Answer:
308/5
Step-by-step explanation:
It can be Written as
= 7 ×(8 + 4/5 )
= 7 × 8 + 7 × 4/5
= 56 + 28/5
= 280+28
________
5
= 308/5
Philomena put some money in a 1-year CD that compounds interest monthly, and she made $14.06 in interest the first month. If the interest rate of the CD stays the same, how much will she make in interest the second month?
Answer:
Philomena would make more than $14.06 interest in the second month
Step-by-step explanation:
We are not told how much Philomena put initially, but what we are told is that she has more now as she has been making interests.
This means that if the percent interest remains the same, the amount will definitely have to be more.
For example, let's say we had $10 and we had 10% interest that means we now add $1 to make $11. Since we now have $11, 10 percent of that is $1.1. so now we have $11 + $1.1 = $12.1 which is more than $11.
Thus,Philomena would make more than $14.06 interest in the second month.
Answer:
More than 14.06
Step-by-step explanation:
apesex
−(−49) = −49 true or false?
PLEASE HELP ME ASAP On a test, the average score of 25 boys and 15 girls is 68 points. The average test score of the boys is 62 points. What is the average score of the girls? SHOW YOUR WORK
Answer:
74
Step-by-step explanation:
The average score of boys and girls is 68 and boys is 62
Think of it as an equation (62 + x)/2 = 68, where x is the average score of girls
First multiply each side by 2 making the equation 62 + x = 136
Now subtract each side by 62, which will make the average score for girls 74
(x = 74)
A baking scale measures mass to the tenth of a gram, up to 650 grams. A cup of flour is placed on the scale and results in a measure of 121.8 grams. Which of the following statements is not true?
a.The exact mass of the cup of flour must be between 121.7 and 121.9 grams.
b.The cup of flour has a mass of exactly 121.8 grams.
c.Given the limitations of the scale, the measurement has an appropriate level of accuracy.
d.To the nearest gram, the cup of flour has a mass of 122 grams.
Answer
Is it C I may have done my math wrong lol
Step-by-step explanation:
simplify use the multiplication rule
Answer:
3
Step-by-step explanation:
[tex] \sqrt[4] {27} \cdot \sqrt[4] {3} = [/tex]
[tex] = \sqrt[4] {27 \cdot 3} [/tex]
[tex] = \sqrt[4] {3^3 \cdot 3^1} [/tex]
[tex] = \sqrt[4] {3^4} [/tex]
[tex] = 3 [/tex]
In the game plan for model building on your multiple regression project, which of the following is true about the test that determines whether the interaction term(s) is/are significant in predicting y?
A. It will definitely be a t-test
B. It will either be a t-test or a best subset for partial) F-test depending on whether we kept or dropped the quadratic terms
C. It will definitely be a partial F-test
D. It will definitely be a global
Answer:
A. It will definitely be a t-test
Step-by-step explanation:
T-test is a type of inferential statistic test which used to determine whether there is a significant difference between mean of two group sets or variables.The t-test technique is widely used in hypothesis testing in statistics. When the model building for game play is determine through regression analysis, it will require t-test to be conducted to reach a conclusion.
Which point slope form equations could be produced with the points (3,2) and (4,6)
Step-by-step explanation:
Equation of a line is y = mx + c
where
m is the slope
c is the y intercept
To find the equation of a line given two points first find the slope of the line and use the formula
y - y1 = m( x - x1) to find the Equation of the line using any of the points given
Slope of the line using points
(3,2) and (4,6) is
[tex]m = \frac{6 - 2}{4 - 3} = \frac{4}{1} = 4[/tex]
So the equation of the line using point
( 3 , 2 ) and slope 4 is
y - 2 = 4( x - 3)Hope this helps you
A girl has 98 beads, and all but 14 were lost. how many beads did she loose?
