Answer:
y^{n+4}
Step-by-step explanation:
Answer:
Step-by-step explanation:
[tex]\frac{y^n *y^{\frac{5}{4} } }{y^{\frac{1}{4} } } =y^n*y^{\frac{5}{4} } \times y^{-\frac{1}{4} } =y^{n+\frac{5}{4} -\frac{1}{4} } \\=y^{n+\frac{5-1}{4} } \\=y^{n+\frac{4}{4} } \\=y^{n+1}[/tex]
Question 5.
Given that cos(O) = 4/5, find:
a) sin(0)
b) tan (0)
Step-by-step explanation:
here's the answer to your question
write 5 lcms of 100 and 120
Answer:
The LCM of 100 and 120 is 600.
The LCM of 5 and 120 is 120.
LCM of 5 and 100 is 100.
Step-by-step explanation:
I think this is the answer . If it is not sorry .
Use special right triangle ratios to find the lengths of the other leg and the hypotenuse
Answer:
leg = 18
hypotenuse = 18 sqrt(2)
Step-by-step explanation:
We know that sin theta = opp side / hypotenuse
sin 45 = 18 / hyp
hyp sin 45 = 18
hyp = 18 / sin 45
hyp = 18 sqrt(2)
Since this is an isosceles triangle ( the two angles are the same measure), the two legs have to be the same length
leg = 18
the lengths of the other leg and the hypotenuse
is 18 units and 18[tex]\sqrt{2}[/tex]units respectively.
Answer:
Solution given:
Let <C=<B=45°
AB=18 units
BC=?
AC=?
again
By using
By usingspecial right triangle ratios
sin C=opposite/hypotenuse=AB/AC=18/AC
Sin 45=18/AC
AC=18/sin45
AC=hypotenuse=18[tex]\sqrt{2}[/tex]units
again
Tan A=opposite/adjacent=BC/AB=BC/18
Tan45=BC/18
BC=Tan45*18
BC=length of another leg=18 units.
The width of a rectangle is twice as long as the length. if the length is increased by 50% and the width is decreased by 20%, the perimeter becomes 248. find the width and length of the original rectangle.
Answer:
Step-by-step explanation:
The percents here make this more tricky than it originally seems to be. We'll make a table and see where it takes us:
original new
length
width
And we'll fill it in according to our rules given. Starting with the original, we are told that the width is twice as long as the length. We don't know the length, so we'll call that L, and if the width is twice that, the width is 2L:
original new
length L
width 2L
Now here's the tricky part. What I'm going to do is fill in the "new" column with the expressions and then we'll simplify them in the next step.
The length is increased by 50%. So we have 100% of the original length and we are adding another 50% to that:
original new
length L 100%L + 50%L
width 2L
The width is decreased by 20%, so we have 100% of 2L and we are subtracting 20% of 2L from that:
original new
length L 100%L + 50%L
width 2L 100%(2L) - 20%(2L)
And now we'll simplify that "new" column:
original new
length L 150%L = 1.5L
width 2L 80%(2L) = 160%L = 1.6L
Now we're ready for the perimeter part. The formula for the perimeter of a rectangle is P = 2L + 2w, so filling in from our "new" column, since 248 is the perimeter given for AFTER the rectangle's length and width are manipulated:
248 = 2(1.5L) + 2(1.6L) and
248 = 3L + 3.2L and
248 = 6.2L so
L = 40 and that means that w = 80 (because in the "original" column, the width is twice the length)
What are the steps to this problem (along with the answer)?
Answer:
x = 3
Step-by-step explanation:
In this piece-wise function, there are three defined sections, each for a different range of x. To find an x where y is -9, we have to set all parts of it equal to -9.
-x, x < -3
So, we can start by setting -x equal to -9 and solve for x:
-x = -9
x = 9
Our domain for this piece of the function is supposed to be x < -3. x = 9 does not fit into this range, meaning, in this range, there is no x for y = -9.
2x, -3 ≤ x ≤ -2
We can set the value 2x equal to -9 and, again, solve for x:
2x = -9
x = -4.5
The solution x = -4.5 does not fit into the defined domain of -3 ≤ x ≤ -2, therefore it is not a solution.
-x^2, x > -2
One last time, we can set -x^2 equal to -9 and solve for x:
-x^2 = -9
x^2 = 9
x = 3, x = -3
We are looking for a solution that fits into the domain, x > -2, x = -3 does not work, but x = 3 does.
