Answer: [tex]9a+14[/tex]
Step-by-step explanation:
Simplify: [tex]4(a+1)+5(a+2)[/tex]
Step 1. Distribute 4 into a and 1. By distributing you would get 4a and 4.
[tex]4*a=4a. \\4*1=4[/tex]
Step 2. Plug 4a+4 back into the remaining equation, which can be viewed below:
[tex]4a+4+5(a+2)[/tex]
Step 3. Distribute, [tex]5(a+2)[/tex] again. Same principle as what you did previously. You should get 5a and 10.
[tex]5*a=5a.\\5*2=10.[/tex]
Step 4. Plug 5a+10 back into the leftover equation, which is as follows.
[tex]4a+4+5a+10[/tex]
Step 5. Combine like terms. Which is broken down below,
[tex]4a+5a=9a.\\4+10=14.[/tex]
Once you're done combining like terms, you'll get the simplified answer which is: [tex]9a+14[/tex]
Answer:
9a +14
Step-by-step explanation:
4(a + 1) + 5(a + 2)
Distribute
4a+4 +5a+10
Combine like terms
4a+5a +4+10
9a +14
if i pay 15300 interest capital on a loan for 25 years how much will i pay?
Answer:
i dont know soory
Step-by-step explanation:
The diagram shows APQR. Which term describes point S?
Answer:
c) centroid
Step-by-step explanation:
add 10 and g, then subtract f from the result
Answer:
(10+g) -f
Step-by-step explanation:
Add 10 and g
10 +g
Subtract f from the result
(10+g) -f
Please I need the answer ASAP!!!!
Step-by-step explanation:
D
*not sure about this answer pls tell me i ak right or wrong
PLEASE ANSWER
The distance from the vertex of the curve to the focus is equal to _____.
Here’s the options
the distance from the vertex to the directrix
the distance from the vertex to the y-axis
the distance from the vertex to the origin
a constant
Answer:
The distance from the vertex to the directrix.
Step-by-step explanation:
According to this question, we are speaking about a parabola, which has the characteristic that the distance from the vertex to the focus is equal to the least distance from the vertex to the directrix.
Hence, the right answer is: The distance from the vertex to the directrix.
A prism and two nets are shown below: Prism 1 E 3 Net A Net Part A: Which is the correct net for the prism? Explain your answer. (2 points) Part B: Write the measurements of Sides AB. BC, and CD of the correct net. (4 points) Part C: What is the surface area of the prism? Show your work. (4 points)
Answer:
A) Net A (see explanation)
B) AB = 3 in. | BC = 5 in. | CD = 7.2 in.
C) SA = 98.4 in²
Step-by-step explanation:
Part A
Net A is the correct net for the prism. If you look at the way the folds are, the flaps on the top and bottom would fold up to make the side of the prism. On net B, the flaps wouldn’t fit the shape correctly.
Part B
AB = This is the height of the prism.
= 3 in.
BC = This is the slant on the front of the prism.
= 5 in.
CD = This is the length of the prism.
= 7.2 in.
Part C
* First we’ll solve for the two triangles. They are the same shape and size, so we just need to solve one then duplicate it.
One triangle:
A = 1/2bh
= 1/2 (4) (3)
= 6 in²
Back rectangle:
A = bh
= 7.2 (3)
= 21.6 in²
Front rectangle:
A = bh
= 7.2 (5)
= 36 in²
Bottom rectangle:
A = bh
= 7.2 (4)
= 28.8 in²
Total:
A = 6 + 6 + 21.6 + 36 + 28.8
= 98.4 in²
Suppose that one state’s license plates consist of 1 digit followed by 4 letters followed by 2 digits. How many such plates can the state issue?
Answer:
The state can issue 456,976,000 license plates.
Step-by-step explanation:
For digits, it is assumed that we can use 0-9. Thus, there are 10 options for each slot with a digit.
For letters, it is assumed that we can use the 26 letters of the alphabet (i.e. A through Z). Thus, there are 26 options for each slot with a letter.
For this particular problem, the slot method can be used. Assuming that repetition of letters/digits is allowed:
[tex]\frac{10}[/tex] [tex]\frac{26}[/tex] [tex]\frac{26}[/tex] [tex]\frac{26}[/tex] [tex]\frac{26}[/tex] [tex]\frac{10}[/tex] [tex]\frac{10}[/tex]
= 10*26*26*26*26*10*10
=456,976,000.
Therefore, the state can issue 456,976,000 license plates.
In ∆ ABC,AD is the altitude from A to BC .Angle B is 48°,angle C is 52° and BC is 12,8 cm. Determine the length of AD
9514 1404 393
Answer:
7,6 cm
Step-by-step explanation:
The law of sines can be used to find the length AB.
AB/sin(C) = BC/sin(A)
A = 180° -48° -52° = 80°
AB = BC·sin(C)/sin(A) = 12,8·sin(52°)/sin(80°)
The sine function can be used to find AD from AB.
AD/AB = sin(48°)
AD = AB·sin(48°) = 12,8·sin(48°)sin(52°)/sin(80°)
AD ≈ 7,61 cm
__
The dimension of interest is ha in the attachment, the height from vertex A.
Given f (x) = 3x - 5 find f (x - 2)
Answer:
3x-11
Step-by-step explanation:
f (x) = 3x - 5
f(x-2)
Replace x in the function with x-2
f (x-2) = 3(x-2) - 5
=3x-6 -5
=3x-11
If y varies inversely with the square of x, and y = 26 when x = 4, find y when x = 2.
A. 13
B. 52
C. 208
D. 104
Answer:
D. 104
Step-by-step explanation:
[tex]y \: \alpha \: \frac{1}{ {x}^{2} } \\ \\ y = \frac{k}{ {x}^{2} } [/tex]
when y is 26, x is 4:
[tex]26 = \frac{k}{ {(4)}^{2} } \\ k = 416[/tex]
when x is 2:
[tex]y = \frac{416}{ {x}^{2} } \\ \\ y = \frac{416}{ {(2)}^{2} } \\ y = 104[/tex]
Answer:
D; 104
This is the correct answer
3/4 of the households in a rural area have pets. how many households have pets in this area if there are 1500 total households
Answer:
1,125 households would have pets in the area.
Step-by-step explanation:
We have 1,500 total households. We also know that 3/4 (or 0.75) of these households have pets. We would multiply 1,500 by 0.75 (which is equal to 3/4), resulting in 1,125. Therefore, 1,125 households would have pets in the area.
Answer:
1125 households
Step-by-step explanation:
3/4 of total households in area = # of households that have pets in the area
3/4 of 1500 = # of households that have pets in the area
3/4 · 1500 = # of households that have pets in the area
75/100 · 1500 = # of households that have pets in the area
0.75 · 1500 = 1125
1125 households
NO LINKS OR ANSWERING WHAT YOU DON'T KNOW. THIS IS NOT A TEST OR AN ASSESSMENT!!!. Please help me with these math questions. Chapter 10 part 2
3. How do solving for solving to a rational function differ from solving for solutions to a rational inequality? How they are similar?
4. How is the difference quotient of a function determined? And how is the difference quotient related to the secant line? Is there a pattern for the difference quotient of linear functions?
9514 1404 393
Answer:
3. sign changes in the denominator need to be taken into account
4. difference quotient: (f(x+h) -f(x))/h; It is the slope of the secant line. For linear functions, the slope is constant, as is the difference quotient.
Step-by-step explanation:
3. When solving the equation f(x) = 0, where f(x) is a rational function, only the numerator zeros need to be considered.
When solving the inequality f(x) ≤ 0, or f(x) < 0, both numerator and denominator zeros need to be considered. As with solving any inequality, multiplying or dividing by a negative number changes the sense of the comparison.
Example
f(x) = x/(x-2) changes sign at both x=0 and x=2. Then three regions need to be considered when solving f(x) < 0. Those are x < 0, 0 < x < 2, and 2 < x.
__
4. The difference quotient is defined as ...
dq = (f(x +h) -f(x))/h
The difference quotient is essentially the average slope between (x, f(x)) and (x+h, f(x+h)). That is, it is the slope of the secant line between those two points.
For linear functions, the slope is a constant. The difference quotient is a constant equal to the slope of the line.
Example
f(x) = ax +b . . . . . a linear function with a slope of 'a'
The difference quotient is ...
(f(x+h) -f(x))/h = ((a(x+h)+b) -(ax+b))/h = (ax+ah+b -ax -b)/h = ah/h = a
The difference quotient is the slope of the line.
What is 9,000,000 + 8,000 + 90,000,000 + 100 + 2 + 90,000 + 90 in standard form?
Answer:
9×10^7 + 9×10^6 + 9×10^4 + 8×10^3 + 1 ×10^2 + 9×10 + 2
please mark this answer as brainlist
Angles 1 and 2 form a linear pair and the measure of angle two is 22 more than 4 times of the measure of angle 1. What degrees is angle 2
Answer:
m<2= 148.4
Step-by-step explanation:
A linear pair means that both angles add to 180.
m<2 = 4*m<1 +22
Together
m1 + m2 = 180
Put the value for m<2 into the above equation
m<1 + 4*m<1 + 22 = 180 Combine like terms\
5m<1 + 22 = 180 Subtract 22
5m<1 = 180 - 22
5m<1 = 158 Divide by 5
m<1 = 158/5
m<1 = 31.6
m<2 = 4*31.6 + 22
m<2 = 138.4
Suppose an average student can answer 6 homework questions in 30 minutes. If X follows an exponential distribution and measures the length of time between starting two homework questions. What is the value of μ?