Answer:
84 beads
Step-by-step explanation:
She had 98 beads and lost all but fourteen. So it would be 98 - 14 which would get you 84 beads that the girl has lost
Verify the identity. cot x / 1 + csc x = csc x - 1 / cot x
Step-by-step explanation:
cot x / (1 + csc x)
Multiply by conjugate:
cot x / (1 + csc x) × (1 − csc x) / (1 − csc x)
Distribute the denominator:
cot x (1 − csc x) / (1 − csc²x)
Use Pythagorean identity:
cot x (1 − csc x) / (-cot²x)
Divide:
(csc x − 1) / cot x
17. In figure, BAC -859, CA = CB and BD - CD. Find the measure of ZX, Zy and Zz. Give
reasons to support your answer.
A
85°
ب
B
H
V
Answer:
x = 10°, y = 10° and z = 160°
Step-by-step explanation:
Given : m∠BAC = 85°
CA ≅ CB and BD ≅ CD
In the given ΔABC,
Since, CA ≅ CB
Angles opposite to these equal sides will be equal in measure.
m∠BAC ≅ m∠ABC ≅ 85°
Since, sum of interior angles of a triangle = 180°
m∠BAC + m∠ABC + m∠BCA = 180°
85° + 85° + m∠BCA = 180°
m∠BCA = 180° - 170°
m∠BCA = 10°
x = 10°
In ΔBDC,
Since, BD ≅ DC [Given]
Opposite angles to these equal sides will be equal in measure.
Therefore, x° = z° = 10°
Since, x° + y° + z° = 180°
10° + y° + 10° = 180°
y = 180 - 20°
y = 160°
PLEASE HELPPPP
A standard I.Q. test produces normally distributed results with a mean of 100 and a standard deviation of 15 for the city of New York. Out of approximately 8,400,000 citizens, how many of these people would have I.Q.s below 67?
Answer:
approx 193200
Step-by-step explanation:
As known for normal distribution is correct the rule 95.4% of the results are situation within mean+-2*s ( where s is a standard deviation)
So the border is 100+-2*15=70 and that is approx=67.
95.4% of 84000000 citizens are= 8 400 000*0.954=8013600 persons
So the residual number of the citizens =8400000-8013600=386400 citizens
Because of the simmetry of normal distribution to find the number of the citizens that have IQ below 67 we have to divide 386400 by 2.
N=386000/2=193200
A data set lists earthquake depths. The summary statistics are
nequals=400400,
x overbarxequals=6.866.86
km,
sequals=4.374.37
km. Use a
0.010.01
significance level to test the claim of a seismologist that these earthquakes are from a population with a mean equal to
6.006.00.
Assume that a simple random sample has been selected. Identify the null and alternative hypotheses, test statistic, P-value, and state the final conclusion that addresses the original claim.
What are the null and alternative hypotheses?
A.
Upper H 0H0:
muμequals=5.005.00
km
Upper H 1H1:
muμnot equals≠5.005.00
km
B.
Upper H 0H0:
muμnot equals≠5.005.00
km
Upper H 1H1:
muμequals=5.005.00
km
C.
Upper H 0H0:
muμequals=5.005.00
km
Upper H 1H1:
muμgreater than>5.005.00
km
D.
Upper H 0H0:
muμequals=5.005.00
km
Upper H 1H1:
muμless than<5.005.00
km
Determine the test statistic.
(Round to two decimal places as needed.)
Determine the P-value.
(Round to three decimal places as needed.)
State the final conclusion that addresses the original claim.
Fail to reject
Upper H 0H0.
There is
evidence to conclude that the original claim that the mean of the population of earthquake depths is
5.005.00
km
Answer:
Step-by-step explanation:
The summary of the given statistics data include:
sample size n = 400
sample mean [tex]\overline x[/tex] = 6.86
standard deviation = 4.37
Level of significance ∝ = 0.01
Population Mean [tex]\mu[/tex] = 6.00
Assume that a simple random sample has been selected. Identify the null and alternative hypotheses, test statistic, P-value, and state the final conclusion that addresses the original claim.