In conclusion, the only solution where it fit the domain was x = 3
Answer:
x = 3
Step-by-step explanation:
x = - 3 in interval - 3 ≤ x ≤ - 2 then f(x) = 2x , so
f(- 3) = 2(- 3) = - 6 ≠ - 9
x = 9 in interval x > - 2 then f(x) = - x² , so
f(9) = - 9² = - 81 ≠ - 9
x = 3 in interval x > - 2 then f(x) = - x²
f(3) = - 3² = - 9
x = - 4.5 in the interval x < - 3 then f(x) = - x , so
f(- 4.5) = - (- 4.5) = 4.5
Thus
y = - 9 when x = 3
Plz help me asap !!!
Answer:
all I know is sin square A +cos square A =1
(c+d)^2+11(c+d)+30
Factor completely.
Answer:
firstable give c+b a polynomial value like x
so its will be x^2+11x+30
after the we have to factor it
30=6×5
and 11=6+5
so its will become
(x+6)×(x+5)=x^2+11x+30
x=c+d
(c+d+6)×(c+d+5)=(c+d)^2+11(c+d)+30
have a great day
4. PLEASE HELP ME
Which of the quadratic functions has the widest graph?
A. y= -4/5x2
B. y= -4x2
C. y= 1/3x2
D. y= 0.3x2
Answer:
D. y= 0.3x2
Step-by-step explanation:
In quadratic functions, the value of a affects the wideness of the graph. The smaller the absolute value of a, the wider the graph. In these choices, 1/3 and 0.3 are the smallest. To understand which is smaller convert both to decimals; 1/3 is 0.3333 repeating. Therefore, 0.3 is slightly smaller and wider.
5/21 as a decimal rounded to 3 decimal places
[tex] \sf \: \frac{5}{21 } \: rounded \: to \: 3 \: decimal \: places \: is \: \boxed{ \underline{ \bf0.238}}. \\ \longrightarrow \sf \: Just \: divide \: 5 \: by \: 21 \: upto \: 3 \: decimal \: places \\ \sf \: to \: get \: the \: answer.[/tex]
If Ф ∈ (0, pi/2) and tan(pi cosФ) = cot(pi sinФ), then cos(Ф- pi/4) is equal to?\
Answer:
please see the answer in the picture.
Which of these is the absolute value parent function?
A. f(x) = 13x
B. f(x) = x + 2
C. f(x) = 1x1
D. f(x) = x - 11
Answer:
it's 'A' I guess
Step-by-step explanation:
hope it helps
HELP ME WITH THIS PLEASE PLEASE SHOW ME THE FORMULA FOR LETTER C
Answer:
Which subject is this . please tell
Answer:
see explanation
Step-by-step explanation:
1
(a)
Calculate slope m using the slope formula
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
with (x₁, y₁ = (8, 3) and (x₂, y₂ ) = (10, 7)
m = [tex]\frac{7-3}{10-8}[/tex] = [tex]\frac{4}{2}[/tex] = 2
(b)
Given a line with slope m then the slope of a line perpendicular to it is
[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{2}[/tex]
(c)
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Here m = - [tex]\frac{1}{2}[/tex] , then
y = - [tex]\frac{1}{2}[/tex] x + c ← is the partial equation
To find c substitute (8, 3) into the partial equation
3 = - 4 + c ⇒ c = 3 + 4 = 7
y = - [tex]\frac{1}{2}[/tex] x + 7 ← equation of perpendicular line
--------------------------------------------------------------------------
2
(a)
with (x₁, y₁ ) = (3, 5) and (x₂, y₂ ) = (4, 4)
m = [tex]\frac{4-5}{4-3}[/tex] = [tex]\frac{-1}{1}[/tex] = - 1
(b)
[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{-1}[/tex] = 1
(c)
y = x + c ← is the partial equation
To find c substitute (3, 5) into the partial equation
5 = 3 + c ⇒ c = 5 - 3 = 2
y = x + 2 ← equation of perpendicular line
Which of the following is the inverse of the function given below?
