Answer:
x = 6
Step-by-step explanation:
In the third line of the solution on right side of the equal sign, middle term should be 8x instead of 4x.
The final value of x will be 6.
[tex] PQ^2 + QO^2 = PO^2 \\
x^2 + 8^2 = (4+x)^2 \\
x^2 + 64 = 16 + 8x + x^2 \\
64 = 16 + 8x \\
64 - 16 = 8x \\
48 = 8x \\
6 = x\\[/tex]
While walking from the car into your dormitory you dropped your engagement ring somewhere in the snow. The path is 30 feet long. You are distraught because the density of its location seems to be constant along this 30-foot route. a) What is the probability that the ring is within 12 feet of your car
Answer:
0.4
Step-by-step explanation:
we are required to find the probability that the ring is within 12 meters from nthe car.
we start by defining a random variable x to be the distance from the car. the car is the starting point.
x follows a normal distribution (0,30)
[tex]f(x)=\frac{1}{30}[/tex]
[tex]0<x<30[/tex]
probabilty of x ≤ 12
= [tex]\int\limits^a_ b{\frac{1}{30} } \, dx[/tex]
a = 12
b = 0
[tex]\frac{1}{30} *(12-0)[/tex]
[tex]\frac{12}{30} = 0.4[/tex]
therefore 0.4 is the probability that the ring is within 12 feet of your car.
PLEASE HELP!! (1/5) -50 POINTS-
Answer:
[tex]X=\begin{bmatrix}5&3\\ -3&2\end{bmatrix}[/tex]
Step-by-step explanation:
We are given the following matrix equation, from which we have to isolate X and simplify this value.
[tex]\begin{bmatrix}2&4\\ \:\:\:5&4\end{bmatrix}X\:+\:\begin{bmatrix}-8&-8\\ \:\:\:12&1\end{bmatrix}=\:\begin{bmatrix}-10&6\\ \:\:\:25&24\end{bmatrix}[/tex]
To isolate X, let us first subtract the second matrix, as demonstrated below, from either side. Further simplifying this equation we can multiply either side by the inverse of the matrix being the co - efficient of X, isolating it in the doing.
[tex]\begin{bmatrix}2&4\\ 5&4\end{bmatrix}X=\begin{bmatrix}-10&6\\ 25&24\end{bmatrix}-\begin{bmatrix}-8&-8\\ 12&1\end{bmatrix}[/tex] (Simplify second side of equation)
[tex]\begin{bmatrix}-10&6\\ 25&24\end{bmatrix}-\begin{bmatrix}-8&-8\\ 12&1\end{bmatrix}=\begin{bmatrix}\left(-10\right)-\left(-8\right)&6-\left(-8\right)\\ 25-12&24-1\end{bmatrix}=\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}[/tex] ,
[tex]\begin{bmatrix}2&4\\ 5&4\end{bmatrix}X=\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}[/tex] (Multiply either side by inverse of matrix 1)
[tex]X=\begin{bmatrix}2&4\\ 5&4\end{bmatrix}^{-1}\begin{bmatrix}-2&14\\ 13&23\end{bmatrix}=\begin{bmatrix}5&3\\ -3&2\end{bmatrix}[/tex]
Our solution is hence option c
Evaluate 3h(2) + 2k(3) =
Answer:
6h + 6kStep-by-step explanation:
[tex]3h\left(2\right)+2k\left(3\right)\\\\\mathrm{Remove\:parentheses}:\quad \left(a\right)=a\\\\=3h\times \:2+2k\times \:3\\\\\mathrm{Multiply\:the\:numbers:}\:3\times \:2=6\\\\=6h+2\times \:3k\\\\\mathrm{Multiply\:the\:numbers:}\:2\times \:3=6\\\\=6h+6k[/tex]
Answer:
Answers for E-dge-nuityyy
Step-by-step explanation:
(h + k)(2) = 5
(h – k)(3) = 9
Evaluate 3h(2) + 2k(3) = 17
This test statistic leads to a decision to...
reject the null
accept the null
fail to reject the null
As such, the final conclusion is that...