To start with the hypothesis;
The null and the alternative hypothesis can be computed as :
[tex]H_o: \mu = 6.00 \\ \\ H_1 : \mu \neq 6.00[/tex]
The test statistics for this two tailed test can be computed as:
[tex]z= \dfrac{\overline x - \mu}{\dfrac{\sigma}{\sqrt {n}}}[/tex]
[tex]z= \dfrac{6.86 - 6.00}{\dfrac{4.37}{\sqrt {400}}}[/tex]
[tex]z= \dfrac{0.86}{\dfrac{4.37}{20}}[/tex]
z = 3.936
degree of freedom = n - 1
degree of freedom = 400 - 1
degree of freedom = 399
At the level of significance ∝ = 0.01
P -value = 2 × (z < 3.936) since it is a two tailed test
P -value = 2 × ( 1 - P(z ≤ 3.936)
P -value = 2 × ( 1 -0.9999)
P -value = 2 × ( 0.0001)
P -value = 0.0002
Since the P-value is less than level of significance , we reject [tex]H_o[/tex] at level of significance 0.01
Conclusion: There is sufficient evidence to conclude that the original claim that the mean of the population of earthquake depths is 5.00 km.
Finding the perimeter or area of a rectangle given one of th
The length of a rectangle six times its width.
If the area of the rectangle is 150 cm”, find its perimeter.
Answer:
The answer is 70cmStep-by-step explanation:
Perimeter of a rectangle = 2l + 2w
Area of a rectangle = l × w
where
l is the length
w is the width
From the question
The length of a rectangle six times its width which is written as
l = 6w
Area = 150cm²
Substitute these values into the formula for finding the area
That's
150 = 6w²
Divide both sides by 6
w² = 25
Find the square root of both sides
width = 5cm
Substitute this value into l = 6w
That's
l = 6(5)
length = 30cm
So the perimeter of the rectangle is
2(30) + 2(5)
= 60 + 10
= 70cmHope this helps you
what is (2y + 5)(y - 3) in simplified form using the distributive property
Answer:
[tex]\boxed{2y^{2} - y - 15}[/tex]
Step-by-step explanation:
Use the FOIL technique in order to distribute the terms properly. FOIL stands for First Terms, Outside Terms, Inside Terms, and Last Terms. In order to properly distribute, multiply the common terms based on the steps in the FOIL technique. So, in this case:
The first terms are 2y and y. The outside terms are 2y and -3. The inside terms are 5 and y.The last terms are 5 and -3.Therefore, multiply the terms:
2y and y to get 2y²2y and -3 to get -6y5 and y to get 5y5 and -3 to get -15Then, add or subtract based on the signs:
2y² - 6y + 5y - 15
Then, add like terms to finish simplifying the expression. This leaves you with 2y² - y - 15.
Answer:
2y2 – y – 15
Step-by-step explanation:
(2y + 5)(y – 3)
= 2y(y – 3) + 5(y – 3)
= 2y2 – 6y + 5y – 15
= 2y2 – y –15
A recipe calls for 2 tablespoons of sugar for every 7 tablespoons of flour. If you plan on tripling the recipe what is the ratio of
sugar to flour?
-0)
A)
2 to 7
B)
2 to 21
5 to 10
DY
5 to 7
Answer:
It is still 2 to 7
Step-by-step explanation:
It is still 2 to 7 because if you triple the recipe, it will become 6 to 21 which still simplifies to 2 to 7.
A machine that produces ball bearings has initially been set so that the true average diameter of the bearings it produces is 0.500 in. A bearing is acceptable if its diameter is within 0.004 in. of this target value. Suppose, however, that the setting has changed during the course of production, so that the bearings have normally distributed diameters with a mean 0.499 in. and standard deviation 0.002 in. What percentage of bearings will now not be acceptable
Answer:
the percentage of bearings that will not be acceptable = 7.3%
Step-by-step explanation:
Given that:
Mean = 0.499
standard deviation = 0.002
if the true average diameter of the bearings it produces is 0.500 in and bearing is acceptable if its diameter is within 0.004 in.
