5, and 15. So, the greatest common factor is 15.
Hope this helps!
Figure out if the figure is volume or surface area.
(and the cut out cm is 4cm)
Answer:
Surface area of the box = 168 cm²
Step-by-step explanation:
Amount of cardboard needed = Surface area of the box
Since the given box is in the shape of a triangular prism,
Surface area of the prism = 2(surface area of the triangular bases) + Area of the three rectangular lateral sides
Surface area of the triangular base = [tex]\frac{1}{2}(\text{Base})(\text{height})[/tex]
= [tex]\frac{1}{2}(6)(4)[/tex]
= 12 cm²
Surface area of the rectangular side with the dimensions of (6cm × 9cm),
= Length × width
= 6 × 9
= 54 cm²
Area of the rectangle with the dimensions (9cm × 5cm),
= 9 × 5
= 45 cm²
Area of the rectangle with the dimensions (9cm × 5cm),
= 9 × 5
= 45 cm²
Surface area of the prism = 2(12) + 54 + 45 + 45
= 24 + 54 + 90
= 168 cm²
What is the value of the product (3 – 2i)(3 + 2i)?
Answer:
13
Step-by-step explanation:
(3 - 2i)(3 + 2i)
Expand
(9 + 6i - 6i - 4i^2)
Add
(9 - 4i^2)
Convert i^2
i^2 = ([tex]\sqrt{-1}[/tex])^2 = -1
(9 - 4(-1))
Add
(9 + 4)
= 13
Answer:
13.
Step-by-step explanation:
(3 - 2i)(3 + 2i)
= (3 * 3) + (-2i * 3) + (2i * 3) + (-2i * 2i)
= 9 - 6i + 6i - 4[tex]\sqrt{-1} ^{2}[/tex]
= 9 - 4(-1)
= 9 + 4
= 13
Hope this helps!
A normal distribution has a mean of 30 and a variance of 5.Find N such that the probability that the mean of N observations exceeds 30.5 is 1%.
Answer:
109
Step-by-step explanation:
Use a chart or calculator to find the z-score corresponding to a probability of 1%.
P(Z > z) = 0.01
P(Z < z) = 0.99
z = 2.33
Now find the sample standard deviation.
z = (x − μ) / s
2.33 = (30.5 − 30) / s
s = 0.215
Now find the sample size.
s = σ / √n
s² = σ² / n
0.215² = 5 / n
n = 109
For a certain instant lottery game, the odds in favor of a win are given as 81 to 19. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusive.
Answer: 0.81
Step-by-step explanation:
[tex]81:19\ \text{can be written as the fraction}\ \dfrac{81}{81+19}=\dfrac{81}{100}=\large\boxed{0.81}[/tex]
Find all values of x on the graph of f(x) = 2x3 + 6x2 + 7 at which there is a horizontal tangent line.
Answer:
the equation is not correct, u have to write like
ax'3+bx'2+cx+d
Answer:
x=-2 and x=0
Step-by-step explanation:
So I know it isn't x=-3 and x=0. So my guess is that it is x=0 and x=-2 and heres why.
First, I find the derivative of f(x)=2x^3+6x^2+7 which is 6x^2+12x
Then, I plugged in all the values of x's I had and I found out that you get 0 for -2 and 0 when you plug them in
So, in conclusion I believe the answer to be x=-2 and x=0
find the range of the inequality 2e-3< 3e-1
Answer:
[tex]x = { - 1, 0,1 ,2 ...}[/tex]
Step-by-step explanation:
[tex]2e - 3 < 3e - 1 = 2e - 3e < - 1 + 3 = - 1e < 2 = e > - 2[/tex]
Hope this helps ;) ❤❤❤
A soccer player has made 3 of her last 10 field goals, which is a field goal percentage of 30%. How many more consecutive field goals would she need to make to raise her field goal percentage to 50%?