Answer:
10
Step-by-step explanation:
Make a ratio like
6 : 30
2 : x
Then cross multiple
6x = 60
Make x subject formula
x = 10
I hope it helped
What are the measures of Angles a,b, and c? show your work and explain your answers.
Answer:
a=35
b=55
c=110
Step-by-step explanation:
a=35
Opposite angles which are non-adjacent angles formed by two intersecting lines are equal
b+35+90=180 sum of interior angle of a triangle equal to 180
b=180-125
=55
c+70=180 Angles on a straight line add up to 180°
c=180-70
=110
what is the value of g
Answer:
the value of g is gram .
may this answer is helpful for you
I need help with these questions
9514 1404 393
Answer:
17. 25 mile per gallon
18. Eduardo did should have divided by -4.
Step-by-step explanation:
17. The least mileage will be had when the most gas is used to go a given distance. For the given distance, the most gas that could have been used (without adding any) is 18 gallons. Then the least mileage is ...
(450 mi)/(18 gal) = 25 mi/gal
__
18. The appropriate method for solving this inequality is ...
-4x/(-4) < 120/(-4) . . . . divide both sides by -4 (and reverse the > symbol)
x < -30
The step Eduardo took of adding 4 will give ...
-4x +4 > 124 . . . . . puts him one step farther away from a solution
Eduardo chose an operation to perform that did not get him closer to a solution.
what is the least common factor for 9 8 7
Answer:504
This is the answer
504
What percent is modeled by the grid?
A grid model with 100 squares. 33 squares are shaded.
23%
30%
33%
40%
Answer
33 percent
Step-by-step explanation:
Answer:
33 squares are shaded 23%
Step-by-step explanation:
I hope this answer works out for you if it doesn't I'm really sorry have a great day
the cost of using 19 hcf of water is $36.48 and the cost of using 32 hcf is 56.63 what is the cost of using 28 hcf of water?
Answer:
$54.32
Step-by-step explanation:
19=$36.48/19 =1.94
1=$1.94 * 28= 54.32
28=54.32
Graph the function g(x) = 3^x + 3 and give its domain and range using interval notation.
When a function is plotted on a graph, the domain and the range of the function are the x-coordinate and the y-coordinate respectively.
The domain and the range of the given function are:
Domain: [tex](-\infty,\infty)[/tex]
Range: [tex](3,\infty)[/tex]
The given function is:
[tex]g(x) = 3^x + 3[/tex]
First, we plot the graph of g(x)
To do this, we need to generate values for x and g(x). The table is generated as follows:
[tex]x = 0 \to g(0) = 3^0 + 3 = 4[/tex]
[tex]x = 1 \to g(1) = 3^1 + 3 = 6[/tex]
[tex]x = 2 \to g(2) = 3^2 + 3 = 12[/tex]
[tex]x = 3 \to g(3) = 3^3 + 3 = 30[/tex]
[tex]x = 4 \to g(4) = 3^4 + 3 = 84[/tex]
The generated values in tabular form are:
[tex]\begin{array}{cccccc}x & {0} & {1} & {2} & {3} & {4} \ \\ g(x) & {4} & {6} & {12} & {30} & {84} \ \end{array}[/tex]
Refer to the attached image for graph of g(x)
To determine the domain, we simply observe the x-axis.
The curve stretches through the x-axis, and there are no visible endpoints on the axis. This means that the curve starts from [tex]-\infty[/tex] to [tex]+\infty[/tex]
Hence, the domain of the function is: [tex](-\infty,\infty)[/tex]
To determine the range, we simply observe the y-axis.
The curve of g(x) starts at y = 3 on the y-axis and the curve faces upward direction. This means that the curve of g(x) is greater than 3 on the y-axis.
Hence, the range of the function is: [tex](3,\infty)[/tex]
Read more at:
https://brainly.com/question/13824428
Function: [tex]g(x) = 3^{x} + 3[/tex]. Domain: [tex]Dom \{g(x)\} = \mathbb{R}[/tex], Range: [tex]Ran \{g(x) \} = (3, +\infty)[/tex], respectively.
In Function Theory, the domain of a function [tex]f(x)[/tex] represents the set of values of the independent variable ([tex]x[/tex]), whereas the range of the function is the set of values of the dependent variable.
The Domain of the Function represents the set of values of [tex]x[/tex] (horizontal axis), whereas the Range it is the set of values of [tex]y[/tex] (vertical axis). After analyzing the existence of Asymptotes, we complement with graphic approaches and conclude where domain and range (in Interval notation) are.