Then the ball bearing acceptable range = (0.500 - 0.004, 0.500 + 0.004 )
= ( 0.496 , 0.504)
If x represents the diameter of the bearing , then the probability for the z value for the random variable x with a mean and standard deviation can be computed as follows:
[tex]P(0.496\leq X \leq 0.504) = (\dfrac{0.496 - \mu}{\sigma} \leq \dfrac{X -\mu}{\sigma} \leq \dfrac{0.504 - \mu}{\sigma})[/tex]
[tex]P(0.496\leq X \leq 0.504) = (\dfrac{0.496 - 0.499}{0.002} \leq \dfrac{X -0.499}{0.002} \leq \dfrac{0.504 - 0.499}{0.002})[/tex]
[tex]P(0.496\leq X \leq 0.504) = (\dfrac{-0.003}{0.002} \leq Z \leq \dfrac{0.005}{0.002})[/tex]
[tex]P(0.496\leq X \leq 0.504) = (-1.5 \leq Z \leq 2.5)[/tex]
[tex]P(0.496\leq X \leq 0.504) = P (-1.5 \leq Z \leq 2.5)[/tex]
[tex]P(0.496\leq X \leq 0.504) = P(Z \leq 2.5) - P(Z \leq -1.5)[/tex]
From the standard normal tables
[tex]P(0.496\leq X \leq 0.504) = 0.9938-0.0668[/tex]
[tex]P(0.496\leq X \leq 0.504) = 0.927[/tex]
By applying the concept of probability of a complement , the percentage of bearings will now not be acceptable
P(not be acceptable) = 1 - P(acceptable)
P(not be acceptable) = 1 - 0.927
P(not be acceptable) = 0.073
Thus, the percentage of bearings that will not be acceptable = 7.3%
8) The perimeter of a rectangle is 20x2 + xy - 7y2 and one of it's sides is
7x2 - xy. Find the other side.
Answer:
3x^2 + 3xy/2 - 7xy^2/2
Step-by-step explanation:
So we know the perimeter is 20x^2 + xy - 7y^2,
To find any perimeter you need 2l + 2w = P so,
One of the sides is 7x^2 - xy
First plug in the values,
2(7x^2-xy) + 2w = 20x^2 + xy - 7y^2
Multiply,
14x^2-2xy + 2w = 20x^2 + xy - 7y^2
Subtract,
14x^2 - 2xy - 14x^2 + 2xy + 2w = 20x^2 + xy - 7y^2 - 14x^2 + 2xy
2w = 6x^2 + 3xy - 7y^2
w = 3x^2 + 3xy/2 - 7xy^2/2
We have to accept or reject a large shipment of items. For quality control purposes, we collect a sample of 200 items and find 24 defective items. Construct a 95% percent confidence interval for the proportion of defective items in the whole shipment.
Answer:
A 95% confidence for the population proportion of defective items in the whole shipment is [0.075, 0.165] .
Step-by-step explanation:
We are given that for quality control purposes, we collect a sample of 200 items and find 24 defective items.
Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;
P.Q. = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion of defective items = [tex]\frac{24}{200}[/tex] = 0.12
n = sample of items = 200
p = population proportion of defective items
Here for constructing a 95% confidence interval we have used a One-sample z-test statistics for proportions.