There is sufficient evidence to warrant rejection of the claim that the population mean is not equal to 88.9.
There is not sufficient evidence to warrant rejection of the claim that the population mean is not equal to 88.9.
The sample data support the claim that the population mean is not equal to 88.9.
There is not sufficient sample evidence to support the claim that the population mean is not equal to 88.9.
Answer:
There is not sufficient sample evidence to support the claim that the population mean is not equal to 88.9.
Step-by-step explanation:
We are given the following hypothesis below;
Let [tex]\mu[/tex] = population mean.
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 88.9 {means that the population mean is equal to 88.9}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu\neq[/tex] 88.9 {means that the population mean is different from 88.9}
The test statistics that will be used here is One-sample t-test statistics because we don't know about population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean = 81.3
s = sample standard deviation = 13.4
n = sample size = 7
So, the test statistics = [tex]\frac{81.3-88.9}{\frac{13.4}{\sqrt{7} } }[/tex] ~ [tex]t_6[/tex]
= -1.501
The value of t-test statistics is -1.501.
Also, the P-value of the test statistics is given by;
P-value = P([tex]t_6[/tex] < -1.501) = 0.094
Since the P-value of our test statistics is more than the level of significance as 0.094 > 0.01, so we have insufficient evidence to reject our null hypothesis as the test statistics will not fall in the rejection region.
Therefore, we conclude that the population mean is equal to 88.9.
For this problem, use the tables and charts shown in this section. (Use picture provided)
A United States Citizen returning to the States declares the following items at the customs office:
3 shirts at $8.50 each
2 dresses at $27.50 each
1 pair of gold cuff links at $17.50 per pair
If he has not used his duty free exemption yet, how much duty should he pay?
0 $0.00
$5.00
$10.00
$300
Answer:
0
Step-by-step explanation:
0 because there is a $100 duty free exemption.
answer:
For this problem, use the tables and charts shown in this section.
A United States Citizen returning to the States declares the following items at the customs office:
3 shirts at $8.50 each
2 dresses at $27.50 each
1 pair of gold cuff links at $17.50 per pair
If he has not used his duty free exemption yet, how much duty should he pay?
$0.00 !
$5.00
$10.00
$300
g The intersection of events A and B is the event that occurs when: a. either A or B occurs but not both b. neither A nor B occur c. both A and B occur d. All of these choices are true. a. b. c. d.
Answer:
c. both A and B
Step-by-step explanation:
Given that there are two events A and B.
To find:
Intersection of the two sets represents which of the following events:
a. either A or B occurs but not both
b. neither A nor B occur
c. both A and B occur
d. All of these choices are true. a. b. c. d
Solution:
First of all, let us learn about the concept of intersection.
Intersection of two events means the common part in the two events.
Explanation using set theory:
Let set P contains the outcomes of roll of a dice.
P = {1, 2, 3, 4, 5, 6}
And set Q contains the set of even numbers less than 10.
Q = {2, 4, 6, 8}
Common elements are {2, 4, 6}
So, intersection of P and Q:
[tex]P \cap Q[/tex] = {2, 4, 6}
Explanation using Venn diagram:
Please refer to the image attached in the answer area.
The shaded region is the intersection of the two sets P and Q.
When we apply the above concept in events, we can clearly say from the above explanation that the intersection of two events A and B is the event that occurs when both A and B occur.
So, correct answer is:
c. both A and B
Answer:
C.
Step-by-step explanation:
A highway department executive claims that the number of fatal accidents which occur in her state does not vary from month to month. The results of a study of 140 fatal accidents were recorded. Is there enough evidence to reject the highway department executive's claim about the distribution of fatal accidents between each month? Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Fatal Accidents 8 15 9 8 13 6 17 15 10 9 18 12
Answer:
There is enough evidence to reject the highway department executive's claim about the distribution of fatal accidents between each month, as the Variance is 14 and the Standard Deviation = 4 approximately.
