Answer:
2:A handwarmer gets warm when it is opened and exposed to air.
3:Propane ignites to heat a grill.
4:Cotton is dyed red to make a dress.
Explanation:
The definition of a chemical property is when a property of characteristic of a substance that is observed during a reaction in which a chemical has been changed
• Calculate relative formula masses from formulae and
from balanced equations?
Answer:
Explanation:
Simple molecules have very small masses. Instead of writing their actual masses in grams or kilograms, we usually use their relative formula masses. These are calculated using the chemical formula and the relative atomic masses of the elements in it.
Relative formula mass
Relative atomic mass has the symbol Ar. The Ar for an element is a measure of the mass of its atoms compared to the mass of carbon-12 atoms. The greater the Ar value, the more mass an element's atoms have. The periodic table shows the Ar value for each element. For example, the Ar for carbon is 12, and the Ar for magnesium is 24. This means that a magnesium atom has twice the mass of a carbon atom.
Calculating relative formula mass
Relative formula mass is given the symbol Mr. To calculate the Mr for a substance:
work out how many atoms of each element there are in the chemical formula
add together the Ar values for all the atoms of each element present
For example, the formula for carbon dioxide is CO2. It consists of one carbon atom (Ar = 12) and two oxygen atoms (Ar = 16):
Mr of CO2 = 12 + 16 + 16 = 44
It could also be calculated this way:
Mr of CO2 = (1 × 12) + (2 × 16) = 12 + 32 = 44
Ar and Mr values are just numbers. They have no units because they are relative masses.
Relative formula masses of ionic compounds
Ionic compounds such as sodium chloride do not exist as molecules. However, their relative formula masses are calculated in the same way. The formulae used are their empirical formulae.
What is 9.871 x 10^-3 in standard form? *
Answer:
0.009871
Explanation:
[tex] 9.871\times 10^{-3} = 0.009871[/tex]
Answer:
.009871
Explanation:
In a mass spectrometer, the ions are sorted out in which of the following ways?
A. By accelerating them through electric field
B. By accelerating them through magnetic field
C. By accelerating them through electric and magnetic field
D. By applying a high voltage
Answer:
C
Explanation:
The ions are first accelerated electrically, and then bended magnetically to sort them and record them.
Which of these scientist is know for his work in understanding climate change a : edwin hubble b : christian doppler c : warren washington d : charles kuen kao
Answer: just trust me its c
Explanation: i dont cap
why does a desert cooler better on a hot dry day
Answer:On a hot dry day humidity will be less.when humidity decreases rate of evaporation increases
Answer:
The water that evaporates from a desert cooler takes in energy from the environment for filling up for the loss of energy during EVAPORATION making the environment cold.
Therefore, on a hot dry day, the Evaporation is more which means the environment will be colder.
Explanation:
I hope it is okay.
I learnt it last year, so I went back to my book and explained it better in my own way.
Thanks.
. Fire can be extinguished by: - a. Lowering temperature below ignition temperature b. Cutting the supply of oxygen c. Removing non-combustible substances from surroundings d. Both a & b
Answer:
B. Cutting the supplies of oxygen
Which Nobel gas electron structures do the atoms in a
molecule of hydrogen chloride attain?
And can you tell me why aswell please?
Answer:
The noble as structures attained are helium and argon
Explanation:
The electron configuration of chlorine atom is 1s²2s²2p⁶3s²3p⁵
The elecron configuation of hydrogen is 1s¹
The electron configuration of argon atom is 1s²2s²2p⁶3s²3p⁶
The elecron configuation of helium gas is 1s²
Therefore, in the hydrogen chloride molecule the hydrogen and the chlorine each share one electron from the other atom to attain the the stable noble gas structure of helium for hydrogen and argon for chlorine.
Suppose you were given a substance and asked
to determine whether or not it was a plasma. Write
the characteristics you would look for to identify
the substance.
Answer:Particles in plasmas collide more often.
Plasma particles have high kinetic energy (they move quickly).
Plasma particles are far apart.
The ionized particles have no fixed volume
Explanation:
Plasma is the fourth form of matter which has freely moving electrons in it. The substance can be identified as plasma if its particles collide often and are far apart.
