216 in²
Step-by-step explanation:
The above diagram is a rectangular prism, a three-dimensional shape, having six faces, where all the faces (top, bottom, and lateral faces) of the prism are rectangles such that every two opposite side faces are identical.
Hence we can calculate the surface area of the diagram by multiplying the surface areas of the three faces by 2, and adding them together.
= 2(5 x 4.5) + 2(5 x 9) + 2(4.5 x 9)
= 45 + 90 + 81
= 216 in²
What is the approximate surface area of the figure?
A. 101.3 in²
B. 108 in²
C. 202.5 in²
D. 216 in²
Solution:-Since the base of the prism is a rectangle, the perimeter P of the base is 2(9+4.5) or 27 inches. The area of the base is 9•4.5 or 40.5 square inches. The height is 5 cinches.
[tex]\sf{S=Ph+2B}[/tex]
[tex]\sf{ \: \: \: \: =(27•5)+2(4.5)}[/tex]
[tex]\sf{ \: \: \: \: =135+81}[/tex]
[tex]\sf{ \: \: \: \: =\:}{\color{magenta}{216}}[/tex]
Answers:-The surface area of the figure is 216 square inches. So, the correct option is D.
========================#Hope it helps!
(ノ^_^)ノ
If f(x)= 10 sin(x) – 3 then f (30%) = ?
A) - square root 3/2 -3
B.) 2
C.) -5/2
D.) 4/3 - square root 3/2
Answer:
The value of f(30) is equal to 2.
Step-by-step explanation:
The given expression is :
[tex]f(x)= 10 \sin(x) - 3[/tex]
We need to find the value of f(30)
Put x = 30 in above expression.
So,
[tex]f(x)= 10 \sin(30) - 3\\\\=10\times \dfrac{1}{2}-3\\\\=5-3\\\\=2[/tex]
Hence, the value of f(30) is equal to 2.
Write the equation of the trigonometric graph.
Answer(s):
[tex]\displaystyle y = 3sin\: (1\frac{1}{2}x + \frac{\pi}{2}) - 2 \\ y = 3cos\: 1\frac{1}{2}x - 2[/tex]
Explanation:
[tex]\displaystyle y = Asin(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow -2 \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \hookrightarrow \boxed{-\frac{\pi}{3}} \hookrightarrow \frac{-\frac{\pi}{2}}{1\frac{1}{2}} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{1\frac{1}{3}\pi} \hookrightarrow \frac{2}{1\frac{1}{2}}\pi \\ Amplitude \hookrightarrow 3[/tex]
OR
[tex]\displaystyle y = Acos(Bx - C) + D \\ \\ Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A| \\ \\ Vertical\:Shift \hookrightarrow -2 \\ Horisontal\:[Phase]\:Shift \hookrightarrow 0 \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \hookrightarrow \boxed{1\frac{1}{3}\pi} \hookrightarrow \frac{2}{1\frac{1}{2}}\pi \\ Amplitude \hookrightarrow 3[/tex]
You will need the above information to help you interpret the graph. First off, keep in mind that although this looks EXACTLY like the cosine graph, if you plan on writing your equation as a function of sine, then there WILL be a horisontal shift, meaning that a C-term will be involved. As you can see, the photograph on the right displays the trigonometric graph of [tex]\displaystyle y = 3sin\: 1\frac{1}{2}x - 2,[/tex] in which you need to replase "cosine" with "sine", then figure out the appropriate C-term that will make the graph horisontally shift and map onto the cosine graph [photograph on the left], accourding to the horisontal shift formula above. Also keep in mind that the −C gives you the OPPOCITE TERMS OF WHAT THEY REALLY ARE, so you must be careful with your calculations. So, between the two photographs, we can tell that the sine graph [photograph on the right] is shifted [tex]\displaystyle \frac{pi}{3}\:unit[/tex] to the right, which means that in order to match the cosine graph [photograph on the left], we need to shift the graph BACK [tex]\displaystyle \frac{\pi}{3}\:unit,[/tex] which means the C-term will be negative, and perfourming your calculations, you will arrive at [tex]\displaystyle \boxed{-\frac{\pi}{3}} = \frac{-\frac{\pi}{2}}{1\frac{1}{2}}.[/tex] So, the sine graph of the cosine graph, accourding to the horisontal shift, is [tex]\displaystyle y = 3sin\: (1\frac{1}{2}x + \frac{\pi}{2}) - 2.[/tex] Now, with all that being said, in this case, sinse you ONLY have a graph to wourk with, you MUST figure the period out by using wavelengths. So, looking at where the graph hits [tex]\displaystyle [0, 1],[/tex] from there to [tex]\displaystyle [1\frac{1}{3}\pi, 1],[/tex] they are obviously [tex]\displaystyle 1\frac{1}{3}\pi\:unit[/tex] apart, telling you that the period of the graph is [tex]\displaystyle 1\frac{1}{3}\pi.[/tex] Now, the amplitude is obvious to figure out because it is the A-term, but of cource, if you want to be certain it is the amplitude, look at the graph to see how low and high each crest extends beyond the midline. The midline is the centre of your graph, also known as the vertical shift, which in this case the centre is at [tex]\displaystyle y = -2,[/tex] in which each crest is extended three units beyond the midline, hence, your amplitude. So, no matter how far the graph shifts horisontally, the midline will ALWAYS follow.