There is a high degree of variability in the mean of the population as explained by the Variance and the Standard Deviation.
Step-by-step explanation:
Month No. of Mean Squared
Fatal Accidents Deviation Difference
Jan 8 -4 16
Feb 15 3 9
Mar 9 -3 9
Apr 8 -4 16
May 13 1 1
Jun 6 -6 36
Jul 17 5 25
Aug 15 3 9
Sep 10 -2 4
Oct 9 -3 9
Nov 18 6 36
Dec 12 0 0
Total 140 170
Mean = 140/12 = 12 Mean of squared deviation (Variance) = 170/12 = 14.16667
Standard deviation = square root of variance = 3.76386 = 4
The fatal accidents' Variance is a measure of how spread out the fatal accident data set is. It is calculated as the average squared deviation of the number of each month's accident from the mean of the fatal accident data set. It also shows how variable the data varies from the mean of approximately 12.
The fatal accidents' Standard Deviation is the square root of the variance, and a useful measure of variability when the distribution is normal or approximately normal.
Use A = -h(a + b) to find the area A of a
2
be trapezium when a = 15, b = 9 and h = 7
Step-by-step explanation:
Putting values
A = - 7(15 + 9)
A = - 7(24)
A = - 168
Help me please thank you
Answer:
x = 7
Step-by-step explanation:
The angles are alternate interior angles, so for the lines to be parallel, the angle measures must be equal.
7x - 7 = 4x + 14
3x = 21
x = 7
How many ways are there to choose 22 croissants with at least one plain croissant, at least two cherry croissants, at least three chocolate croissants, at least one almond croissant, at least two apple croissants, and no more than three broccoli croissants
Answer:
There are 6566 ways to choose 22 croissants with at least one plain croissant, at least two cherry croissants, at least three chocolate croissants, at least one almond croissant, at least two apple croissants, and no more than three broccoli croissants.
Step-by-step explanation:
Given:
There are 5 types of croissants:
plain croissants
cherry croissants
chocolate croissants
almond croissant
apple croissants
broccoli croissants
To find:
to choose 22 croissants with:
at least one plain croissant
at least two cherry croissants
at least three chocolate croissants
at least one almond croissant
at least two apple croissants
no more than three broccoli croissants
Solution:
First we select
At least one plain croissant to lets say we first select 1 plain croissant, 2 cherry croissants, 3 chocolate croissants, 1 almond croissant, 2 apple croissants
So
1 + 2 + 3 + 1 + 2 = 9
Total croissants = 22
So 9 croissants are already selected and 13 remaining croissants are still needed to be selected as 22-9 = 13, without selecting more than three broccoli croissants.
n = 5
r = 13
C(n + r - 1, r)
= C(5 + 13 - 1, 13)
= C(17,13)
[tex]=\frac{17! }{13!(17-13)!}[/tex]
= 355687428096000 / 6227020800 ( 24 )
= 355687428096000 / 149448499200
= 2380
C(17,13) = 2380
C(n + r - 1, r)
= C(5 + 12 - 1, 12)
= C(16,12)
[tex]=\frac{16! }{12!(16-12)!}[/tex]
= 20922789888000 / 479001600 ( 24 )
= 20922789888000 / 11496038400
= 1820
C(16,12) = 1820
C(n + r - 1, r)
= C(5 + 11 - 1, 11)
= C(15,11)
[tex]=\frac{15! }{11!(15-11)!}[/tex]
= 1307674368000 / 39916800 (24)
= 1307674368000 / 958003200
= 1307674368000 / 958003200
= 1365
C(15,11) = 1365
C(n + r - 1, r)
= C(5 + 10 - 1, 10)
= C(14,10)
[tex]=\frac{14! }{10!(14-10)!}[/tex]
= 87178291200 / 3628800 ( 24 )
= 87178291200 / 87091200
= 1001
C(14,10) = 1001
Adding them:
2380 + 1820 + 1365 + 1001 = 6566 ways
What is the value of (–7 + 3i) + (2 – 6i)?
