Answer:
850,000
Step-by-step explanation:
Answer: 850,000
Concept:
Here, we need to know the order and name of each place value.
Please refer to the attachment below for the specified names.
Solve:
8 = Hundred thousands
4 = Ten thousands
9 = One thousands
7 = Hundreds
0 = Tens
9 = Ones
Since the values before the ten thousands place, which would be the one thousands place, is greater than 5, then we should round up.
Therefore, the rounded value would be [tex]\boxed{850,000}[/tex]
Hope this helps!! :)
Please let me know if you have any questions
Ravi bought 50kg rice at the rate of tk.40 per kg and sold it at the rate of tk.44 per kg. What is the percentage of profit
He paid 0.40 x 50 = 20
He sold it for 0.44 x 50 = 22
His profit was 22-20 = 2
Percentage was 2/20 = 0.10 = 10 %
Answer 10 %
Which of the following relations represents a function?
Question 4 options:
{(–1, –1), (0, 0), (2, 2), (5, 5)}
{(0, 3), (0, –3), (–3, 0), (3, 0)}
{(–2, 4), (–1, 0), (–2, 0), (2, 6)}
None of these
Answer:
The first option
Step-by-step explanation:
A function is where one input only has one output, in the other options we can see inputs having different outputs, 0,3 and 0-3 in the second and in the third -2,4 and -2,0.
Which expression is equivalent to 7x , if b > 0?
Work Shown:
[tex]7x^2*\sqrt{2x^4}*6\sqrt{2x^{12}}\\\\7*6x^2*\sqrt{2x^4*2x^{12}}\\\\42x^2*\sqrt{4x^{4+12}}\\\\42x^2*\sqrt{4x^{16}}\\\\42x^2*\sqrt{(2x^8)^2}\\\\42x^2*(2x^8)\\\\42*2x^{2+8}\\\\84x^{10}\\\\[/tex]
So that's why the answer is choice C
The requirement that x is nonzero isn't technically necessary. The original expression simplifies to choice C even when x = 0 is the case. Also, we don't have issues such as division by zero errors that could arise. It's a bit curious why your teacher put in that condition.
Answer:
C.
Step-by-step explanation:
7x²×sqrt(2x⁴)×6×sqrt(2x¹²)
we see right away that as constant multiplication factor we have 7×6 = 42.
and then we get from each sqrt expression a sqrt(2), which leads to sqrt²(2) = 2 and therefore 42×2=84.
the only answer option with 84 is C.
now, to be completely sure, and to get some practice, let's look at the other parts :
sqrt(2x⁴) = sqrt(2)×sqrt(x⁴) = sqrt(2)×x²
sqrt(2x¹²) = sqrt(2)×sqrt(x¹²) = sqrt(2)×x⁶
=>
7x²×sqrt(2)×x²×6×sqrt(2)×x⁶ =7×6×2×x²×x²×x⁶ = 84x¹⁰
perfect. C is confirmed.
find the exact value of tan -75
prove ||a+b|| ≤ ||a||+|b||
Step-by-step explanation:
|a+b|=✓(a²+b²)
|a|+|b|=a+b
||a+b|| ≤ ||a||+|b||
A driveway is in the shape of a rectangle 20 feet wide by 25 feet long.
(a)
Find the perimeter in feet.
(b)
Find the area in square feet.
Which key feature depends on the leading coefficient and the degree of the
function?
A.Axis of symmetry
B.End behavior
C.Intercepts
D.Rate of change
Answer:
B.End behavior
Step-by-step explanation:
Limit as x goes to infinity:
To find the limit as x goes to infinity of a function, we consider only the leading coefficient and the term with the highest degree of the polynomial, and this limits determines the end behavior of a function, and thus, the correct answer is given by option b.
An investor puts $800 into an account that pays 7.5% interest compounded annually. The total amount A in the account after t years is given by which function below?