Answer:
4 consecutive goals
Step-by-step explanation:
If 3 of last 10 field goals = 30%
Which is equivalent to
(Number of goals scored / total games played) * 100%
(3 / 10) * 100% = 30%
Number of consecutive goals one has to score to raise field goal to 50% will be:
Let y = number of consecutive goals
[(3+y) / (10+y)] * 100% = 50%
[(3+y) / (10+y)] * 100/100 = 50/100
[(3+y) / (10+y)] * 1 = 0.5
(3+y) / (10+y) = 0.5
3+y = 0.5(10 + y)
3+y = 5 + 0.5y
y - 0.5y = 5 - 3
0.5y = 2
y = 2 / 0.5
y = 4
Therefore, number of consecutive goals needed to raise field goal to 50% = 4
The odds in favor of a horse winning a race are 7:4. Find the probability that the horse will win the race.
Answer:
7/11 = 0.6363...
Step-by-step explanation:
7 + 4 = 11
probability of winning: 7/11 = 0.6363...
The probability that the horse will in the race is [tex]\mathbf{\dfrac{7}{11}}[/tex]
Given that the odds of the horse winning the race is 7:4
Assuming the ratio is in form of a:b, the probability of winning the race can be computed as:
[tex]\mathbf{P(A) = \dfrac{a}{a+b}}[/tex]
From the given question;
The probability of the horse winning the race is:
[tex]\mathbf{P(A) = \dfrac{7}{7+4}}[/tex]
[tex]\mathbf{P(A) = \dfrac{7}{11}}[/tex]
Learn more about probability here:
https://brainly.com/question/11234923?referrer=searchResults
Consider the surface f(x,y) = 21 - 4x² - 16y² (a plane) and the point P(1,1,1) on the surface.
Required:
a. Find the gradient of f.
b. Let C' be the path of steepest descent on the surface beginning at P, and let C be the projection of C' on the xy-plane. Find an equation of C in the xy-plane.
c. Find parametric equations for the path C' on the surface.
Answer:
A) ( -8, -32 )
Step-by-step explanation:
Given function : f (x,y) = 21 - 4x^2 - 16y^2
point p( 1,1,1 ) on surface
Gradient of F
attached below is the detailed solution
99 litres of gasoline oil is poured into a cylindrical drum of 60cm in diameter. How deep is the oil in the drum?
Answer:
35 cm
Step-by-step explanation:
The volume of a cylinder is given by ...
V = πr²h
We want to find h for the given volume and diameter. First, we must convert the given values to compatible units.
1 L = 1000 cm³, so 99 L = 99,000 cm³
60 cm diameter = 2 × 30 cm radius
So, we have ...
99,000 cm³ = π(30 cm)²h
99,000/(900π) cm = h ≈ 35.01 cm
The oil is 35 cm deep in the drum.
anyone can help me with these questions?
please gimme clear explanation :)
Step-by-step explanation:
The limit of a function is the value it approaches.
In #37, as x approaches infinity (far to the right), the curve f(x) approaches 1. As x approaches negative infinity (far to the left), the curve f(x) approaches -1.
lim(x→∞) f(x) = 1
lim(x→-∞) f(x) = -1
In #38, as x approaches infinity (far to the right), the curve f(x) approaches 2. As x approaches negative infinity (far to the left), the curve f(x) approaches -3.