a. –9 – 3i
b. –9 + 9i
c. –5 + 9i
d. –5 – 3i
Answer:
d
Step-by-step explanation:
(-7 + 3i) + (2-6i)
=-7 + 3i + 2 -6i
=(-7+2) + (3i -6i)
=-5 -3i
Answer:
(-7+3I)+(2-6I)
= -7+3i+2-6i
= -5-3I
so answer is d ie -5-3i
In a local university, 10% of the students live in the dormitories. A random sample of 100 students is selected for a particular study. Carry answer to the nearest ten-thousandths. (Bonus Question)
a. What is the probability that the sample proportion (the proportion living in the dormitories) is between 0.172 and 0.178?
b. What is the probability that the sample proportion (the proportion living in the dormitories) is greater than 0.025?
Answer:
a
[tex]P( 0.172 < X < 0.178 ) = 0.00354[/tex]
b
[tex]P( X >0.025 ) = 0.99379[/tex]
Step-by-step explanation:
From the question we are told that
The population proportion is [tex]p = 0.10[/tex]
The sample size is [tex]n = 100[/tex]
Generally the standard error is mathematically represented as
[tex]SE = \sqrt{\frac{ p (1 - p )}{n} }[/tex]
=> [tex]SE = \sqrt{\frac{ 0.10 (1 - 0.10 )}{100} }[/tex]
=> [tex]SE =0.03[/tex]
The sample proportion (the proportion living in the dormitories) is between 0.172 and 0.178
[tex]P( 0.172 < X < 0.178 ) = P (\frac{ 0.172 - 0.10}{0.03} < \frac{ X - 0.10}{SE} < \frac{ 0.178 - 0.10}{0.03} )[/tex]
Generally [tex]\frac{ X - 0.10}{SE} = Z (The \ standardized \ value \ of X )[/tex]
[tex]P( 0.172 < X < 0.178 ) = P (\frac{ 0.172 - 0.10}{0.03} <Z < \frac{ 0.178 - 0.10}{0.03} )[/tex]
[tex]P( 0.172 < X < 0.178 ) = P (2.4 <Z < 2.6 )[/tex]
[tex]P( 0.172 < X < 0.178 ) = P(Z < 2.6 ) - P (Z < 2.4 )[/tex]
From the z-table
[tex]P(Z < 2.6 ) = 0.99534[/tex]
[tex]P(Z < 2.4 ) = 0.9918[/tex]
[tex]P( 0.172 < X < 0.178 ) =0.99534 - 0.9918[/tex]
[tex]P( 0.172 < X < 0.178 ) = 0.00354[/tex]
the probability that the sample proportion (the proportion living in the dormitories) is greater than 0.025 is mathematically evaluated as
[tex]P( X >0.025 ) = P (\frac{ X - 0.10}{SE} > \frac{ 0.0025- 0.10}{0.03} )[/tex]
[tex]P( X >0.025 ) = P (Z > -2.5 )[/tex]
From the z-table
[tex]P (Z > -2.5 ) = 0.99379[/tex]
Thus
[tex]P( X >0.025 ) = P (Z > -2.5 ) = 0.99379[/tex]
Ben and Cam are scuba diving. Ben is 15.8 meters below the
surface of the water. Cam is 4.2 meters above Ben. What is Cam's
position relative to the surface of the water?
=======================================================
Explanation:
Check out the diagram below.
Draw a vertical number line with 0 at the center. The positive values are above it, while the negative values are below it.
Between -15 and -16, closer to -16, plot the value -15.8 to indicate Ben's position. I have done so as the point B.