I am delighted to assist you at any time.
Use the order of operations to simplify the expression
(5.4)² - 5.4²
Answer:
0
Step-by-step explanation:
(5.4)^2 - 5.4^2
= 5.4^2 - 5.4^2
= 5,4^2(1 - 1)
= 5.4^2(0)
= 0
Find the area of the circle. Round your answer to the nearest tenth.
Answer:
254.47 mm
Step-by-step explanation:
Let f(x)=x2+10x+37 .
What is the vertex form off(x)?
What is the minimum value off(x)?
Enter your answers in the boxes.
Vertex form: f(x)=
Minimum value of f(x):
Answer:
f(x) = (x+5)^2 +12
The minimum value is 12
Step-by-step explanation:
f(x)=x^2+10x+37
The vertex will be the minimum value since this is an upwards opening parabola
Completing the square by taking the coefficient of x and squaring it adding it and subtracting it
f(x) = x^2+10x + (10/2) ^2 - (10/2) ^2+37
f(x) = ( x^2 +10x +25) -25+37
= ( x+5) ^2+12
Th is in vertex form y = ( x-h)^2 +k where (h,k) is the vertex
The vertex is (-5,12)
The minimum is the y value or 12
Is this the correct answer?
Answer:
Correct.
Step-by-step explanation:
It looks good to me.
Good job!
A worker is exposed to 98 dB for five hours and 82 dB for three hours, giving an eight-hour working day. On average, what noise level is this worker exposed to?
Answer:
92 dB
Step-by-step explanation:
Use the mean formula, mean = sum of elements / number of elements.
Since it is a 8 hour work day, there are 8 elements.
mean = sum of elements / number of elements
mean = (98 + 98 + 98 + 98 + 98 + 82 + 82 + 82) / 8
mean = 736 / 8
mean = 92
So, the average noise level is 92 dB
PLEASE HELP ME!!!!
QUESTION WILL BE WORTH 10 POINTS!!!
I WILL MARK BRAINLIEST!!!!
Please answer the 3 questions on the picture.
I would appreciate it so much.
Answer:
lol i dont know but yo dog smell like evolution and natural selection?
Step-by-step explanation:
Answer:
11.) 180-38=142 12.)24.5 13.)im not sure but want to say 10
Step-by-step explanation:
3. What is the value of LC in the diagram?
A
4x
(2x
B
3x
С
O A. 90°
O B. 60°
O C. 80°
OD. 40°
Answer: B
Step-by-step explanation:
4x+3x+2x=180
9x = 180
x = 20
20x3 = 60
Which of the following values could be an absolute value?
Answer:
Step-by-step explanation: It could be 8,7, or 2. Because these are all positive
:)
The retail cost of a TV is 50 % more than its wholesale cost. Therefore, the retail cost is ____ times the wholesale cost.
Answer:
Let the retail cost be x and the wholesale cost be y
Step-by-step explanation:
x = y + 0.50y
x = 1.50y
Therefore the retail cost is 1.50 times the wholesale cost.