lim(x→∞) f(x) = 2
lim(x→-∞) f(x) = -3
A survey asked, "How many tattoos do you currently have on your body?" Of the males surveyed, responded that they had at least one tattoo. Of the females surveyed, responded that they had at least one tattoo. Construct a % confidence interval to judge whether the proportion of males that have at least one tattoo differs significantly from the proportion of females that have at least one tattoo. Interpret the interval.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The 95% interval for [tex]p_1 - p_2[/tex] is [tex]-0.0171 ,0.0411[/tex]
Option A is correct
Step-by-step explanation:
From the question we are told that
The sample size of male is [tex]n_1 = 1211[/tex]
The number of males that said they have at least one tattoo is [tex]r = 182[/tex]
The sample size of female is [tex]n_2 = 1041[/tex]
The number of females that said they have at least one tattoo is [tex]k = 144[/tex]
Generally the sample proportion of male is
[tex]\r p_1 = \frac{r}{ n_1}[/tex]
substituting values
[tex]\r p_1 = \frac{ 182}{1211}[/tex]
[tex]\r p_1 = 0.1503[/tex]
Generally the sample proportion of female is
[tex]\r p_2 = \frac{k}{ n_2}[/tex]
substituting values
[tex]\r p_2 = \frac{ 144}{1041}[/tex]
[tex]\r p_2 = 0.1383[/tex]
Given that the confidence level is 95% then the level of significance is mathematically represented as
[tex]\alpha =100-95[/tex]
[tex]\alpha =5\%[/tex]
[tex]\alpha =0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table , the value is
[tex]Z_\frac{\alpha }{2} = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \sqrt{\frac{\r p_1 (1- \r p_1)}{n_1} + \frac{\r p_2 (1- \r p_2)}{n_2} }[/tex]
substituting values
[tex]E = 1.96 * \sqrt{\frac{ 0.1503 (1- 0.1503)}{1211} + \frac{0.1383 (1- 0.1383)}{1041} }[/tex]
[tex]E = 0.0291[/tex]
The 95% confidence interval is mathematically represented as
[tex](\r p_1 - \r p_2 ) - E < p_1-p_2 < (\r p_1 - \r p_2 ) + E[/tex]
substituting values
[tex](0.1503- 0.1383 ) - 0.0291 < p_1-p_2 < (0.1503- 0.1383 ) + 0.0291[/tex]
[tex]-0.0171 < p_1-p_2 < 0.0411[/tex]
So the interpretation is that there is 95% confidence that the difference of the proportion is in the interval .So conclude that there is insufficient evidence of a significant difference in the proportion of male and female that have at least one tattoo
This because the difference in proportion is less than [tex]\alpha[/tex]
Please answer this correctly without making mistakes
Answer:
355/12
Step-by-step explanation:
Answer:
355/12mi
Step-by-step explanation:
9 1/2 = 19/2
20 1/12 = 241/12
19/2 + 241/12 = 355/12mi
A work shift for an employee at Starbucks consists of 8 hours (whole).
What FRACTION (part) of the employees work shift is represented by 2
hours? *
Answer:
1/4 of an hour
Step-by-step explanation:
2 divided by 8 = 1/4
Answer:
1/4
Step-by-step explanation:
A whole shift is 8 hours
Part over whole is the fraction
2/8
Divide top and bottom by 2
1/4
find the 5th term in the sequence an=n÷n+1
Answer:
The 5th term of a sequence is defined as the term with n = 5. So for this sequence, a sub 5 = 5/6
Oregon State University is interested in determining the average amount of paper, in sheets, that is recycled each month. In previous years, the average number of sheets recycled per bin was 59.3 sheets, but they believe this number may have increase with the greater awareness of recycling around campus. They count through 79 randomly selected bins from the many recycle paper bins that are emptied every month and find that the average number of sheets of paper in the bins is 62.4 sheets. They also find that the standard deviation of their sample is 9.86 sheets. What is the value of the test-statistic for this scenario
Answer:
The test statistic is [tex]t = 2.79[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 59.3[/tex]
The sample size is [tex]n = 79[/tex]
The sample mean is [tex]\= x = 62.4[/tex]
The standard deviation is [tex]\sigma = 9.86[/tex]
Generally the test statistics is mathematically represented as
[tex]t = \frac{\= x - \mu }{ \frac{ \sigma}{ \sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 62.2 - 59.3 }{ \frac{ 9.86}{ \sqrt{ 79} } }[/tex]
[tex]t = 2.79[/tex]
AB is dilated from the origin to create A'B' at A' (0, 8) and B' (8, 12). What scale factor was AB dilated by?
Answer:
4
Step-by-step explanation:
Original coordinates:
A (0, 2)
B (2, 3)
The scale is what number the original coordinates was multiplied by to reach the new coordinates
1. Divide
(0, 8) ÷ (0, 2) = 4
(8, 12) ÷ (2, 3) = 4
AB was dilated by a scale factor of 4.