We move 4.2 units up to arrive at Cam's position
-15.8 + 4.2 = -11.6
So Cam is 11.6 meters below the surface of the water.
find the slope of the line that passes through the two points (0,1) and (-8, -7)
Answer:
The slope of the line is 1Step-by-step explanation:
The slope of a line is found by using the formula
[tex]m = \frac{y2 - y1}{x2 - x1} [/tex]
where
m is the slope and
(x1 , y1) and ( x2 , y2) are the points
Substituting the above values into the above formula we have
Slope of the line that passes through
(0,1) and (-8, -7) is
[tex]m = \frac{ - 7 - 1}{ - 8 - 0} = \frac{ - 8}{ - 8} = 1[/tex]
The slope of the line is 1Hope this helps you
Can someone help? This hard
Answer:
The expression = [tex] \frac{40}{y - 16} [/tex]
Value of the expression = 4 (when y is 20)
Step-by-step explanation:
Quotient simply means the result you get when you divide two numbers. Thus, dividend (the numerator) ÷ divisor (the denominator) = quotient.
From the information given to us here,
the dividend = 40
the divisor = y - 16
The quotient = [tex] \frac{40}{y - 16} [/tex]
There, the expression would be [tex] \frac{40}{y - 16} [/tex]
Find the value of the expression when y = 20.
Plug in 20 for y in the expression and evaluate.
[tex] \frac{40}{y - 16} [/tex]
[tex] = \frac{40}{20 - 16} [/tex]
[tex] = \frac{40}{4} = 10 [/tex]
The value of the expression, when y is 20, is 4.
Calculate how many different sequences can be formed that use the letters of the given word. Leave your answer as a product of terms of the form C(n, r). HINT [Decide where, for example, all the s's will go, rather than what will go in each position.]
georgianna
A) C(10, 7)
B) C(2, 10)C(1, 8)C(1, 7)C(1, 6)C(1, 5)C(2, 4)C(2, 2)
C) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 1)C(3, 1)C(2, 1)C(1, 1)
D) 10 · C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
Answer: E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
Step-by-step explanation:
According to the combinations: Number of ways to choose r things out of n things = C(n,r)
Given word: "georgianna"
It is a sequence of 10 letters with 2 a's , 2 g's , 2 n's , and one of each e, o,r, i.
If we think 10 blank spaces, then in a sequence we need 2 spaces for each of g.
Number of ways = C(10,2)
Similarly,
1 space for 'e' → C(8,1)
1 space for 'o' → C(7,1)
1 space for 'r' → C(6,1)
1 space for 'i' → C(5,1)
1 space for 'a' → C(4,2)
1 space for 'n' → C(2,2)
Required number of different sequences = C(10,2) ×C(8,1)× C(7,1)× C(6,1)×C(5,1)×C(2,2).
Hence, the correct option is E) C(10, 2)C(8, 1)C(7, 1)C(6, 1)C(5, 1)C(4, 2)C(2, 2)
How to convert 2cm to feet?
Answer:
Divide by 30.48: It would be 0.0656168 feet.
Step-by-step explanation:
Answer:
0.0656
Step-by-step explanation:
2.54 cm = 1 in
12 in = 1 ft
2.54 * 12 = 30.48
2/30.48 = 0.0656167979
The angles of a quadrilateral are (3x + 2), (x-3), (2x+1), and 2(2x+5). Find x.
Answer:
3x+2+x-3+2x+1+2(2x+5)=360
10x+10=360
x=35
2000 people attended a baseball game. 1300 of the people attending supported the home team, while 700 supported the visiting team. What percentage of people attending supported the home team?
Answer:
Percentage of home team supporters =65%
Percentage of visiting team supporters =35%
Step-by-step explanation:
Total attendees=2,000 people
Home team supporters=1,300
Visiting team supporters=700
What percentage of people attending supported the home team?
Percentage of people attending who supported the home team = home team supporters / total attendees × 100
=1,300/2,000 × 100
=0.65 × 100
=65%
Visiting team supporters = visiting team supporters / total attendees
× 100
=700/2000 × 100
=0.35 × 100
=35%
Alternatively,
Visiting team supporters = percentage of total attendees - percentage of home team supporters
=100% - 65%
=35%
Multiple Choice The opposite of –4 is A. 4. B. –4. C. –(–(–4)). D. –|4|.