What is the unit rate for the following point?
(7, 1 3/4)
Answer:
Step-by-step explanation:
7
24)
Evaluate:
(-4) - (-16) + (-10) - (-1) - (14) + (11)
Answer:
I think its 0.
Step-by-step explanation:
Double negatives make a positive, add the like terms. Hope this helps
How do i do this math equasion?
Answer:
f(t) = -16t² + 36
Step-by-step explanation:
f(t) = a(t - h)² + k
This is vertex form where (h, k) is the (x, y) coordinate of the vertex
The vertex is give as (0, 36)
f(t) = a(t - 0)^2 + 36
f(t) =at² + 36
use point (1, 20) to find "a"
20 = a(1²) + 36
20 = a + 36
-16 = a
f(t) = -16t² + 36
The pyramid shown below has a square base, a height of 7, and a volume of 84 cubic units.
What is the length of the side of the base?
12
36
6
18
Help please this question is hard!
9514 1404 393
Answer:
B, C, A, D
Step-by-step explanation:
The depths are easier to compare if they are all in the same form. Here, it is convenient to use decimal numbers rounded to hundredths. Your calculator can help with the fractions if you are not familiar with decimal equivalents.
A: -1.6 m = -1.60 m
B: -4/3 m ≈ -1.33 m
C: -1.36m = -1.36 m
D: -17/9 m ≈ -1.89 m
Then the least deep site is the one with the depth number closest to 0.
In order from least to greatest depth, the sites are ...
B (-1.33) > C (-1.36) > A (-1.60) > D (-1.89)
Answer:
yeah
Step-by-step explanation:
Find the area of the figure below
Options
360 ft²
240 ft²
275 ft²
300 ft²
Answer:
The total area is 300 ft^2
Step-by-step explanation:
First find the area of the rectangle
A = l*w = 24*10 = 240
Then find the area of the triangle on the top
A = 1/2 bh
The base is 24 and the height is 15-10 = 5
A = 1/2 (24)*5 = 60
Add them together
240+60 = 300
The total area is 300 ft^2
Answer:
Total area of figure is 300 ft ²
Step-by-step explanation:
Finding the area of rectangle
We know that
Area of rectangle = length × widthWhere,
length of rectangle = 10 ftwidth of rectangle = 24 ftSubstitute the values into the formula
Area = 10 ft × 24 ft
multiply ✖ , we get
Area of rectangle = 240 ft ²
Similarly, Finding the area of triangle
We know
Area of triangle = 1 /2 × Base × HeightWhere,
Base of triangle = 24 ftHeight of triangle = 15 - 10 = 5 ftSubstitute the values
Area of triangle = 1 /2 × 24 ft × 5 ft
multiply
Area of triangle = 1/2 × 120 ft ².
divide , we get
Area of triangle = 60 ft ².
And Finally, Finding the total area
Total area of figure = Area of rectangle + Area of triangle
Total Area = 240 ft ² + 60 ft ²
➛ Total area of figure = 300 ft ²
The measure of angle S is 65 degrees.
What is the measure of angle R?
RS
A
115°
B.
230°
с
65°
D
25°
Answer:
A. 115°
Step-by-step explanation:
180° - 65° = 115°
Kern Shipping Inc. has a requirement that all packages must be such that the combined length plus the girth (the perimeter of the cross section) cannot exceed 99 inches. Your goal is to find the package of maximum volume that can be sent by Kern Shipping. Assume that the base is a square.
a. Write the restriction and objective formulas in terms of x and y. Clearly label each.
b. Use the two formulas from part (a) to write volume as a function of x, V(x). Show all steps.