What is plasma?Plasma is a type of matter other than solids, liquids, and gas. They have similar properties to that of gas. Plasma particle collides are often like gases as they move freely in space. Like gases that have no definite shape and volume.
The plasma particles have ionic charges, positive and negative resulting in high kinetic energy. This property allows them to show electromagnetism and electrical conductivity.
The ionized particles are due to the high temperature that allows them to have the property of electrical conductivity and compression.
Therefore, the particles of plasma are ionized and have high kinetic energy.
Learn more about plasma here:
https://brainly.com/question/10133920
#SPJ6
Drag each characteristic to the correct category. Viruses do not possess all the characteristics of life. Identify those characteristics that viruses display and those they don't display.
Answer:
Virus is living due to reproduction and non-living due to crystal appearance.
Explanation:
Characteristics that viruses display is the ability of reproduction in which they increase in population which is a living character and have DNA or RNA which help them to make exact copies of itself. Virus is parasitic in nature because it causes harm to the living host such as humans, animals and plants. Some characteristics that viruses don't display are that they are not like living cells, have no membrane around them, no organelles such as mitochondria, golgi bodies, endoplasmic reticulum and lysosomes etc. Viruses are present in crystal form outside the cell.
What mass of Fe(OH)3 is produced when 35 mL of 0.250 M Fe(NO3)3 solution is mixed with 55 mL of a 0.180 M
KOH solution? (this is a limiting reactant problem).
Answer:
0.35 g.
Explanation:
We'll begin by calculating the number of mole of Fe(NO3)3 in 35 mL of 0.250 M Fe(NO3)3 solution.
This is illustrated below:
Molarity of Fe(NO3)3 = 0.250 M
Volume = 35 mL = 35/1000 = 0.035 L
Mole of Fe(NO3)3 =?
Molarity = mole /Volume
0.250 = mole of Fe(NO3)3 / 0.035
Cross multiply
Mole of Fe(NO3)3 = 0.25 x 0.035
Mole of Fe(NO3)3 = 8.75×10¯³ mole
Next, we shall determine the number of mole of KOH in 55 mL of 0.180 M
KOH solution. This is illustrated below:
Molarity of KOH = 0.180 M
Volume = 55 mL = 55/1000 = 0.055 L
Mole of KOH =.?
Molarity = mole /Volume
0.180 = mole of KOH /0.055
Cross multiply
Mole of KOH = 0.180 x 0.055
Mole of KOH = 9.9×10¯³ mole.
Next, we shall write the balanced equation for the reaction. This is given below:
3KOH + Fe(NO3)3 —> Fe(OH)3 + 3KNO3
From the balanced equation above,
3 moles of KOH reacted with 1 mole of Fe(NO3)3 to produce 1 mole of Fe(OH)3.
Next, we shall determine the limiting reactant. This can be obtained as follow:
From the balanced equation above,
3 moles of KOH reacted with 1 mole of Fe(NO3)3.
Therefore, 9.9×10¯³ mole of KOH will react with = (9.9×10¯³ x 1)/3 = 3.3×10¯³ mole of Fe(NO3)3.
From the above illustration, we can see that only 3.3×10¯³ mole out of 8.75×10¯³ mole of Fe(NO3)3 given is needed to react completely with 9.9×10¯³ mole of KOH.
Therefore, KOH is the limiting reactant and Fe(NO3)3 is the excess reactant.
Next, we shall determine the number of mole of Fe(OH)3 produced from the reaction.
In this case, we shall use the limiting reactant because it will give the maximum yield of Fe(OH)3 as all of it is consumed in the reaction.
The limiting reactant is KOH and the mole of Fe(OH)3 produce can be obtained as follow:
From the balanced equation above,
3 moles of KOH reacted to produce 1 mole of Fe(OH)3.
Therefore, 9.9×10¯³ mole of KOH will react to produce = (9.9×10¯³ x 1)/3 = 3.3×10¯³ mole of Fe(OH)3.