Answer:
a. 4
Step-by-step explanation:
-1(-4) = 4
Answer:
A 4
Step-by-step explanation:
opposite of –4 = 4
Which table represents a linear function?
x y
1 5
2 10
3 15
4 20
5 25
x y
1 5
2 20
3 45
4 80
5 125
x y
1 5
2 25
3 125
4 625
5 3125
x y
1 2
2 4
3 7
4 16
5 32
Answer:
The first table on the list:
x 1 2 3 4 5
y 5 10 15 20 25
Step-by-step explanation:
A linear equation is when the slope is the exact same between each point. The way we find slope is by finding the change in "y" over the change in "x".
x-values: 1, 2/y-values: 5, 10---[tex]\frac{10-5}{2-1}[/tex]=5/1=5
x-values: 2, 3/y-values: 10, 15---[tex]\frac{15-10}{3-2}[/tex]=5/1=5
x-values: 3, 4/y-vaues: 15, 20---[tex]\frac{20-15}{4-3}[/tex]=5/1=5
x-values: 4, 5/y-values: 20, 25---[tex]\frac{25-20}{5-4}[/tex]=5/1=5
The slope for each change in points is 5, which means that this table represents a linear function.
The only table that represents a linear function is; Table 1
Linear functionA linear function is one that has the same slope for every coordinate point.
Looking at the tables, the one with same slope for all points is table 1 and we will prove that as follows;
At x = 1, y = 5 and;Slope = 5/1 = 5
At x = 2; y = 10 and;Slope = 10/2 = 5
At x = 3, y = 15 and;Slope = 15/3 = 5
At x = 4, y = 20 and;Slope = 20/4 = 5
At x = 5, y = 25 and;slope = 25/5 = 5
In conclusion, only table 1 represents a linear function.
Read more about Linear function at; https://brainly.com/question/15602982
32 to 34 Directions: Given the following set of
numbers find the mean, median, and mode.
12, 13, 15, 15, 16, 19, 19, 19, 20, 21, 25
39.
32. Mean =
a. 17.64
b. 19
c. 15
40. 1
33. Median
a. 17.64
b. 19
c. 15
Answer:
32. A
33. B
Step-by-step explanation:
32. Mean: In order to find the mean, add all of the #up which is 194 then divide by how many # there is
33. Start by crossing out the beginning # and the end # all the way till you get the # without another pair in the end
From a group of 11 people, 4 are randomly selected. What is the probability the 4 oldest people in the group were selected
The probability that the 4 oldest people in the group were selected is based on combinatorics is 0.00303 or 0.303%.
Given that:
Find how many ways the 4 oldest people can be selected from the group.
Since the 4 oldest people are already determined, there is only 1 way to select them.
n = 11 (total number of people in the group) and k = 4 (number of people to be selected).To calculate the probability, to determine the total number of ways to select 4 people from the group of 11. This can be found using the combination formula:
Number of ways to choose k items from n items :
C(n,k) = n! / (k!(n-k)!)
Calculate the total number of ways to select 4 people from the group:
Plugging n and k value from given data:
C(11,4 )= 11! / (4!(11-4)!)
On simplifications gives:
C(11, 4) = 330.
Calculate the probability:
Probability = Number of ways 4 oldest people selected / Total number of ways to select 4 people
Plugging the given data:
Probability = 1 / 330
Probability ≈ 0.00303 or 0.303%.
Therefore, the probability that the 4 oldest people in the group were selected is based on combinatorics is 0.00303 or 0.303%.
Learn more about probabilities here:
https://brainly.com/question/23846068
#SPJ4
Solve the equation using square roots x^2+20=4
Answer:
Step-by-step explanation:
x^2+20=4 first isolate the variable by subtracting 20 on both sides.
x^2=-16 again isolate the variable but this time you square root both sides.