2/5 ( 1/3 x− 15/8 )− 1/3 ( 1/2 − 2/3 x)
Answer:
16/45x-11/12
Step-by-step explanation:
Multiply across
2/15x-30/40-1/6+2/9x=
Get common denominators of like terms
6/45x+10/45x-9/12-2/12=
Combine like terms
16/45x-11/12
The simplified expression is: (16/45)x - (11/12)
To simplify the given expression, we'll follow the steps:
Step 1: Distribute the fractions through the parentheses.
Step 2: Simplify the expression by combining like terms.
Let's proceed with the simplification:
Step 1: Distribute the fractions through the parentheses:
2/5 * (1/3x - 15/8) - 1/3 * (1/2 - 2/3x)
Step 2: Simplify the expression:
To distribute 2/5 through (1/3x - 15/8):
2/5 * 1/3x = 2/15x
2/5 * (-15/8) = -15/20 = -3/4
So, the first part becomes: 2/15x - 3/4
To distribute -1/3 through (1/2 - 2/3x):
-1/3 * 1/2 = -1/6
-1/3 * (-2/3x) = 2/9x
So, the second part becomes: -1/6 + 2/9x
Now, the entire expression becomes:
2/15x - 3/4 - 1/6 + 2/9x
Step 3: Combine like terms:
To combine the terms with "x":
2/15x + 2/9x = (2/15 + 2/9)x
Now, find the common denominator for (2/15) and (2/9), which is 45:
(2/15 + 2/9) = (6/45 + 10/45) = 16/45
So, the combined x term becomes:
(16/45)x
Now, combine the constant terms:
-3/4 - 1/6 = (-18/24 - 4/24) = -22/24
To simplify -22/24, we can divide both numerator and denominator by their greatest common divisor (which is 2):
-22 ÷ 2 = -11
24 ÷ 2 = 12
So, the combined constant term becomes:
(-11/12)
Putting it all together, the simplified expression is:
(16/45)x - (11/12)
To know more about expression:
https://brainly.com/question/33660485
#SPJ2
Complete question is:
Simplify the given expression: 2/5 ( 1/3 x− 15/8 )− 1/3 ( 1/2 − 2/3 x)
Which of the following is an even function? f(x) = (x – 1)2 f(x) = 8x f(x) = x2 – x f(x) = 7
Answer:
f(x) = 7
Step-by-step explanation:
f(x) = f(-x) it is even
-f(x)=f(-x) it is odd
f(x) = (x – 1)^2 neither even nor odd
f(x) = 8x this is a line odd functions
f(x) = x^2 – x neither even nor odd
f(x) = 7 constant this is an even function
Answer:
answer is f(x)= 7
Step-by-step explanation:
just took edge2020 test
consider the bevariate data below about Advanced Mathematics and English results for a 2015 examination scored by 14 students in a particular school.The raw score of the examination was out of 100 marks.
Questions:
a)Draw a scatter graph
b)Draw a line of Best Fit
c)Predict the Advance Mathematics mark of a student who scores 30 of of 100 in English.
d)calculate the correlation using the Pearson's Correlation Coefficient Formula
e) Determine the strength of the correlation
Answer:
Explained below.
Step-by-step explanation:
Enter the data in an Excel sheet.
(a)
Go to Insert → Chart → Scatter.
Select the first type of Scatter chart.
The scatter plot is attached below.
(b)
The scatter plot with the line of best fit is attached below.
The line of best fit is:
[tex]y=-0.8046x+103.56[/tex]
(c)
Compute the value of x for y = 30 as follows:
[tex]y=-0.8046x+103.56[/tex]
[tex]30=-0.8046x+103.56\\\\0.8046x=103.56-30\\\\x=\frac{73.56}{0.8046}\\\\x\approx 91.42[/tex]
Thus, the Advance Mathematics mark of a student who scores 30 out of 100 in English is 91.42.