So, 95% confidence interval for the population proportion, p is ;
P(-1.96 < N(0,1) < 1.96) = 0.95 {As the critical value of z at 2.5% level
of significance are -1.96 & 1.96}
P(-1.96 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.96) = 0.95
P( [tex]-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95
P( [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95
95% confidence interval for p = [ [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]
= [ [tex]0.12-1.96 \times {\sqrt{\frac{0.12(1-0.12)}{200} } }[/tex] , [tex]0.12+1.96 \times {\sqrt{\frac{0.12(1-0.12)}{200} } }[/tex] ]
= [0.075, 0.165]
Therefore, a 95% confidence for the population proportion of defective items in the whole shipment is [0.075, 0.165] .
During the school year, there were 315 total points scored between basketball, soccer, baseball, and football. The baseball team scored 55 points. The soccer team scored twice as much as the baseball team. The football team scored 0.5 more than 1.5 times as much as the baseball team. How many points did the basketball team score?
Answer:
67.5p.
Step-by-step explanation:
315p in total.
- Baseball has 55p.
- Soccer teams points = 55x2 = 110p.
- Football team points = 110 x 0.5 = 55 x 1.5 = 82.5p.
So then you just do 315p - 82.5p - 55p - 110p = 67.5p
Give examples of two variables that have a perfect positive linear correlation and two variables that have a perfect negative linear correlation.
Answer:
answer below
Step-by-step explanation:
1. price per gallon of gasoline and total cost of gasoline
2. distance from a door and height of a wheelchair ramp
perfect positive linear relationship:
this is a relation that exists between two variables. The pearson correlation is used to check this relationship and if the relationship is 1.0 then it is established that a positive linear relationship exists
negative linear relationship
this is a relationship between variables where the pearson correlation is less than 0. if the value is -1.0 then a negative linear relatioship exists.
price per gallon of gasoline and total cost of gasoline move in the same direction so it is positive.
distance from a door and height of a wheelchair ramp are negative because they do not move in the same direction.
Solve for x -3x-3=-3(x+1)
Step-by-step explanation:
[tex] - 3x - 3 = - 3(x + 1) \\ - 3x - 3 = - 3x - 3 \\ - 3x + 3x = - 3 + 3 \\ 0 = 0[/tex]
Step 1: Use 3 to open the bracket
Step 2 : Collect like terms and simplify
Answer = 0
Jury Duty Three people are randomly selected from voter registration and driving records to report for jury duty. The gender of each person is noted by the county clerk.
a. Define the experiment.
b. List the simple events in S.
c. If each person is just as likely to be a man as a woman, what probability do you assign to each simple event?
d. What is the probability that only one of the three is a man?
e. What is the probability that all three are women?
Answer:
(a) The experiment defined here is a random variable that includes the selecting of 3 people from the set of voter registration and driving records.
(b) The simple events in sample space, S = (M, M, M), (M, F, M), (M, M, F), (F, M, M), (F, M, F), (F, F, M), (M, F, F), and (F, F, F).
(c) If each person is just as likely to be a man as a woman, then the probability for each of the simple event can be assigned as [tex]0.5 \times 0.5 \times 0.5 = 0.125[/tex].
(d) The probability that only one of the three is a man is 0.375.
(e) The probability that all three are women is 0.125.
Step-by-step explanation:
We are given that three people are randomly selected from voter registration and driving records to report for jury duty. The gender of each person is noted by the county clerk.
(a) The experiment defined here is a random variable that includes the selecting of 3 people from the set of voter registration and driving records.
(b) As we know that the gender of each person is noted by the county clerk, which means one is male and another female.
So, the simple events in sample space, S = (M, M, M), (M, F, M), (M, M, F), (F, M, M), (F, M, F), (F, F, M), (M, F, F), and (F, F, F).
Here, M is denoted for male and F for female.
(c) If each person is just as likely to be a man as a woman, then the probability for each of the simple event can be assigned as [tex]0.5 \times 0.5 \times 0.5 = 0.125[/tex].
Because there is 50-50 chance of selecting males or females.
(d) The probability that only one of the three is a man is given by;
The total cases in the sample space = 8
Number of cases of only one man out of three = 3
So, the required probability = [tex]\frac{3}{8}[/tex] = 0.375.