Finally, we shall convert 3.3×10¯³ mole of Fe(OH)3 to grams. This can be obtained as follow:
Molar mass of Fe(OH)3 = 56 + 3(16 + 1) = 56 + 3(17) = 107 g/mol
Mole of Fe(OH)3 = 3.3×10¯³ mole
Mass of Fe(OH)3 =?
Mole = mass /Molar mass
3.3×10¯³ = Mass of Fe(OH)3 / 107
Cross multiply
Mass of Fe(OH)3 = 3.3×10¯³ x 107
Mass of Fe(OH)3 = 0.3531 ≈ 0.35 g.
Therefore, 0.35 g of Fe(OH)3 was produced from the reaction.
Sodium hydroxide and water will react at room temperature. What does this indicate about its activation energy? A. The activation energy is very low. B. The activation energy is at exactly 600 kJ. C. The activation energy is very high. D. The reaction cannot reach activation energy.
Answer:
The answer would be C.
Explanation:
I took a test with the same question.
The activation energy is very high. Hence, option C is correct.
What is activation energy?Activation energy is the sufficient amount of energy necessary to initiate a chemical reaction.
When sodium hydroxide (NaOH) dissolves in water, it is distributed into positively-charged sodium ions and negatively - charged hydroxide ions.
These cations and anions move around in the water, free and independent of each other, though cations tend to be surrounded more closely by anions and vice versa.
Hence, when sodium hydroxide and water will react at room temperature, the activation energy is very high.
Learn more about activation energy here:
https://brainly.com/question/2410158
#SPJ5
plz answer fast i beg u
Which are not particles that enable electrical conductivity?
Select one:
a. delocalised electrons
b. molecules
c. mobile ions
Answer:
The correct option is;
a. Delocalised electrons
Explanation:
The particles that enable electrical conductivity are the delocalised electrons
The metallic structure consists of identically shaped elements having positive ions that have a resultant alignment, surrounded by a vast array of deloclised electrons, which move freely in the metallic structure such that a metallic part usually has a high electrical conductivity.
Therefore, the freely moving delocalised electron in a metal give them the property of good conductors of electricity.
Please help, this assignment is to hard for me. :(
Answer:
603000 J
Explanation:
The following data were obtained from the question:
Energy required (Q) =...?
Mass (M) = 10000 g
Specific heat capacity (C) = 2.01 J/g°C
Overheating temperature (T2) = 121°C
Working temperature (T1) = 91°C
Change in temperature (ΔT) =.?
Change in temperature (ΔT) =T2 – T1
Change in temperature (ΔT) = 121 – 91
Change in temperature (ΔT) = 30°C
Finally, we shall determine the energe required to overheat the car as follow:
Q = MCΔT
Q = 10000 × 2.01 × 30
Q = 603000 J
Therefore, 603000 J of energy is required to overheat the car.
How is heat transferred through convection?
A. Heat is transferred by energy waves moving through space.
B. Heat is transferred through contact between molecules
C. Heat is transferred by light being changed into kinetic energy.
D. Heat is transferred by the movement of a liquid or gas.
Heat is transferred through convection by the movement of a liquid or gas and is denoted as option D.
What is Convection?this is defined as the process of heat flow through a fluid which include a liquid or gas.
This process doesn't involve contact between the object unlike in conduction. A typical example is the heat flow which occurs in the atmosphere thereby making it the most appropriate choice.
Read more about Convection here https://brainly.com/question/9382711
#SPJ1
What scientific instrument is sensitive enough to detect a planet transiting a star?
Answer:
Photometer
Explanation:
A photometer (photo comes from the Greek for light) measures the light coming from 140,000 stars in Kepler's stationary field of view. If a planet transits (passes in front of) any star the amount of light from the star is reduced enough so that the photometer senses it and relays the information back to the Kepler team.
Scientific instruments are tools used for researching the universe and natural sciences. A Photometer is sensitive enough to detect a planet transiting a star. Thus, option D is correct.
What is a Photometer?A Photometer is a device that converts light energy into electrical voltage by the photoelectric effect given by Einstein. It uses Quantum mechanics to convert the energy possessed by the photons and electrons. It follows Ohm's law to convert energy.
It is used to detect the planets transiting stars as they can detect the light energy as it uses the electromagnetic radiation of various wavelengths to convert them by the photodiode, resistor, and a multiplier.
Therefore, option D. a photometer is used to detect the planets in the universe transiting stars.
Learn more about photometers, here:
https://brainly.com/question/15586577
#SPJ2
Your question is incomplete, but most probably your full question was, What scientific instrument is sensitive enough to detect a planet transiting a star?
Atomic force microscopeSolar arraysSatellite RadioPhotometerA cylinder containing 14.71 L of helium gas at a pressure of 169.1 atm is to be used to fill toy balloons to a pressure of 1.086 atm. Each inflated balloon has a volume of 2.414 L. What is the maximum number of balloons that can be inflated? Report your answer to 1 decimal place. (Remember that 14.71 L of helium at 1.086 atm will remain in the exhausted (empty) cylinder)
Answer:
The number of balloons is 948.8.
Explanation:
The number of balloons can be calculated as follows:
[tex] N = \frac{V_{f}}{V_{T}} [/tex]
Where:
[tex]V_{f}[/tex]: is the volume at 1.086 atm
[tex]V_{T}[/tex]: is the balloon volume = 2.414 L
The volume at 1.086 atm can be found using Boyle's law:
[tex] P_{i}V_{i} = P_{f}V_{f} [/tex]
[tex] V_{f} = \frac{P_{i}V_{i}}{P_{f}} = \frac{169.1 atm*14.71 L}{1.086 atm} = 2290.5 L [/tex]
Now, the number of balloons is:
[tex] N = \frac{V_{f}}{V_{T}} = \frac{2290.5 L}{2.414 L} = 948.8 [/tex]
Therefore, the number of balloons is 948.8.
I hope it helps you!
What evidence demonstrates that chlorine in the stratosphere is primarily from man-made chemicals rather than from natural sources such as volcanoes?
Answer:
The evidence that demonstrated that the Chlorine in the stratosphere is believed to come primarily from CFCs ( Chlorofluorocarbons) rather than from natural sources such as volcanoes was due to the study conducted in which the amount of chlorine in the stratosphere over the past 20 years was measured and it was discovered that there was an increase over the years. This also corresponded with a rise in CFCs over the same period which shows that the chlorine in the stratosphere was from man made chemicals such as chlorofluorocarbons.
Chlorine in the stratosphere is primarily from man-made chemicals rather than from natural sources such as volcanoes is evident as follows;
Discussion;
Most of the chlorine in the stratosphere is there as a result of human activities, as the figure below illustrates.
Many compounds containing chlorine are released at the ground.
Volcanoes can emit large quantities of hydrogen chloride, but this gas is rapidly converted to hydrochloric acid, which dissolves in rain water, ice, and snow and does not reach the stratosphere.
Read more:
https://brainly.com/question/22776037
how much of the excess reactant remains unchanged?
how much N2 is formed? (in mol)
how much H2O is firmed? (in mol)
Answer:
1. The limiting reactant is H2O2.
2. The amount of excess reactant, N2H4 that remain unchanged is 11.15 moles.
3. 1.65 moles of N2.
4. 6.6 moles of H2O.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
N2H4 + 2H2O2 —> N2 + 4H2O
From the balanced equation above,
1 mole of N2H4 reacted with 2 moles of H2O2 to produce 1 mole of N2 and 4 moles of H2O.
1. Determination of the limiting reactant.
From the balanced equation above,
1 mole of N2H4 reacted with 2 moles of H2O2.
Therefore, 12.8 moles of N2H4 will react with = 12.8 x 2 = 25.6 moles of H2O2.
From the calculations made above, we can see that it will take a higher amount i.e 25.6 moles than what was given i.e 3.3 moles of H2O2 to react completely with 12.8 moles of N2H4.
Therefore, H2O2 is the limiting reactant and N2H4 is the excess reactant.
2. Determination of the excess reactant that remain unchanged.
The excess reactant is N2H4.
First, we shall determine the amount of the excess reactant that reacted. This is illustrated below:
From the balanced equation above,
1 mole of N2H4 reacted with 2 moles of H2O2.
Therefore, Xmol of N2H4 will react with 3.3 moles of H2O2 i.e
Xmol of N2H4 = (1 x 3.3)/2
Xmol of N2H4 = 1.65 moles
Therefore, 1.65 moles of N2H4 reacted.
Now, we shall determine the excess reactant that remain unchanged. This can be obtained as follow:
Amount of N2H4 given = 12.8 moles
Amount of N2H4 that reacted = 1.65 moles.
Amount of N2H4 that remain unchanged =?
Amount of N2H4 that remain unchanged = (Amount of N2H4 given) – (Amount of N2H4 that reacted = 1.65 moles)
Amount of N2H4 that remain unchanged = 12.8 – 1.65
Amount of N2H4 that remain unchanged = 11.15 moles.
3. Determination of the amount of N2 produced.
In this case, the limiting reactant will be used because it will give the maximum yield of N2 as all of it is used up in the reaction.
The limiting reactant is H2O2 and the amount of N2 produced can be obtained as follow:
From the balanced equation above,
2 moles of H2O2 reacted to produce 1 mole of N2.
Therefore, 3.3 moles of H2O2 will react to produce = (3.3 x 1)/2 = 1.65 moles of N2.
Therefore, 1.65 moles of N2 were obtained from the reaction.
4. Determination of the amount of H2O produced.
In this case, the limiting reactant will be used because it will give the maximum yield of H2O as all of it is used up in the reaction.
The limiting reactant is H2O2 and the amount of H2O produced can be obtained as follow:
From the balanced equation above,
2 moles of H2O2 reacted to produce 4 moles of H2O.
Therefore, 3.3 moles of H2O2 will react to produce = (3.3 x 4)/2 = 6.6 moles of H2O.
Therefore, 6.6 moles of H2O were produced from the reaction.
Chromium is dissolved in sulfuric acid according to the following equation: Cr + H2SO4 ⇒ Cr2 (SO4) 3 + H2
a) How many grams of Cr2 (SO4) 3 can be obtained by reacting 165 g of 85.67% H2SO4 of purity?
b) If 485.9 g of Cr2 (SO4) 3 are obtained, what is the yield of the reaction?
Answer:
[tex]\large \boxed{\text{a)188.4 g; b) 98.67 $\, \%$}}[/tex]
Explanation:
We will need a balanced chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 98.08 392.18
2Cr + 3H₂SO₄ ⟶ Cr₂(SO₄)₃ + 3H₂
To solve the stoichiometry problem, you must
Use the molar mass of H₂SO₄ to convert the mass of H₂SO₄ to moles of H₂SO₄ Use the molar ratio to convert moles of H₂SO₄ to moles of Cr₂(SO₄)₃ Use the molar mass of Cr₂(SO₄)₃ to convert moles of Cr₂(SO₄)₃ to mass of Cr₂(SO₄)₃
a) Mass of Cr₂(SO₄)₃
(i) Mass of pure H₂SO₄
[tex]\text{Mass of pure} = \text{165 g impure} \times \dfrac{\text{85.67 g pure} }{\text{100 g impure}} = \text{141.36 g pure}[/tex]
(ii) Moles of H₂SO₄
[tex]\text{Moles of H$_{2}$SO}_{4} = \text{141.36 g H$_{2}$SO}_{4} \times \dfrac{\text{1 mol H$_{2}$SO}_{4}}{\text{98.08 g H$_{2}$SO}_{4}} = \text{1.441 mol H$_{2}$SO}_{4}[/tex]
(iii) Moles of Cr₂(SO₄)₃
The molar ratio is 1 mol Cr₂(SO₄)₃:3 mol H₂SO₄ [tex]\text{Moles of Cr$_{2}$(SO$_{4}$)}_{3} = \text{1.441 mol H$_{2}$SO}_{4} \times \dfrac{\text{1 mol Cr$_{2}$(SO$_{4}$)}_{3}}{\text{3 mol H$_{2}$SO}_{4}} = \text{0.4804 mol Cr$_{2}$(SO$_{4}$)}_{3}[/tex]
(iv) Mass of Cr₂(SO₄)₃ [tex]\text{Mass of Cr$_{2}$(SO$_{4}$)}_{3} = \text{0.4804 mol Cr$_{2}$(SO$_{4}$)}_{3} \times \dfrac{\text{392.18 g Cr$_{2}$(SO$_{4}$)}_{3}}{\text{1 mol Cr$_{2}$(SO$_{4}$)}_{3}} = \textbf{188.4 g Cr$_{2}$(SO$_{4}$)}_{3}\\\text{The mass of Cr$_{2}$(SO$_{4}$)$_{3}$ formed is $\large \boxed{\textbf{188.4 g}}$}[/tex]
b) Percentage yield
It is impossible to get a yield of 485.9 g. I will assume you meant 185.9 g.
[tex]\text{Percentage yield} = \dfrac{\text{Actual yield}}{\text{Theoretical yield}} \times 100 \, \% = \dfrac{\text{185.9 g}}{\text{188.4 g}} \times 100 \, \% = \mathbf{98.67 \, \%}\\\\\text{The percentage yield is $\large \boxed{\mathbf{98.67 \, \%}}$}[/tex]
in the symbol 3p4
a. the 3 represents the principal energy level
b. the p represents the principal energy level
c. the 4 represents the principal energy level
d. all of the above
help!
Answer:
a. the 3 represents the principal energy level
Explanation:
3 is the principal energy level. The p is the sublevel. 4 is the possible occupying electron.
Is this example of a direct proportion or an inverse proportion?
A. Direct proportion
B. inverse proportion
Answer:
Inverse proportion occurs when one value increases and the other decreases. For example, more workers on a job would reduce the time to complete the task. They are inversely proportional.
Answer:
A
Explanation:
How does the percentage of monounsaturated and polyunsaturated fatty acids in olive oil compare to that of canola oil? Match the words in the left column to the appropriate blanks in the sentences on the right. Make certain each sentence is complete before submitting your answer. ResetHelp Olive oil has about Olive oil has about blank monounsaturated fats, while canola oil has about blank. monounsaturated fats, while canola oil has about Olive oil has about blank monounsaturated fats, while canola oil has about blank.. Olive oil has about Olive oil has about blank polyunsaturated fats, while canola oil has about blank. polyunsaturated fats, while canola oil has about Olive oil has about blank polyunsaturated fats, while canola oil has about blank..
This question is incomplete, here´s the complete question.
How does the percentage of monounsaturated and polyunsaturated fatty acids in olive oil compare to that of canola oil? Match the words in the left column to the appropriate blanks in the sentences on the right.
Olive oil has about ____ monounsaturated fats, while canola oil has about ___.
Olive oil has about ___ polyunsaturated fats, while canola oil has about ___.
6%
10%
30%
84%
5%
65%
Answer:
Olive oil has about 84% monounsaturated fats, while canola oil has about 65%.
Olive oil has about 5% polyunsaturated fats, while canola oil has about 30%.
Explanation:
Olive and canola oil are the major sources of monounsaturated fatty acids. Although vegetable oils usually have high concentrations of polyunsaturated fatty acids and less monounsaturated fats, olive and canola oils have comparatively less polyunsaturated fatty acids, and more monounsaturated fatty acids.
begging u to answer Which is not an inter molecular force? Select one: a. Inter atomic bonds b. van der waals forces c. hydrogen bonds
Answer:
a-Interatomic bonds
Explanation:
First of all, it is not a force. Let alone be molecular force.
When two ionic compounds are dissolved in water, a double replacement reaction can... Group of answer choices occur if two of the ions form an insoluble ionic compound, which precipitates out of solution occur if the ions react to form a gas, which bubbles out of the solution never occur since all ions are in water occur if the ions react to form a gas, which bubbles out of the solution ionic compounds only react with nonmetals
Answer:
occur if two of the ions form an insoluble ionic compound, which precipitates out of solution
Explanation:
When two ionic compounds are dissolved in water, a double replacement reaction takes place if two of the ions form an insoluble ionic compound, which precipitates out of solution. In double displacement reaction ions switch partners. And hence, produce an insoluble precipitate.