A = 800(1.75) ^t
A = 800(1.075) t
A = 800(1.075)^ t
A = 800 + (1.075)^ t
Answer:
A = 800( 1.075)^(t)
Step-by-step explanation:
The equation for interest is
A = p (1+r/n) ^ nt where p is the principle, r is the interest rate, n is the number of times per year and t is the years
A = 800( 1+ .075/1)^(1*t)
A = 800( 1.075)^(t)
Let's see
[tex]\\ \tt\leadsto A=P(1+r/n)^{nt}[/tex]
n is 1[tex]\\ \tt\leadsto A=P(1+r)^t[/tex]
[tex]\\ \tt\leadsto A=800(1+0.075)^t[/tex]
[tex]\\ \tt\leadsto A=800(1.075)^t[/tex]
Option C
The longest leg is Select one:
a. 5√3
b. 10√3
c. 5
d. 20
Answer:
D:20
sqrt(3) is less than 2 thus 10*sqrt(3) is less than 20
Step-by-step explanation:
Use the substitution method to solve the system of equations. Choose the
correct ordered pair.
y = 12x-8
y = 8x
A. (4, 12)
B. (5, 11)
C. (2,16)
O D. (3, 15)
Answer:
C. (2,16)
Step-by-step explanation:
[tex]y=12x-8\\y=8x\\\\\\8x=12x-8\\-4x=-8\\x=2\\\\y=8(2)=16[/tex]
Answer:
It might be B
Step-by-step explanation:
12(5)-8
8(11)
52
88
What is the area of the shaded part of the figure?
Answer:
14cm²
Step-by-step explanation:
3x2=6,
3x2=6,
2x1=2,
6+6+2=14 cm^2
Annual income: The mean annual income for people in a certain city (in thousands of dollars) is 41, with a standard deviation of 28. A pollster draws a sample of 92
people to interview.
Answer:
By the Central Limit Theorem, the distribution of the sample means is approximately normal with mean 41 and standard deviation 2.92, in thousands of dollars.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Mean of 41, standard deviation of 28:
This means that [tex]\mu = 41, \sigma = 28[/tex]
Sample of 92:
This means that [tex]n = 92, s = \frac{28}{\sqrt{92}} = 2.92[/tex]
Distribution of the sample means:
By the Central Limit Theorem, the distribution of the sample means is approximately normal with mean 41 and standard deviation 2.92, in thousands of dollars.
Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter. x=tcost, y=tsint, t=π
Step-by-step explanation:
the answer is in the image above
Which of the following choices shows the complete factorization of 50?
52 • 5
2 • 25
52 • 2
None of these choices are correct.
Use differentials to approximate the change in cost corresponding to an increase in sales (or production) of one unit. Then compare this with the actual change in cost.
Function x-Value
C=0.025x^2 + 3x + 4 x=10
dC= ___________
ΔC= __________
Answer:
dC=3.5
DC is between 3.475 and 3.525
Step-by-step explanation:
So let dx=1 since the change there is a change in 1 unit.
Find dC/dx by differentiating the expression named C.
dC/dx=0.05x+3
So dC=(0.05x+3) dx
Plug in x=10 and dx=1:
dC=(0.05×10+3)(1)
dC=(0.5+3)
dC=3.5
Let D be the change in cost-the triangle thing.
Since dx=1 we only want the change in unit to be within 1 in difference.
So this means we want it to be from x=9 to x=1] ot from x=10 to x=11.
Let's do from x=9 to x=10 first:
DC=C(10)-C(9)
DC=[0.025×10^2+3×10+4]-[0.025×9^2+3×9+4]
DC=[2.5+30+4]-[0.025×81+27+4]
DC=[36.5]-[2.025+31]
DC=[36.5]-[33.025]
DC=3.475
Now let's do from x=10 to x=11
DC=[0.025×11^2+3×11+4]-[0.025×10^2+3×10+4]
DC=[0.025×121+33+4]-[36.5]
DC=[3.025+37]-[36.5]
DC=[40.025]-[36.5]
DC=3.525
So DC, the change in cost where the change in unit is 1, is between 3.475 and 3.525.
Your friend offers to place a bet with you. He will pay you $1 if your favorite sports team wins the game on Tuesday night. But you will pay him $3 if his team wins. Your team has an 80% chance of winning, whereas his only has a 20% chance. This bet is in your favor. True or False.
False because $1 =$1 not $3
True. The expected value of the bet is positive ($0.2),
What is probability?Probability is defined as the possibility of an event being equal to the ratio of the number of favorable outcomes and the total number of outcomes.