(e) The probability that all three are women is given by;
The total cases in the sample space = 8
Number of cases of all three are women = 1
So, the required probability = [tex]\frac{1}{8}[/tex] = 0.125.
Will mark the brainliest i havent chosen an answer but I pressed accidentally
Answer:
The full answer is 4.40625 but rounded it would be 4.41
The lines below are parallel. If the slope of the green line is -4, what is the slope of the red line?
Answer:
-4
Step-by-step explanation:
Hey there!
Well the slopes of 2 parallel lines have the same slope,
meaning if the green line has a slope of -4 then the slope of the red line has a slope of -4.
Hope this helps :)
The top speed of this coaster is
128 mph. What is the tallest peak
of this coaster?
** Hint... convert mph into m/s.*
To convert miles per hour to meters per second divide by 2.237
128 miles per hour / 2.237 = 57.22 meters per second.
Using the first equation:
57.22 = sqrt(2 x 9.81 x h)
Remove the sqrt by raising both sides to the second power:
57.22^2 = (2 x 9.81 x h)
Simplify Both sides:
3274.1284 = 19.62h
Divide both sides by 19.62:
H = 3274.1284/ 19.62
H = 166.88 meters
True or false? induction is a kind of thinking you use to form general ideas and rules based on mathematical formuals
Answer:
Hey there!
True. You use individuals rules, pieces of evidence, and experimentally found ideas that can be combined to form a general mathematical statement.
Let me know if this helps :)
If Tristan wants to stretch the spring by 9 inches, how many kilograms of weight must he apply to it? I need help with it please.
Answer:
9/3 = 3x/3
3 = x
The spring stretches 9 inches with 3 kilograms of weight attached to it
Step-by-step explanation:
Substitute y = 9 into the equation y = 3x, or locate the answer on the graph:
y = 3x
9 = 3x.
Divide both sides of the equation by 3
Answer:The spring stretches 9 inches with 3 kilograms of weight attached to it.
Step-by-step explanation:
Substitute y = 9 into the equation y = 3x, or locate the answer on the graph:
y = 3x
9 = 3x.
Divide both sides of the equation by 3:
The spring stretches 9 inches with 3 kilograms of weight attached to it.
evaluate -99 + 3^2•5
Answer:
= - 54
Step-by-step explanation:
- 99 + 3^2•5
- 99 + 9 × 5
- 99 + 45
= - 54
1. What is the difference between an exponential growth and exponential decay? 2. What is an example equation for expoential growth and an example equation for exponential decay?
Answer: see below
Step-by-step explanation:
The standard form of an exponential equation is: y = a(b)ˣ where
a is the initial valueb is the rateGrowth:
Exponential growth is where the final value (y) is greater than the initial value (a).
An example would be the spreading of a rumor:
You tell 1 person (a = 1) who then tells 2 people each minute (b = 2). How many people will they have spread the rumor to after 5 minutes (x = 5)?
y = 1(2)⁵
= 32
Decay:
Exponential decay is where the final value (y) is less than the initial value (a).
An example would be the decrease of bacteria in a person:
A person has 100 bacteria (a = 1) who takes a pill that is supposed to cut in half the number of bacteria each hour (b = 1/2). How many bacteria will the person have after 2 hours (x = 2)?
[tex]y=100\bigg(\dfrac{1}{2}\bigg)^2\\\\\\.\quad =100\bigg(\dfrac{1}{4}\bigg)\\\\\\.\quad = 25[/tex]
How many variable terms are in the expression 3x3y + 5x2 − 4y + z + 9?
Answer:
4
Step-by-step explanation:
"4" is the number of variable terms that are in the expression 3x3y + 5x2 _ 4y + z + 9. The four variable terms in the expression are "xy", "x^2", "y" and "z". I hope that this is the answer that you were looking for and the answer has actually come to your desired help. If you need any clarification, you can always ask.