[tex]\sqrt{x}^2[/tex]=[tex]\sqrt{-16[/tex] then simplify
x= ±4
A bag contains 12 blue marbles, 5 red marbles, and 3 green marbles. Jonas selects a marble and then returns it to the bag before selecting a marble again. If Jonas selects a blue marble 4 out of 20 times, what is the experimental probability that the next marble he selects will be blue? A. .02% B. 2% C. 20% D. 200% Please show ALL work! <3
Answer:
20 %
Step-by-step explanation:
The experimental probability is 4/20 = 1/5 = .2 = 20 %
Transform the given parametric equations into rectangular form. Then identify the conic. x= -3cos(t) y= 4sin(t)
Answer:
Solution : Option D
Step-by-step explanation:
The first thing we want to do here is isolate the cos(t) and sin(t) for both the equations --- ( 1 )
x = - 3cos(t) ⇒ x / - 3 = cos(t)
y = 4sin(t) ⇒ y / 4 = sin(t)
Let's square both equations now. Remember that cos²t + sin²t = 1. Therefore, we can now add both equations after squaring them --- ( 2 )
( x / - 3 )² = cos²(t)
+ ( y / 4 )² = sin²(t)
_____________
x² / 9 + y² / 16 = 1
Remember that addition indicates that the conic will be an ellipse. Therefore your solution is option d.
Change each of the following points from rectangular coordinates to spherical coordinates and to cylindrical coordinates.
a. (4,2,−4)
b. (0,8,15)
c. (√2,1,1)
d. (−2√3,−2,3)
Answer and Step-by-step explanation: Spherical coordinate describes a location of a point in space: one distance (ρ) and two angles (Ф,θ).To transform cartesian coordinates into spherical coordinates:
[tex]\rho = \sqrt{x^{2}+y^{2}+z^{2}}[/tex]
[tex]\phi = cos^{-1}\frac{z}{\rho}[/tex]
For angle θ:
If x > 0 and y > 0: [tex]\theta = tan^{-1}\frac{y}{x}[/tex];If x < 0: [tex]\theta = \pi + tan^{-1}\frac{y}{x}[/tex];If x > 0 and y < 0: [tex]\theta = 2\pi + tan^{-1}\frac{y}{x}[/tex];Calculating:
a) (4,2,-4)
[tex]\rho = \sqrt{4^{2}+2^{2}+(-4)^{2}}[/tex] = 6
[tex]\phi = cos^{-1}(\frac{-4}{6})[/tex]
[tex]\phi = cos^{-1}(\frac{-2}{3})[/tex]
For θ, choose 1st option:
[tex]\theta = tan^{-1}(\frac{2}{4})[/tex]
[tex]\theta = tan^{-1}(\frac{1}{2})[/tex]
b) (0,8,15)
[tex]\rho = \sqrt{0^{2}+8^{2}+(15)^{2}}[/tex] = 17
[tex]\phi = cos^{-1}(\frac{15}{17})[/tex]
[tex]\theta = tan^{-1}\frac{y}{x}[/tex]
The angle θ gives a tangent that doesn't exist. Analysing table of sine, cosine and tangent: θ = [tex]\frac{\pi}{2}[/tex]
c) (√2,1,1)
[tex]\rho = \sqrt{(\sqrt{2} )^{2}+1^{2}+1^{2}}[/tex] = 2
[tex]\phi = cos^{-1}(\frac{1}{2})[/tex]
[tex]\phi[/tex] = [tex]\frac{\pi}{3}[/tex]
[tex]\theta = tan^{-1}\frac{1}{\sqrt{2} }[/tex]
d) (−2√3,−2,3)
[tex]\rho = \sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}+3^{2}}[/tex] = 5
[tex]\phi = cos^{-1}(\frac{3}{5})[/tex]
Since x < 0, use 2nd option:
[tex]\theta = \pi + tan^{-1}\frac{1}{\sqrt{3} }[/tex]
[tex]\theta = \pi + \frac{\pi}{6}[/tex]
[tex]\theta = \frac{7\pi}{6}[/tex]
Cilindrical coordinate describes a 3 dimension space: 2 distances (r and z) and 1 angle (θ). To express cartesian coordinates into cilindrical:
[tex]r=\sqrt{x^{2}+y^{2}}[/tex]
Angle θ is the same as spherical coordinate;
z = z
Calculating:
a) (4,2,-4)
[tex]r=\sqrt{4^{2}+2^{2}}[/tex] = [tex]\sqrt{20}[/tex]
[tex]\theta = tan^{-1}\frac{1}{2}[/tex]
z = -4
b) (0, 8, 15)
[tex]r=\sqrt{0^{2}+8^{2}}[/tex] = 8
[tex]\theta = \frac{\pi}{2}[/tex]
z = 15
c) (√2,1,1)
[tex]r=\sqrt{(\sqrt{2} )^{2}+1^{2}}[/tex] = [tex]\sqrt{3}[/tex]
[tex]\theta = \frac{\pi}{3}[/tex]
z = 1
d) (−2√3,−2,3)
[tex]r=\sqrt{(-2\sqrt{3} )^{2}+(-2)^{2}}[/tex] = 4
[tex]\theta = \frac{7\pi}{6}[/tex]
z = 3
sorry to keep asking questions
Answer:
y = [tex]\sqrt[3]{x-5}[/tex]
Step-by-step explanation:
To find the inverse of any function you basically switch x and y.