Let's calculate the expected value of the bet for both outcomes:
If your team wins: You get paid $1, so the expected value is 0.8 × $1 = $0.8
If your friend's team wins: You pay $3, so the expected value is 0.2 × -$3 = -$0.6
The overall expected value of the bet is the sum of these two outcomes: $0.8 + (-$0.6) = $0.2
Since the expected value of the bet is positive ($0.2), this means that on average, you can expect to win money if you take this bet. Therefore, the bet is in your favor.
Learn more about probability here:
brainly.com/question/11234923
#SPJ2
Find the value of x on this triangle
Answer:
33
a2+b2 =c2
a2+ 33 squared = 55 squared
a + 1936 = 3025
3025-1936=1089
square root of 1089 is 33
pleeeaaasssseeee mark as brainliest
Question 13 plz show ALL STEPS so I can learn thnx
9514 1404 393
Answer:
a) (x³ -x² +x +2) +2/(x+1)
b) (x² +2x -5) +6/(x+3)
Step-by-step explanation:
Polynomial long division is virtually identical to numerical long division, except that the quotient term does not require any guessing. It is simply the ratio of the leading terms of the dividend and divisor. As with numerical long division, the product of the quotient term and the divisor is subtracted from the dividend to form the new dividend for the next step.
The process stops when the dividend is of lower degree than the divisor.
In part (a), you need to make sure the dividend expression has all of the powers of x present. This means terms 0x³ and 0x² must be added as placeholders in the given dividend. They will become important as the work progresses.
in a small town in New York, we initiated a cohort study and followed 5,900 people for a mean follow-up of 2 years. At the end of the 2nd year, none of the participants was lost to follow-up. During this follow-up, we identified 600 cases of malaria. What was the cumulative incidence?
a. 10.1%
b. 10.1 per 1,000
c. 50.8%
d. 10 cases
Answer:
Option A
Step-by-step explanation:
From the question we are told that:
Sample size n=5900
Number of newly developed cases No.C=600
Generally the equation for Cumulative Incidence is mathematically given by
[tex]CI=\frac{No.C}{n}[/tex]
[tex]CI=\frac{600}{5900}[/tex]
[tex]CI=0.101[/tex]
[tex]CI= 10.1%[/tex]
Option A
The price of a car was decreased from $13,000 to $11,830. The price is decreased by what percentage?
Answer:
It is decreased by 9%
Step-by-step explanation:
First, find out how much money is decreased. To do this, subtract 13,000-11,830=1170. Finally, figure out how much percent 1170 is of the original price of $13,000.
The answer is 7%.
Hope this helps :)
PLEASE HELP! much appreciated :D
Find the value of x.
Answer:
a
Step-by-step explanation:
What are the coordinates of A’ after a 90° counterclockwise rotation about the origin.
Answer:
A' (- 1, - 5 )
Step-by-step explanation:
Under a counterclockwise rotation about the origin of 90°
a point (x, y ) → (- y, x ), then
A (- 5, 1 ) → A' (- 1, - 5 )
The product of a negative integer and a positive integer is?
PLEASE ANSWER A, B, C
Answer:
a. negative
b. negative
c. positive
Step-by-step explanation:
a. When a negative and positive integer are being multiplied the product will always be negative. For example, -3*2=-6.
b. Before answering this question it is helpful to realize that it is the exact same as part a. This is because the commutative property states that order does not matter in multiplication. So the answer is also negative, 2*-3=-6.
c. If two negative integers are multiplied then the product will be positive. Whenever two integers of the same sign are multiplied the product is positive. The opposite is true when they have different signs; the product will always be negative. An example of two negative integers would be -3*-2=6.
Look at the numbers below. −9.8 −5.4 1.0 14.8 Which shows the best way to add these numbers using the Commutative and Associative Properties? A. (–9.8 + 1.0) + (–5.4 + 14.8) B. (–9.8 + 14.8) + (–5.4 + 1.0) C. (1.0 + 14.8) + (–9.8 + (–5.4)) D. (1.0 + (–9.8)) + (14.8 + (–5.4)
Answer:
B
Step-by-step explanation:
i did the test and it was correct, ur welcome
X^2 + bx + 49 is a perfect squad trinomial what is one possible value of b? & I need help with the others also due soon!
20. (2) 14
A perfect square trinomial will factor into two expressions that are the same, for example: x^2 + 6x + 9 = (x + 3)(x + 3). Since this problem has a C value of 49, it will factor into (x + 7)(x + 7). 7 doubled is 14, therefore one possible value of B is 7.
21. (4) 2, -12
x^2 + 10x + 25 = 24 + 25
(x + 5)^2 = 49
x + 5 = +/- 7
x = 2, -12
22. (3) 3 + sqrt(17)
x^2 - 6x = 8
Complete the Square
x^2 - 6x + 9 = 8 + 9
(x - 3)^2 = 17
x - 3 = +/- sqrt(17)
x = 3 + sqrt(17), 3 - sqrt(17)
23. (1) 1, -5
x^2 + 4x - 5 = 0
x^2 + 4x = 5
x^2 + 4x + 4 = 5 + 4
(x + 2)^2 = 9
x + 2 = +/- 3
x = 1, -5
Hope this helps!
The length of the base of a triangle is twice it’s height. If the area of the triangle is 441 square kilometers, find the height
Answer:
21 kilometers
Step-by-step explanation:
Let the height be [tex]x[/tex]. Then, the length of the base is [tex]2x[/tex]. The formula for the area is of the triangle is given by base*height/2. Therefore, the area of the triangle is equal to [tex]\frac{x \cdot 2x}{2} = x^2[/tex], which is in turn equal to 441. Since [tex]x[/tex] must be positive, then [tex]21^2=441[/tex], meaning that the height is [tex]21[/tex] kilometers.
Hii guys plz help me
Answer:
B is the answer
Step-by-step explanation:
Answer:
B
Step-by-step explanation:
you would have to multiply 2000 and the 25 and then divide
Chris is reading a book that has nine-hundred seventy-eight pages in it. Every night
Chris reads a number of pages that can be rounded to the nearest hundred. The rst
night Chris reads one-hundred two pages. The second night Chris reads ninety-eight
pages. The third night Chris read one-hundred fty-four pages. The fourth night Chris
reads fty-six pages. The fth night Chris reads two-hundred thirty-four pages. The
sixth night Chris reads forty-eight pages. The seventh night Chris reads one-hundred
seventy pages. On what nights does Chris read a number of pages that can be rounded
to the nearest hundred? Show all your mathematical thinking.
9514 1404 393
Answer:
Every night
Step-by-step explanation:
The problem statement tells you ...
"Every night Chris reads a number of pages that can be rounded to the nearest hundred."
Then it asks you ...
"On what nights does Chris read a number of pages that can be rounded to the nearest hundred?"
If we take the problem statement at face value, the answer must be ...
"Every night."
You need to solve a system of equations. You decide to use the elimination method. Which of these is not allowed? 2x - 3y = 12
-x + 2y = 13
O A. Multiply the left side of equation 2 by 2. Then subtract the result from equation 1.
O B. Multiply equation 1 by 2 and equation 2 by 3. Then add the new equations.
C. Multiply equation 2 by-2. Then add the result to equation 1.
Answer:
A.
Step-by-step explanation:
The Elimination Method is the method for solving a pair of linear equations which reduces one equation to one that has only a single variable.
If the coefficients of one variable are opposites, you add the equations to eliminate a variable, and then solve.
If the coefficients are not opposites, then we multiply one or both equations by a number to create opposite coefficients, and then add the equations to eliminate a variable and solve.
When multiplying the equation by a coefficient, we multiply both sides of the equation (multiplying both sides of the equation by some nonzero number does not change the solution).
So, option B is not allowed (it is not allowed to multiply only one part of the equation)
f(x+h)-f(x)
Find the difference quotient
h
where h# 0, for the function below.
f(x) = 4x? -
-8
Simplify your answer as much as possible.
f(x + h) - f(x)
:
h
Х
Okay
9514 1404 393
Answer:
8x +4h
Step-by-step explanation:
[tex]\dfrac{f(x+h)-f(x)}{h}=\dfrac{(4(x+h)^2-8)-(4x^2-8)}{h}\\\\=\dfrac{(4x^2 +8xh+4h^2)-(4x^2-8)}{h}=\dfrac{8xh+4h^2}{h}\\\\=\boxed{8x+4h}[/tex]