Answer:
Step-by-step explanation:
From the given information:
a)
Assuming the shape of the base is square,
suppose the base of each side = x
Then the perimeter of the base of the square = 4x
Suppose the length of the package from the base = y; &
the height is also = x
Now, the restriction formula can be computed as:
y + 4x ≤ 99
The objective function:
i.e maximize volume V = l × b × h
V = (y)*(x)*(x)
V = x²y
b) To write the volume as a function of x, V(x) by equating the derived formulas in (a):
y + 4x ≤ 99 --- (1)
V = x²y --- (2)
From equation (1),
y ≤ 99 - 4x
replace the value of y into (2)
V ≤ x² (99-4x)
V ≤ 99x² - 4x³
Maximum value V = 99x² - 4x³
At maxima or minima, the differential of [tex]\dfrac{d }{dx}(V)=0[/tex]
[tex]\dfrac{d}{dx}(99x^2-4x^3) =0[/tex]
⇒ 198x - 12x² = 0
[tex]12x \Big({\dfrac{33}{2}-x}}\Big)=0[/tex]
By solving for x:
x = 0 or x = [tex]\dfrac{33}{2}[/tex]
Again:
V = 99x² - 4x³
[tex]\dfrac{dV}{dx}= 198x -12x^2 \\ \\ \dfrac{d^2V}{dx^2}=198 -24x[/tex]
At x = [tex]\dfrac{33}{2}[/tex]
[tex]\dfrac{d^2V}{dx^2}\Big|_{x= \frac{33}{2}}=198 -24(\dfrac{33}{2})[/tex]
[tex]\implies 198 - 12 \times 33[/tex]
= -198
Thus, at maximum value;
[tex]\dfrac{d^2V}{dx^2}\le 0[/tex]
Recall y = 99 - 4x
when at maximum x = [tex]\dfrac{33}{2}[/tex]
[tex]y = 99 - 4(\dfrac{33}{2})[/tex]
y = 33
Finally; the volume V = x² y is;
[tex]V = (\dfrac{33}{2})^2 \times 33[/tex]
[tex]V =272.25 \times 33[/tex]
V = 8984.25 inches³
A pyramid with a square base, where the side length of the base is 7.2 cm and the height of the pyramid is 10.4 cm. Round your answer to the nearest tenth of a cubic centimeter.
Answer:2647.5
Step-by-step explanation:
plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz help me i really do need the help
Each of the problems below was solved incorrectly, for each problem, find the mistake in the work/ answer. Explain what the mistake is, and find the correct answer.
Explain the mistake:
Find the correct answer(equation):
2. Find the value of x
Explain the mistake:
Find the correct answer(equation):
3. Find the value of x
Explain the mistake:
Find the correct answer(equation):
Question 1
The mistake is that vertical angles are congruent, and don't always add up to 180 degrees.[tex]5x=100 \longrightarrow x=20[/tex]Question 2
Angles that add to form a right angle add to 90 degrees, not 180 degrees.[tex]3x+39=90 \longrightarrow 3x=51 \longrightarrow x=17[/tex]Question 3
Angles that add to form a right angle add to 90 degrees, not 180 degrees.[tex]3x+39=90 \longrightarrow 3x=51 \longrightarrow x=17[/tex]33. Given the following algebraic expression 5x² + 10 Which statement is true?
a. The coefficient is 5
b. The constant is 2
C. The power is 10
d. The constant is 5
Answer:
Given the following algebraic expression 5x² + 10 Which statement is true?
a. The coefficient is 5. ( true)
b. The constant is 2
C. The power is 10
d. The constant is 5
explain how to write an equation of a line given the slope and one point on the line
2x + y = 3
x - 2y = -1
If equation two is multiplied by -2 and then the equations are added, the result is
3y = 5
5y = 5
-3y = 3
9514 1404 393
Answer:
5y = 5
Step-by-step explanation:
-2(x -2y) +(2x +y) = -2(-1) +(3) . . . . -2 times [eq2] + [eq1]
-2x +4y +2x +y = 2 +3 . . . . eliminate parentheses
5y = 5 . . . . . . . . collect terms
[tex] {x}^{2} + \sqrt{x} + \sqrt[5]{x} [/tex]
what is f'(3) of this equation?
Answer:
[tex]3 + \frac{1}{2\sqrt{3} } + \frac{1}{5\sqrt[5]{81} }[/tex]
Step-by-step explanation:
Just to make it easier to see, [tex]\sqrt{x} = x^{\frac{1}{2} }[/tex] and [tex]\sqrt[5]{x} = x^{\frac{1}{5} }[/tex] This way we could more easily use the power rule of derivatives.