What does the VSEPR theory describe
Answer:
The shape of a molecule based on the number of electron pairs on the valence shell of its central atom
Explanation:
The improvement of the Sidgwick-Powell theory came to be known as the Valence Shell Electron Pair Repulsion theory (VSEPR). This theory approaches the determination of molecular shape from the perspective of the number of electron pairs on the valence shell of the central atom in the molecule.
Electron pairs on the valence shells of atoms leads to repulsion. Repulsion between two lone pairs is greater than repulsion between a lone pair and a bond pair which is also greater than repulsion between two bond pairs.
Lone pairs cause more repulsion, hence they distort molecules from the ideal shape predicted based on their electron domain geometry.
Choose all the answers that apply
Protons:
Have a positive change
Have no change
Are found in the nucleus
Orbit the nucleus
Have a negative charge
1.) Given 30 grams of CO2, how many moles of CO2 would you have? How many individual molecules of CO2 is that?
2., Given 22 Grams of NaCl, How many moles of Nacl would you have? How many individual molecules of NaCl is that?
3.) Given 50 grams of ammonia NH3, How many moles of NH3 would you have? How many Molecules of NH3 is that?
Answer:
1a) .68 moles 1b)4.1E-23 molecules.
2a) .37 moles 2b) 2.27E-23 molecules
Explanation:
1a) CO2 is equal to 44 grams (C→12 grams,O→16 grams[·2]) .30g/44g is .68 moles.
1b) multiply 1A by advogadros number (6.022E-23)
2a) NaCl is 58 grams. 22/58 is .37 moles.
2b) multiply 2A by advogadros number.
you'd answer #3 the same way #1 and #2
The branch of science that deals with chemicals and bonds are called chemistry. The moles are units to calculate the quantity required to use the element.
The correct answer is mentioned below.
What are moles?The mole is the base unit of the amount of substance in the International System of Units (SI). It is defined as exactly 6.02214076×10^23 elementary entities which may be atoms, molecules, ions, or electrons.According to the question, the moles to the option is as follows:-
moles of 30 grams of CO2 is[tex]n =\frac{M}{M.M}\\ \\\frac{30}{44} \\\\=0.681\\\\[/tex]
The number of molecules is [tex]0.68 *6022*10^{23} =4.09496*10^{23[/tex].
2. moles of 22 grams of NaCl is
[tex]\frac{22}{44}\\ \\=0.5\\\\[/tex]
Molecules will be [tex]0.5*6.022*10^{23} = 3.011*10^{23}[/tex]
3. moles of 50-gram ammonia
[tex]\frac{50}{17} \\\\2.94\\[/tex]
The number of molecules is [tex]2.94*6.022*10^{23} = 1770*10^{23[/tex]
For more information about the moles, refer to the link:-
https://brainly.com/question/15209553
Please help me... how do I draw this...
Draw diagrams to show the bonding in each of the following compounds:
a) calcium fluoride (CaF2)
Answer:
Hope it helps!!!
............
In the Lewis structure, the Ca atom donates its two valence electrons to two F atoms.
The bonding in calcium fluoride (CaF₂) involves the transfer of electrons from calcium (Ca) to fluorine (F), resulting in the formation of ionic bonds.
Each F atom gains one electron to achieve a stable electron configuration of eight electrons in its outermost energy level. The electrostatic attraction between the positively charged Ca ion (Ca²⁺) and the negatively charged F ions (F⁻) holds the compound together.
It's important to note that the diagram represents a simplified 2-dimensional representation of the compound's structure. In reality, the compound adopts a three-dimensional crystal lattice structure, with each Ca ion surrounded by eight F ions and each F ion surrounded by four Ca ions.
Learn more about Lewis structure from the link given below.
https://brainly.com/question/34480029
#SPJ2
An atom has 36 protons, 36 electrons and a mass
number of 80. How many neutrons are in this atom?
Answer:
44 neutrons
Explanation:
To find the neutrons of an atom subtract the atomic number from the mass of the atom
in this case
80-36=44
tge number of neutrons that are in that atom is 48
Which of the following is NOT a product of the electrolysis of NaCl? A. Chlorine gas B. None of these C. Hydrogen gas D. Oxygen gas
Answer:D. Oxygen gas
Explanation: because the experiment showed