I + 2
7
O A. (1)
-1 + 2
=
7
7
1 + 2
O B. ()
OC. s()
OD. p(t)
=
2x + 7
= 7r – 2
Answer:
d) p(x)= 7x-2
Step-by-step explanation:
d) p(x) = 7x -2
What is 1/4 0.75 1/3 0.5 greatest to least
Answer:
1/4 = 1 ÷ 4 = 0.251/3 = 1 ÷ 3 ≈ 0.330.750.50.75 → 0.5 → 1/3(0.33) → 1/4(0.25)
You wait in line for hours to get the new special edition Nikes for $250, but you have to pay 5.3% in Virginia state sales tax. What is the total you will pay?
Answer:
263.25
Step-by-step explanation:
250 x .053 (5.3%) = 13.25 tax
250 + 13.25 = 263.25 price plus sales tax
Answer:
263.25
Step-by-step explanation:
ASAP HELP!! PLEASEEEE!!
Answer:
Step-by-step explanation:
5.1, please this is just a guess from using my head to calculate
What is the area of this triangle
Answer:
14
Step-by-step explanation:
7*4*1/2=14
Need help please need it quick
Answer:
Choice A
Step-by-step explanation:
An arithmetic sequence is one which has an incremental change.
for our answer, our change is +5
HELP PLEASE!!! The expected value of a random variable X is 35. The variable is transformed
by multiplying X by 4 and then adding 1 to it. Find the expected value (mean)
of the transformed variable. A. 135 B.117 C. 154 D.141
Answer:
Expected value x= 35
linear transformation is defined as a + bx
here, b=4, a=1
The transformation is [tex]z=1+4x[/tex]
now, expected value, [tex]l_z=l_z(a+bx)[/tex]
[tex]=l(a)+l(bx)[/tex]
[tex]=a+b\:l\:x[/tex]
substitute the value of a=1, b=4 and l=35
[tex]l_z=1+4\times35[/tex]
[tex]=1+140[/tex]
[tex]=141[/tex]
So, the expected value of the transformed variable is 141.
OAmalOHopeO
=======================================================
Explanation:
Let's consider a set of three values such that they're all equal to 35
{35,35,35}
This rather boring set has a mean of 35 and it's hopefully very clear why this is the case. The terms "mean" and "expected value" are interchangeable.
If we multiply everything by 4, then we get the new set {140,140,140}
Then add 1 to everything and we arrive at {141,141,141}. You can quickly see that the mean here is 141.
-----------------------------
You could play around with that original set of 3 values to make things more interesting. Let's say we subtract 1 from the first item and add 1 to the last item. So we could have {35,35,35} turn into {34,35,36}. You should find that the mean is still 35 here.
If we quadruple each item, then we have {34,35,36} turn into {136,140,144}
Finally, add 1 to everything to get {137,141,145}. Computing the mean of this set leads to 141.
These are just two examples you could do to help see why the answer is D) 141
-----------------------------
In a more general theoretical sense, we're saying the following
Y = mX+b
E[Y] = E[m*X+b]
E[Y] = E[m*X] + E[b]
E[Y] = m*E[X] + b
where Y is the transformed variable based on the random variable X. In this case, m = 4 and b = 1. Also, E[X] = 35.
So,
E[Y] = m*E[X] + b
E[Y] = 4*35 + 1
E[Y] = 141
-----------------------------
Why go through all this trouble? Well consider that you know a certain distribution is centered around 35. Then consider that you want to convert those measurements to some other unit. This conversion process is us going from variable X to variable Y. Think of it like a batch conversion of sorts.
A more real world example would be something like "we know the average temperature is 35 degrees Celsius. The question is: what is the average temperature in Fahrenheit?" The numbers would be different, but the idea still holds up.
Which graphs are the graphs of even functions?
Find the circumference.
Use 3.14 for t.
r= 2 m
C = [?] m
C=Td
Answer:
12.56 m
Step-by-step explanation:
The circumference of a circle is given by
C = 2 * pi *r
C = 2 * (3.14) * 2
C =12.56
Can you guys help me find x for both
Answer:
x = 6 and x = 9
Step-by-step explanation:
16
MN is half the length of KL
MN = [tex]\frac{1}{2}[/tex] × 12 = 6
--------------------------------------------
17
Δ LMN and Δ LJK are similar triangles, so the ratios of corresponding sides are equal, that is
[tex]\frac{LM}{LJ}[/tex] = [tex]\frac{MN}{JK}[/tex] , substitute values
[tex]\frac{x}{x+9}[/tex] = [tex]\frac{8.5}{17}[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )
2x = x + 9 ( subtract x from both sides )
x = 9
The volumes of two similar solids are 512cm3 and 2197cm3. If the smaller solid has a surface are of 960cm2, find the surface area of the larger solid. Part 1: find the similarity ratio by taking the cube root of each volume. Show your work. Part 2: use your answer from part 1 to find the ratio of the surface areas. Show your work. Part 3: set up a proportion and solve to find the surface area of the larger solid.