(d)
The Pearson's Correlation Coefficient is:
[tex]r=\frac{n\cdot \sum XY-\sum X\cdot \sum Y}{\sqrt{[n\cdot \sum X^{2}-(\sum X)^{2}][n\cdot \sum Y^{2}-(\sum Y)^{2}]}}[/tex]
[tex]=\frac{14\cdot 44010-835\cdot 778}{\sqrt{[14\cdot52775-(825)^{2}][14\cdot 47094-(778)^{2}]}}\\\\= -0.7062\\\\\approx -0.71[/tex]
Thus, the Pearson's Correlation Coefficient is -0.71.
(e)
A correlation coefficient between ± 0.50 and ±1.00 is considered as a strong correlation.
The correlation between Advanced Mathematics and English results is -0.71.
This implies that there is a strong negative correlation.
g A random sample of size 16 taken from a normally distributed population revealed a sample mean of 50 and a sample variance of 36. The upper limit of a 95% confidence interval for the population mean would equal:
Answer:
The upper limit is
[tex]k = 52.94[/tex]
Step-by-step explanation:
From the question we told that
The sample size is [tex]n = 16[/tex]
The sample mean is [tex]\= x = 50[/tex]
The sample variance is [tex]\sigma ^2 = 36[/tex]
For a 95% confidence interval the confidence level is 95%
Given that the confidence level is 95% then the level of significance is mathematically evaluated as
[tex]\alpha = 100 - 95[/tex]
[tex]\alpha = 5 \%[/tex]
[tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table(reference- math dot armstrong dot edu), the value is
[tex]Z_{\frac{ \alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }[/tex]
Here [tex]\sigma[/tex] is the standard deviation which is mathematically evaluated as
[tex]\sigma = \sqrt{\sigma^2}[/tex]
substituting values
[tex]\sigma = \sqrt{36}[/tex]
=> [tex]\sigma = 6[/tex]
So
[tex]E = 1.96 * \frac{6}{\sqrt{16} }[/tex]
[tex]E = 2.94[/tex]
The 95% confidence interval is mathematically represented as
[tex]\= x - E < \mu < \= x + E[/tex]
substituting values
[tex]50 -2.94 < \mu <50 +2.94[/tex]
[tex]47.06 < \mu <52.94[/tex]
The upper limit is
[tex]k = 52.94[/tex]
If f(x) = 2x2 – 3x – 1, then f(-1)=
The value of function at x= -1 is f(-1) = 4.
We have the function as
f(x) = 2x² - 3x -1
To find the value of f(-1) when f(x) = 2x² - 3x -1, we substitute x = -1 into the expression:
f(-1) = 2(-1)² - 3(-1) - 1
= 2(1) + 3 - 1
= 2 + 3 - 1
= 4.
Therefore, the value of function at x= -1 is f(-1) = 4.
Learn more about Function here:
https://brainly.com/question/32020999
#SPJ6
Let f(x) = x - 1 and g(x) = x^2 - x. Find and simplify the expression. (f + g)(1) (f +g)(1) = ______
Answer:
The simplified answer of the given expression is 1.
Step-by-step explanation:
When you see (f + g)(x), then it means that you are going to add f(x) and g(x) together. So, we are going to add the terms together that are given in the problem. We are also given the value of x which is 1. So, we are going to combine this information together so we can simplify the expression.
(f + g)(1)
f(x) = x - 1
g(x) = x²
(f + g)(1) = (1 - 1) + (1²)
Simplify the terms in the parentheses.
(f + g)(1) = 0 + 1
Add 0 and 1.
(f + g)(1) = 1
So, (f + g)(1) will have a simplified answer of 1.
evaluate the expression 4x^2-6x+7 if x = 5
Answer:
77
Step-by-step explanation:
4x^2-6x+7
Let x = 5
4* 5^2-6*5+7
4 * 25 -30 +7
100-30+7
7-+7
77
What is 5 feet and 11 inches in inches
Answer:
60
Step-by-step explanation:
5 is 60 inch