Analytically speaking, the domain of exponential functions is the set of all real numbers and the range of [tex]g(x)[/tex] is any number between [tex]\lim_{x \to -\infty} g(x)[/tex] and [tex]\lim_{x \to +\infty} g(x)[/tex]. In a nutshell, we get the following conclusions in interval notation:
Domain: [tex]Dom \{g(x)\} = (-\infty, +\infty)[/tex], Range: [tex]Ran \{g(x) \} = (3, +\infty)[/tex]
Lastly, we proceed to complement this analysis by graphing function with the help of a graphing tool.
According to the image, domain and range coincides with outcomes from analytical approaches.
Need the value of P please
Answer:
B. 35°
Step-by-step explanation:
First, find the two interior angles that are adjacent to angles 90° and 125° respectively.
Thus:
Interior angle 1: 180° - 90° = 90° (linear pair)
Interior angle 2: 180° - 125° = 55° (linear pair)
P + 90° + 55° = 180° (sum of interior angles in a triangle)
P + 145° = 180°
Subtract 145° from each side
P = 180° - 145°
P = 35°
find an odd natural numbers x such that LCM (x, 40) = 1400
Answer:
175
Step-by-step explanation:
so, the LCM is the combination of the longest chains of the prime factors in every number.
40 : 2, 2, 2, 5
1400 / 40 = 35
35 : 5, 7
but LCM(35, 40) = 2×2×2×5×7 = 280
and not 1400.
what is missing ?
1400 / 280 = 5
aha, another prime factor 5 is missing to get 1400.
x : 5, 5, 7
so, x = 5×5×7 = 175
LCM(175, 40) = 2×2×2×5×5×7 = 1400
Which proportion could be used to determine if the figure ms represent a dilation
Step-by-step explanation:
Three-halves = 4 = 6
HOPE SO IT HELP'S YOU
Can someone help me with this
Answer:
Step-by-step explanation:
If two triangles have two congruent sides and a congruent non included angle, then triangles are not necessarilly congruent.
HELP SOMEONE FOR 20 POINTS
Twice a certain number is subtracted from 9 times the number. The result is 21. Find the number.
Answer:
3
Step-by-step explanation:
Let x represent the number.
Create an equation to represent the situation, and solve for x:
9x - 2x = 21
7x = 21
x = 3
So, the number is 3.
Find x. Round your answer to the nearest tenth of a degree.
Answer: x=52.6°
Step-by-step explanation:
To find the value of x, we have to use our SOHCAHTOA. We can eliminate sine and cosine because both uses hypotenuse, which is not labelled. Therefore, we use tangent.
[tex]tan(x)=\frac{17}{13}[/tex]
To find x, we want to use inverse tangent.
[tex]x=tan^{-1}(\frac{17}{13} )[/tex] [plug into calculator]
[tex]x=52.6[/tex]
Now, we know that x=52.6°.
Four spinners are spun. Spinner 1 has outcomes Spinner 2 has outcomes Spinner 3 has outcomes Spinner 4 has outcomes The outcomes for each spinner are equally likely. is the sum of the numbers that come up on the spinners. What is the expected value of
Complete Question
Four spinners are spun. Spinner 1 has outcomes {1,2,3,4,5,6,7,8} Spinner 2 has outcomes {1,2,3,4,5,6} Spinner 3 has outcomes {1,2,3,4,5,6} Spinner 4 has outcomes {1,2,3,4,5} The outcomes for each spinner are equally likely. S is the sum of the numbers that come up on the spinners. What is the expected value of S?
Answer:
[tex]E(s)=14.5[/tex]
Step-by-step explanation:
From the question we are told that:
Spinner 1 ={1,2,3,4,5,6,7,8}
Spinner 2= {1,2,3,4,5,6}
Spinner 3 = {1,2,3,4,5,6}
Spinner 4 {1,2,3,4,5}
Generally the equation for expected outcome is mathematically given by
[tex]E(s)=\sum P(x).x[/tex]
Where
[tex]x=\frac{n(n+1)}{2}[/tex]
For Spinner 1
[tex]E(s_1)=\sum \frac{1}{8}*\frac{8(8+1)}{2}[/tex]
[tex]E(s_1)=4.5[/tex]
For Spinner 2
[tex]E(s_2)=\sum \frac{1}{6}*\frac{6(6+1)}{2}[/tex]
[tex]E(s_2)=3.5[/tex]
For Spinner 3
[tex]E(s_2)=E(s_3)[/tex]
For Spinner 3
[tex]E(s_4)=\sum \frac{1}{6}*\frac{6(6+1)}{2}[/tex]
[tex]E(s_4)=3[/tex]
Therefore The Expected Value
[tex]E(s)=\sum E(s 1..4)[/tex]
[tex]E(s)=4.5+2(3.5)+3[/tex]
[tex]E(s)=14.5[/tex]