Answer:
see below
Step-by-step explanation:
Part 1:
(512) ^ 1/3
-------------------
(2197) ^ 1/3
8
-----
13
The scale factor is 8:13
Part 2
The ratios of the areas is related by scale factor squared
8^2
-----
13^2
64
------
169
Part 3
64 960
------ = ----------------
169 SA larger
Using cross products
64 * SA = 169 * 960
64 SA = 162240
Divide each side by 64
64 SA/ 64 = 162240 / 64
SA = 2535
2535 cm^2
3. A rectangle has a length of 2x – 9 and a width of x2 + 3x – 4. What is the polynomial that models the area
of the rectangle?
Answer:
(C) 2x^3 - 3x^2 - 35x + 36
Step-by-step explanation:
First multiply 2x by x^2 + 3x - 4:
(2x)(x^2 + 3x - 4)
2x^3 + 6x^2 - 8x
Next multiply -9 by x^2 + 3x - 4:
(-9)(x^2 + 3x - 4)
-9x^2 - 27x +36
Now add the two polynomials by adding like terms:
(2x^3 + 6x^2 - 8x) + (-9x^2 - 27x +36)
2x^3 + 6x^2 - 9x^2 - 8x - 27x + 36
2x^3 - 3x^2 - 35x + 36
Hope this helps (●'◡'●)
if a=(p+q),b=(p-q)and c=qsquare -psquare, show that ab+c=0
Answer:
I think this is the ans
Step-by-step explanation:
ab+c=0
(p+q)(p-q)=0
p Square-q Square =0
0=p Square-q Square
Can someone please help me out
Step-by-step explanation:
[tex] \sqrt{ - 81} = 9i \\ \sqrt{ - 11} = i \sqrt{11} \\ \sqrt{ - 20} = i \sqrt{20} [/tex]
Select the true statement about triangle ABC.
A. cos A = cos C
B. cos A = sin C
C. cos A = sin B
D. cos A = tan C
Answer:
B
Step-by-step explanation:
cosA = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{AB}{AC}[/tex] = [tex]\frac{12}{13}[/tex]
cosC = [tex]\frac{BC}{AC}[/tex] = [tex]\frac{5}{13}[/tex]
sinC = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{AB}{AC}[/tex] = [tex]\frac{12}{13}[/tex]
tanC = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{AB}{BC}[/tex] = [tex]\frac{12}{5}[/tex]
Then
cosA = sinC → B
[tex]3f^{2} - 15f - 108[/tex]
Answer:
3(f - 9)(f + 4)
Step-by-step explanation:
Assuming you require to factorise the expression
3f² - 15f - 108 ← factor out 3 from each term
= 3(f² - 5f - 36) ← factor the quadratic
Consider the factors 0f the constant term (- 36) which sum to give the coefficient of the f- term (- 5)
The factors are - 9 and + 4 , since
- 9 × 4 = - 36 and - 9 + 4 = - 5 , then
f² - 5f - 36 = (f- 9)(f + 4)
Then
3f² - 15f - 108 = 3(f - 9)(f + 4)
Use the expression, X^2-7
What is the value of the expression above when n=5
Answer:
18
Step-by-step explanation:
X^2 - 7 =
Since we need to evaluate the expression when X = 5, we replace X with 5.
= 5^2 - 7
Now, according to the correct order of operations, we need to do the exponent first. 5^2 = 5 * 5 = 25
= 25 - 7
Finally, we subtract.
= 18
Answer: 18
Help me to prove it
Answer:
see explanation
Step-by-step explanation:
Using the identities
cotA = [tex]\frac{1}{tanA}[/tex]
cot²A = cosec²A - 1
tan²A = sec²A - 1
Consider the left side
(cotA + tanA)² ← expand using FOIL
= cot²A + 2cotAtanA + tan²A
= cosec²A - 1 + 2 .[tex]\frac{1}{tanA}[/tex] . tanA + sec²A - 1
= cosec²A - 1 + 2 + sec²A - 1
= sec²A + cosec²A - 2 + 2
= sec²A + cosec²A
= right side, thus proven