function = y = x^3 + 5
Now we switch x and y
x = y^3 +5
Solve for y,
x - 5 = y^3
switch sides,
y^3 = x-5
y = [tex]\sqrt[3]{x-5}[/tex]
Answer:
[tex]\Large \boxed{{f^{-1}(x)=\sqrt[3]{x-5}}}[/tex]
Step-by-step explanation:
The function is given,
[tex]f(x)=x^3 +5[/tex]
The inverse of a function reverses the original function.
Replace f(x) with y.
[tex]y=x^3 +5[/tex]
Switch variables.
[tex]x=y^3 +5[/tex]
Solve for y to find the inverse.
Subtract 5 from both sides.
[tex]x-5=y^3[/tex]
Take the cube root of both sides.
[tex]\sqrt[3]{x-5} =y[/tex]
Jessica is at a charity fundraiser and has a chance of receiving a gift. The odds in favor of receiving a gift are 5/12. Find the probability of Jessica receiving a gift.
Answer:
5/17
Step-by-step explanation:
This is a question to calculate probability from odds. The formula is given as:
A formula for calculating probability from odds is P = Odds / (Odds + 1)
From the question , we are told that the odds of receiving a gift is
= 5:12
The probability of Jessica receiving a gift =
Probability = Odds / (Odds + 1)
P = 5/12 / ( 5/12 + 1)
P = (5/12)/ (17/12)
P = 5/12 × 12/17
= 5/17
Therefore, the probability of Jessica. receiving a gift is 5/17.
10-
What is the equation of the line that is perpendicular to
the given line and passes through the point (2, 6)?
8-
(2,6)
-6
O x = 2
4
O x = 6
-2
-10 -3 -6 -22
2
4
B
8
10
X
O y = 2
O y = 6
(-34)
(814)
8
WO
Answer:
x = 2
Step-by-step explanation:
This blue line seems to be horizontal, and so a line perpendicular would have to be vertical. The only vertical line that passes through (2, 6) would be x = 2.
The equation of the line perpendicular to the given line and passes through the point (2, 6) is x = 2.
What is the Equation of line in Slope Intercept form?Equation of a line in slope intercept form is y = mx + b, where m is the slope of the line and b is the y intercept, which is the y coordinate of the point where it touches the Y axis.
Given is a line that passes through the points (-8, -4) and (8, -4).
This line is parallel to the X axis.
A line parallel to X axis has the equation y = b.
The y coordinate is -4 throughout the line.
So equation of the line is y = -4.
A line perpendicular to the given line will be parallel to Y axis.
Parallel lines to Y axis has the equation of the form x = a.
Line passes through the point (2, 6).
x coordinate will be 2 throughout.
So the equation of the perpendicular line is x = 2.
Hence the required equation is x = 2.
Learn more about Equations of Lines here :
https://brainly.com/question/21511618
#SPJ7