So if f(x) = [tex]x^{2} +x^{\frac{1}{2} } +x^{\frac{1}{5} }[/tex] then f'(x) will be as follows.
f'(x) = [tex]x^{1} +\frac{1}{2} x^{-\frac{1}{2} } +\frac{1}{5} x^{-\frac{4}{5} } = x +\frac{1}{2x^{\frac{1}{2} }} +\frac{1}{ 5x^{\frac{4}{5} }} = x +\frac{1}{2\sqrt{x}} +\frac{1}{ 5\sqrt[5]{x^4} }[/tex]
to find f'(3) just plug 3 into f'(x) so [tex]3 + \frac{1}{2\sqrt{3} } + \frac{1}{5\sqrt[5]{81} }[/tex]
Political party affiliation is believed to be a very strong indicator of how voters will vote in Presidential Elections. You are interested in determining if voter party loyalty has changed since 1992. During the 1992 election, the proportion of self-proclaimed Republicans who voted for George H. W. Bush was 0.924. During the 2012 election, in a survey of 277 Republican voters, 213 indicated that they had voted for Mitt Romney. The 90% confidence interval for this proportion is ( 0.7273 , 0.8106 ). What is the best conclusion you can make from this information that is listed below
Answer:
The best conclusion is that we are 90% that the true population proportion of Republicans that voted for Mitt Romney is between 0.7273 and 0.8106.
Step-by-step explanation:
x% confidence interval:
A confidence interval is built from a sample, has bounds a and b, and has a confidence level of x%. It means that we are x% confident that the population mean is between a and b.
In this question:
The 90% confidence interval for the proportion of Republican voters that had voted for Mitt Romney is (0.7273, 0.8106). The best conclusion is that we are 90% that the true population proportion of Republicans that voted for Mitt Romney is between 0.7273 and 0.8106.
Only answer if you're very good at Math.
What is the minimum value of the function g(x) = x^2 - 6x - 12?
A: -21
B: 3-√21
C: 3
D:3+ √21
Answer:
A: -21
Step-by-step explanation:
Vertex of a quadratic function:
Suppose we have a quadratic function in the following format:
[tex]f(x) = ax^{2} + bx + c[/tex]
It's vertex is the point [tex](x_{v}, y_{v})[/tex]
In which
[tex]x_{v} = -\frac{b}{2a}[/tex]
[tex]y_{v} = -\frac{\Delta}{4a}[/tex]
Where
[tex]\Delta = b^2-4ac[/tex]
If a<0, the vertex is a maximum point, that is, the maximum value happens at [tex]x_{v}[/tex], and it's value is [tex]y_{v}[/tex].
In this question:
Quadratic function:
[tex]g(x) = x^2 - 6x - 12[/tex]
So [tex]a = 1, b = -6, c = -12[/tex].
Minimum value:
This is the y-value of the vertex. So
[tex]\Delta = b^2-4ac = (-6)^2 - 4(1)(-12) = 36+48 = 84[/tex]
[tex]y_{v} = -\frac{\Delta}{4a} = -\frac{84}{4} = -21[/tex]
The minimum value is -21, and the correct answer is given by option A.
Simplify the expression 35e^9/5e^8
[tex] \frac{35e {}^{9} }{5 {e}^{8} } \ \\ \\ \frac{7e {}^{9} }{e {}^{8} } \\ \\ \\ = 7e[/tex]
Step By Step Explanation:
Reduce: Reduce the fraction with 5Simplify: Simplify the expressionAlternate Forms:
19.02797☆彡Hannathis zigzag crystal vase has a height of 10 inches. The cross sections parallel to the base are always rectangles that are 6 inches by 3 inches long.
If we assume the crystal itself has no thickness, what would be the volume of the vase? NO LINKS!!!
9514 1404 393
Answer:
180 in³
Step-by-step explanation:
V = Bh
V = (6 in × 3 in)(10 in) = 180 in³
The volume is the product of the cross section area (6 in × 3 in) = 18 in² and the height perpendicular to that cross section, 10 in.
5. Solve: 9(36 – 2) - 2 =
I can’t figure this out
Answer:
The correct answer is:304
Step-by-step explanation: