Answer:
[tex]log_{17}52.875 = log_{10}52.875 : log_{10}17}[/tex]
Step-by-step explanation:
Given
[tex]log_{17}(52.875)[/tex]
Required
Convert to base 10
To do this, we make use of the following logarithm laws;
[tex]log_ba = \frac{log_{10}a}{log_{10}b}[/tex]
In the given parameters;
[tex]a = 52.875[/tex]
[tex]b = 17[/tex]
Substitute these values in [tex]log_ba = \frac{log_{10}a}{log_{10}b}[/tex]
[tex]log_{17}52.875 = \frac{log_{10}52.875}{log_{10}17}[/tex]
Represent as a ratio
[tex]log_{17}52.875 = log_{10}52.875 : log_{10}17}[/tex]
Hence;
[tex]log_{17}(52.875)[/tex] is represented as [tex]log_{17}52.875 = log_{10}52.875 : log_{10}17}[/tex]
Expression [tex]log_{17} 52.875[/tex] can be written as in form of ratio of log [tex]\frac{log_{10} 52.875}{log_{10} 17}[/tex] .
Any logarithmic expression [tex]log_{a} b[/tex] can we written as in form of ratio of log on base 10.
[tex]log_{a} b=\frac{log_{10} b}{log_{10} a}[/tex]
Here logarithmic expression is, [tex]log_{17} 52.875[/tex] comparing with above expression.
We get, [tex]b=52.875,a=17[/tex]
Substitute values of a and b in above expression.
We get, [tex]log_{17} 52.875=\frac{log_{10} 52.875}{log_{10} 17}[/tex]
Learn more:
https://brainly.com/question/12049968
The weight of a full steel bead tire is approximately 800 grams, while a lighter wheel weighs only 700 grams. What is the weight of each tire in pounds? There are 453.592 grams in one pound. Round answers to 2 decimal places. 800 grams = ______ pounds 700 grams = _____ pounds
Answer:
800= about 1.76 lbs
700= about 1.54 lbs
(there are about 453.5 grams in a pound
Step-by-step explanation:
Answer:
800 grams = 1.76 pounds
700 grams = 1.54 pounds
Step-by-step explanation:
i googled it
The mean weight of newborn infants at a community hospital is 6.6 pounds. A sample of seven infants is randomly selected and their weights at birth are recorded as 9.0, 7.3, 6.0, 8.8, 6.8, 8.4, and 6.6 pounds. Does the sample data show a significant increase in the average birthrate at a 5% level of significance?
A. Fail to reject the null hypothesis and conclude the mean is 6.6 lb.
B. Reject the null hypothesis and conclude the mean is lower than 6.6 lb.
C. Reject the null hypothesis and conclude the mean is greater than 6.6 lb.
D. Cannot calculate because the population standard deviation is unknown
Answer:
The correct option is A
Step-by-step explanation:
From the question we are told that
The population is [tex]\mu = 6.6[/tex]
The level of significance is [tex]\alpha = 5\% = 0.05[/tex]
The sample data is 9.0, 7.3, 6.0, 8.8, 6.8, 8.4, and 6.6 pounds
The Null hypothesis is [tex]H_o : \mu = 6.6[/tex]
The Alternative hypothesis is [tex]H_a : \mu > 6.6[/tex]
The critical value of the level of significance obtained from the normal distribution table is
[tex]Z_{\alpha } = Z_{0.05 } = 1.645[/tex]
Generally the sample mean is mathematically evaluated as
[tex]\=x = \frac{\sum x_i }{n}[/tex]
substituting values
[tex]\=x = \frac{9.0 + 7.3 + 6.0+ 8.8+ 6.8+ 8.4+6.6 }{7}[/tex]
[tex]\=x = 7.5571[/tex]
The standard deviation is mathematically evaluated as
[tex]\sigma = \sqrt{\frac{\sum [ x - \= x ]}{n} }[/tex]
substituting values
[tex]\sigma = \sqrt{\frac{ [ 9.0-7.5571]^2 + [7.3 -7.5571]^2 + [6.0-7.5571]^2 + [8.8- 7.5571]^2 + [6.8- 7.5571]^2 + [8.4 - 7.5571]^2+ [6.6- 7.5571]^2 }{7} }[/tex][tex]\sigma = 1.1774[/tex]
Generally the test statistic is mathematically evaluated as
[tex]t = \frac{\= x - \mu } { \frac{\sigma }{\sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{7.5571 - 6.6 } { \frac{1.1774 }{\sqrt{7} } }[/tex]
[tex]t = 1.4274[/tex]
Looking at the value of t and [tex]Z_{\alpha }[/tex] we see that [tex]t < Z_{\alpha }[/tex] hence we fail to reject the null hypothesis
What this implies is that there is no sufficient evidence to state that the sample data show as significant increase in the average birth rate
The conclusion is that the mean is [tex]\mu = 6.6 \ lb[/tex]
Find all values of x on the graph of f(x) = 2x3 + 6x2 + 7 at which there is a horizontal tangent line.
Answer:
the equation is not correct, u have to write like
ax'3+bx'2+cx+d
Answer:
x=-2 and x=0
Step-by-step explanation:
So I know it isn't x=-3 and x=0. So my guess is that it is x=0 and x=-2 and heres why.
First, I find the derivative of f(x)=2x^3+6x^2+7 which is 6x^2+12x
Then, I plugged in all the values of x's I had and I found out that you get 0 for -2 and 0 when you plug them in
So, in conclusion I believe the answer to be x=-2 and x=0
Factor the trinomial below. x^2 + 5x – 24 A. (x – 8)(x + 3) B. (x – 4)(x + 6) C. (x – 3)(x + 8) D. (x – 6)(x + 4)
Answer:
The answer is option CStep-by-step explanation:
x² + 5x - 24
To factorize first write 5x as a difference so that when subtracted will give you 5 and when multiplied will give you - 24
That's
x² + 8x - 3x - 24
Factorize x out
That's
x( x + 8) - 3(x + 8)
Factor x + 8 out
We have the final answer as
(x + 8)(x - 3)Hope this helps you
Answer:(x-3)(x+8)
Step-by-step explanation:
a department store regularly sells a pair of pants for $49.95. they are having a sale where clothing 30% off.
after including an 8% sales tax, how much do the pants cost on sale?
A. $30.97
B. $38.96
C. $37.76
D. $32.17
Answer:
C. $37.76
Step-by-step explanation:
30% of $49.95
=30/100×49.95
=$14.99
selling price = 49.95 -14.99
= $34.96
8% sales tax included
=8/100×34.96
=$2.80
new price= 34.96+2.80
=$37.76
What is the diameter of the base of the cone below, to the nearest foot, if the volume is 314 cubic feet? Use π = 3.14.
This question is incomplete because it lacks the required diagram. Please find attached the diagram required to answer the question.
Answer:
14 feet
Step-by-step explanation:
The volume of a cone = 1/3 πr²h
In the above question, we are given the volume = 314 cubic feet
the height is given in the attached diagram = 6ft
Step 1
We find the radius.
From the formula for the volume of a cone, we can derive the formula for radius of the cone.
Radius of the cone = √(3 × V/π × h
π = 3.14
Radius of the cone = √( 3 × 314 /3.14 × 6
Radius of the cone = √942/3.14× 6
Radius = √50
= 7.0710678119feet
Step 2
Diameter of the cone = Radius of the cone × 2
= 7.0710678119 × 2
= 14.142135624 feet
Approximately to the nearest foot = 14 feet
Therefore, the diameter of the cone to the nearest foot = 14 feet.
Which of the following is the correct notation of the complex number?
Answer:
-84 + 10i
Step-by-step explanation:
Standard Complex Form: a + bi
Step 1: Evaluate
√-100 = √-1 x √100 = i x 10 = 10i
-84 = -84
Step 2: Combine
10i - 84
Step 3: Rearrange
-84 + 10i
Answer:
Last Option
Step-by-step explanation:
√-100 - 84
(√(100×-1)) - 84
(√100)(√-1)-84
√-1 = i
10i - 84 or -84 + 10i
What type of triangle has side lengths 9, 10, and √130? A. obtuse B. not a triangle C. acute D. right
Answer: Option C.
Step-by-step explanation:
The lengths of our triangle are:
9, 10 and √130.
If the triangle is a triangle rectangle, by the Pitagoream's theorem we have:
A^2 + B^2 = H^2
in this case H is the larger side, this must be √130.
then:
A and B must be 9 and 10.
9^2 + 10^2 = (√130)^2
81 + 100 = 130
This is false, so this is NOT a triangle rectangle, the hypotenuse is shorter than it should be.
Now, we have some kind of rule:
if A^2 + B^2 = H^2 then we have one angle of 90° and two smaller ones. (triangle rectangle)
if A^2 + B^2 > H^2 then all the angles are smaller than 90°, this is an acute triangle.
if A^2 + B^2 < H^2 then we have one angle larger than 90°, this is an obtuse angle.
(H is always the larger side, A and B are the two shorter ones).
In this case:
81 + 100 > 130
Then this must be an acute angle.
Assume that when adults with smartphones are randomly selected, 57% use them in meetings or classes. If 8 adult smartphone users are randomly selected, find the probability that exactly 4 of them use their smartphones in meetings or classes. The probability is
Answer:
≈ 0.2526
Step-by-step explanation:
The number of combinations of 4 out of 8:
8C4 = 8!/(4!(8-4)!)= 8*7*6*5/(1*2*3*4)= 70Success factor is:
57% = 0.57and failure factor is:
(100 - 57)%= 43%= 0.43Probability:
0.57⁴*0.43⁴*70 ≈ 0.2526A museum curator is hanging 7 paintings in a row for an exhibit. There are 4 Renaissance paintings and 3 Baroque paintings. From left to right, all of the Renaissance paintings will be hung first, followed by all of the Baroque paintings. How many ways are there to hang the paintings
Answer:
144 ways
Step-by-step explanation:
Number of paintings = 7
Renaissance = 4
Baroque = 3
We are hanging from left to right and we will first hang Renaissance painting before baroque painting.
For Renaissance we have 4! Ways of doing so. 4 x3x2x1 = 24
For baroque we have 3! Ways of doing so. 3x2x1 = 6
We have 4!ways x 3!ways
= (4x3x2x1) * (3x2x1) ways
= 144 ways
Therefore we have 144 ways to hang the painting.
The size of the left upper chamber of the heart is one measure of cardiovascular health. When the upper left chamber is enlarged, the risk of heart problems is increased. A paper described a study in which the left atrial size was measured for a large number of children ages 5 to 15 years. Based on this data, the authors conclude that for healthy children, left atrial diameter was approximately normally distributed with a mean of 26.5 mm and a standard deviation of 4.8 mm.
Required:
a. Approximately what proportion of healthy children has left atrial diameters less than 24 mm?
b. Approximately what proportion of healthy children has left atrial diameters greater than 32 mm?
c. Approximately what proportion of healthy children has left atrial diameters between 25 and 30 mm?
d. For healthy children, what is the value for which only about 20% have a larger left atrial diameter?
Answer:
a) P [ X < 24 mm ] = 0,3015 or P [ X < 24 mm ] = 30,15 %
b) P [ X > 32 mm ] = 0,1251 or P [ X > 32 mm ] = 12,51 %
c) P [ 25 < X < 30 ] = 0,4964 or P [ 25 < X < 30 ] = 49,64 %
d) z(s) = 0,84
Step-by-step explanation:
Normal Distribution N ( μ₀ ; σ ) is N ( 26,5 ; 4,8 )
a) P [ X < 24 mm ] = ( X - μ₀ ) / σ
P [ X < 24 mm ] = (24 - 26,5)/ 4,8 = - 0,5208 ≈ - 0,52
P [ X < 24 mm ] = - 0,52
And from z-table we find area for z score
P [ X < 24 mm ] = 0,3015 or P [ X < 24 mm ] = 30,15 %
b)P [ X > 32 mm ] = 1 - P [ X < 32 mm ]
P [ X < 32 mm ] = ( 32 - 26,5 ) / 4,8
P [ X < 32 mm ] = 5,5/4,8 = 1,1458 ≈ 1,15
P [ X < 32 mm ] = 1,15
And from z-table we get
P [ X < 32 mm ] = 0,8749
Then:
P [ X > 32 mm ] = 1 - 0,8749
P [ X > 32 mm ] = 0,1251 or P [ X > 32 mm ] = 12,51 %
c) P [ 25 < X < 30 ] = P [ X < 30 ] - P [ X < 25 ]
P [ X < 30 ] = 30 - 26,5 / 4,8 = 0,73
From z-table P [ X < 30 ] = 0,7673
P [ X < 25 ] = 25 - 26,5 / 4,8 = - 0,3125 ≈ - 0,31
From z-table P [ X < 25 ] = 0,2709
Then
P [ 25 < X < 30 ] = 0,7673 - 0,2709
P [ 25 < X < 30 ] = 0,4964 or P [ 25 < X < 30 ] = 49,64 %
d) If 20 %
z- score for 20% is from z-table
z(s) = 0,84
The value of y varies jointly with x and z. If y = 7 when z = 196 and x = 2, find the value of y when x = 3 and z = 336. I will rate you brainliest
Answer:
18
Step-by-step explanation:
Given that:
y∞ xz
y=kxz. Where k is constant
When z=196 and x= 2 then y= 7
7=(196)(2)k
7=392k
k=1/56
There fore y=(1/56)xz
When x=3 and z =336
y=(1/56)xz
y=(1/56)(336)(3)
y=18
if value of y varies jointly with x and z. If y = 7 when z = 196 and x = 2 then the value of y when x = 3 and z = 336 is 18.
What is Ratio?A ratio is an ordered pair of numbers a and b, written a / b where b does not equal 0.
Value of y varies jointly with x and z.
y ∞ xz
y=kxz.
Where k is constant
When z=196 and x= 2 then y= 7
Let us find the value of k
7=(196)(2)k
7=392k
Divide both sides by 7
k=1/56
y=(1/56)xz
When x=3 and z =336
y=(1/56)xz
y=(1/56)(336)(3)
y=18
Hence, the value of y when x = 3 and z = 336 is 18.
To learn more on Ratios click:
https://brainly.com/question/13419413
#SPJ2
Q1) Two balls are randomly selected without replacement from a box containing three black balls numbered 1, 2, 3 and two white balls numbered 4 and 5. Assuming that all outcomes are equally likely. Find out the probabilities of following events. a) Probability that the color of second ball is white. b) Probability that the color of second ball is black. c) Probability that both balls are black. d) Probability that both balls are white.
[tex]|\Omega|=5\cdot4=20[/tex]
a)
[tex]|A|=3\cdot2+2\cdot1=8\\\\P(A)=\dfrac{8}{20}=\dfrac{2}{5}[/tex]
b)
[tex]|A|=3\cdot2+2\cdot3=12\\\\P(A)=\dfrac{12}{20}=\dfrac{3}{5}[/tex]
c)
[tex]|A|=3\cdot2=6\\\\P(A)=\dfrac{6}{20}=\dfrac{3}{10}[/tex]
d)
[tex]|A|=2\cdot1=2\\\\P(A)=\dfrac{2}{20}=\dfrac{1}{10}[/tex]
Policeman A and Policeman B hand out 70 speeding tickets in a month.
Policeman A hands out 4 times as many speeding tickets as Policeman B.
Policeman A handed out ? Speeding tickets.
Answer:
Policeman A = 56 tickets
Step-by-step explanation:
Policemen A + B = 70
If Policeman B hands out x no of tickets...
Then Policeman A hands out 4x no of tickets
meaning...
x + 4x = 70
5x = 70
x = 70/5
x = 14
Therefore Policeman A hands out..
4x = 4 × 14 = 56 tickets
True or false? induction is a kind of thinking you use to form general ideas and rules based on mathematical formuals
Answer:
Hey there!
True. You use individuals rules, pieces of evidence, and experimentally found ideas that can be combined to form a general mathematical statement.
Let me know if this helps :)
1/9, -0.1, -2/12 in order
Answer:
-2/12, -0.1, 1/9
Step-by-step explanation:
Answer:
Least to greatest: -2/12 , -0.1 , 1/9
Greatest to least: 1/9, -0.1, -2/12
Step-by-step explanation:
Change all of the numbers so that they are either fractions or decimals. Usually it is easier to change all the numbers to decimal.
Divide:
1/9 = ~0.111 (rounded)
-0.1 = -0.1
-2/12 = - ~0.167 (rounded)
Put the numbers in number order:
-~0.167 , -0.1 , ~0.111
-2/12 , -0.1 , 1/9
~
is this a function {(-2, 6), (-3, 7), (-4, 8), (-3, 10)}
No, that is not a function.
To be a function, each different input (x) needs a different output (y)
In the given function there are two -3’s as inputs and they have different y values, so it can’t be a function.
Answer: no
Step-by-step explanation: To determine if a relation is a function, take a look at the x–coordinate of each ordered pair. If the x–coordinate is different in each ordered pair, then the relation is a function.
Note that the only exception to this would be that if the x-coordinate pairs up with the same y-coordinate in a relation more than once, it's still classified ad a function.
Ask yourself, do any of the ordered pairs
in this relation have the same x-coordinate?
Well by looking at this relation, we can see that two
of the ordered pairs have the same x-coordinate.
In this case, the x-coordinate of 3 appears twice.
So no, this relation is not a function.
Simplify the following expression. (4x − 8)(4x + 8)
Answer:
16x^2 - 64
Step-by-step explanation:
(4x − 8)(4x + 8)
We recognize that this is the difference of squares
(a-b) (a+b) = a^2 - b^2
=(4x)^2 - 8^2
=16x^2 - 64
Help please, i really need the answer asap.
The larger metallic object is initially at rest, so the velocity is 0 when t = 0. The speed changes after t = 3 seconds.
Answer:
It would be the last one.
Step-by-step explanation:
It says the object is initially at rest, so you look for a table with 0 m/s and you find the last table had been at rest for 0 -2 seconds. The small rocky object initially had a speed of 90 m/s and then decreased to 36 m/s as its energy transferred to the metallic object. The metallic object's speed from time 4-6s with the small rocky object equals the small rocky initial speed.
Rocky Object initial speed = 90 m/s
Rocky Object new speed = 36 m/s
Large metallic object speed after collision = 64 m/s.
64 m/s + 36 m/s = 90 m/s
Large metallic object speed after collision + Rocky Object new speed
= Rocky Object initial speed
You can also test this for kinetic energy.
A baking scale measures mass to the tenth of a gram, up to 650 grams. A cup of flour is placed on the scale and results in a measure of 121.8 grams. Which of the following statements is not true?
a.The exact mass of the cup of flour must be between 121.7 and 121.9 grams.
b.The cup of flour has a mass of exactly 121.8 grams.
c.Given the limitations of the scale, the measurement has an appropriate level of accuracy.
d.To the nearest gram, the cup of flour has a mass of 122 grams.
Answer
Is it C I may have done my math wrong lol
Step-by-step explanation:
The size of a television is the length of the diagonal of its screen in inches. The aspect ratio of the screens of older televisions is 4:3, while the aspect ratio of newer wide-screen televisions is 16:9. Find the width and height of an older 35-inch television whose screen has an aspect ratio of 4:3.
Answer:
The Width = 28 inches
The Height = 21 inches
Step-by-step explanation:
We are told in the question that:
The width and height of an older 35-inch television whose screen has an aspect ratio of 4:3
Using Pythagoras Theorem
Width² + Height² = Diagonal²
Since we known that the size of a television is the length of the diagonal of its screen in inches.
Hence, for this new TV
Width² + Height² = 35²
We are given ratio: 4:3 as aspect ratio
Width = 4x
Height = 3x
(4x)² +(3x)² = 35²
= 16x² + 9x² = 35²
25x² = 1225
x² = 1225/25
x² = 49
x = √49
x = 7
Hence, for the 35 inch tv set
The Width = 4x
= 4 × 7
= 28 inches.
The Height = 3x
= 3 × 7
= 21 inches
A sports club was formed in the month of May last year. The function below, M(t), models the number of club members for the first 10 months, where t represents the number of months since the club was formed in May. m(t)=t^2-6t+28 What was the minimum number of members during the first 10 months the club was open? A. 19 B. 28 C. 25 D. 30
Answer:
A: 19
Step-by-step explanation:
For this, we can complete the square. We first look at the first 2 terms,
t^2 and -6t.
We know that [tex](t-3)^2[/tex] will include terms.
[tex](t-3)^2 = t^2 - 6t + 9[/tex]
But [tex](t-3)^2[/tex] will also add 9, so we can subtract 9. Putting this into the equation, we get:
[tex]m(t) = (t-3)^2 - 9 +28[/tex]
[tex]m(t) = (t-3)^2 +19[/tex]
Using the trivial inequality, which states that a square of a real number must be positive, we can say that in order to have the minimum number of members, we need to make (t-3) = 0. Luckily, 3 months is in our domain, which means that the minimum amount of members is 19.
Techwiz electronics makes a profit of $35 for each mp3 and $18 for each DVD last week techwiz sold a combined total of 118 mp3 and DVD players. Let x be the number of mp3 sold last week write an expression for the combined total profit (in dollars) made last week
Answer:
The total profit is [tex]p = 17x + 2124[/tex]
Step-by-step explanation:
From the question we are told that
The profit made on each mp3 is k = $35
The profit made on each mp3 is y = $18
The total amount sold is n = 118
Now given that the amount of mp3 sold is x then the amount of DVD sold is mathematically evaluated as
[tex]n - x[/tex]
Now the profit made on the x number of mp3 sold is
[tex]x * 35 = 3x[/tex]
And the the profit made from the n-x number of DVD sold is 18 (n-x ) = 18 - 18x
So the total profit made last week from the sales of both mp3 and DVD is
[tex]p = 35x + 18n - 18x[/tex]
[tex]p = 17x + 18(118)[/tex]
[tex]p = 17x + 2124[/tex]
Which of the following is a correct interpretation of the expression -4 - (-7)?
Answer:
D
Step-by-step explanation:
So we have the expression:
[tex]-4-(-7)[/tex]
First, simplify. Two negatives make a positive. Therefore, the -(-7) turns into +7:
[tex]-4-(-7)\\=-4+7[/tex]
When adding on the number line, we move to the right.
Therefore, the correct interpretation is the value 7 digits to the right of -4.
D is the correct answer.
Answer:
D. the number that is 7 to the right of -4 on the number line
Step-by-step explanation:
interpret -4 - (-7)
= -4 +7
therefore
the number that is 7 to the right of -4 on the number line
so its D.
The mean number of rushing yards for one NFL team was less than 99 yards per game. If a hypothesis test is performed, how should you interpret a decision that rejects the null hypothesis?
Question options :
A. There is sufficient evidence to reject the claim
u < 99.
B. There is sufficient evidence to support the claim
u < 99.
C. There is not sufficient evidence to reject the claim
u < 99.
D. There is not sufficient evidence to support the claim
u< 99.
Answer:
B. There is sufficient evidence to support the claim
u < 99.
Step-by-step explanation:
We construct the n*ll and alternative hypotheses to support our claim
The n*ll hypothesis :H0
The alternative hypothesis : Ha
N*ll hypothesis =H0: u=99
Alternative hypothesis =Ha: u<99
So if n*ll hypothesis (H0) u=99 is rejected, then we accept the alternative hypothesis that u<99
we can therefore have sufficient evidence to support our claim that u<99
A chicken soup recipe calls for 13 cups of chicken stock how much is this in quarts
Answer:
3.25 US Quarts
Step-by-step explanation:
Compute the flux of the vector field LaTeX: \vec{F}=F → =< y + z , x + z , x + y > though the unit cubed centered at origin.
Assuming the cube is closed, you can use the divergence theorem:
[tex]\displaystyle\iint_S\vec F\cdot\mathrm dS=\iiint_T\mathrm{div}\vec F\,\mathrm dV[/tex]
where [tex]S[/tex] is the surface of the cube and [tex]T[/tex] is the region bounded by [tex]S[/tex].
We have
[tex]\mathrm{div}\vec F=\dfrac{\partial(y+z)}{\partial x}+\dfrac{\partial(x+z)}{\partial y}+\dfrac{\partial(x+y)}{\partial z}=0[/tex]
so the flux is 0.
The Bookstall Inc. is a specialty bookstore concentrating on used books sold via the Internet. Paperbacks are $1.35 each, and hardcover books are $3.50. Of the 60 books sold last Tuesday morning, 55 were paperback and the rest were hardcover. What was the weighted mean price of a book? (Round your answer to 2 decimal places.)
Answer:
dddddd okaksy ogvurn
Step-by-step explanation:
d
Please help!!! A calculator was used to perform a linear regression on the values in the table. The results are shown to the right of the table.What is the line of best fit?A.y = –0.984x + 13.5B.y = –2.9x + 13.5C.–0.984 = –2.9x + 13.5D.y = 13.5x – 2.9
Answer:
B.y = –2.9x + 13.5 i think dont word me for it
Step-by-step explanation:
Equation of line is y = –2.9x + 13.5 which is correct option(B).
What is linear equation?A linear equation is defined as an equation in which the highest power of the variable is always one.
Let y = a + bx, where a is the y-intercept and b is the slope.
[tex]\sum{x} = 1 + 2 + 3 + 4 + 5 = 15[/tex]
[tex]\sum{y} = 11 + 8 + 4+ 1 + 0 = 24[/tex]
[tex]\sum {xy} = 11 + 16 + 12 + 4 + 0 = 43[/tex]
[tex]\sum{x^2} = 1 + 4 + 9 + 16 + 25 = 55[/tex]
[tex]n = 5[/tex]
[tex]b= \dfrac{n\sum{xy}-\sum{x}\sum{y}}{n{\sum{x^2}-(\sum{x}})^2}[/tex]
[tex]b= \dfrac{ 5 (43) - (15) . (24)}{{5 (55) - (15})^2}[/tex]
[tex]b= -2.9[/tex]
[tex]a = \dfrac{25}{5} - (-2.9)\dfrac{15}{5}[/tex]
[tex]a=13.5[/tex]
Hence, equation of line is y = –2.9x + 13.5
Learn more about linear equation here:
https://brainly.com/question/2263981
#SPJ2
Average of 44.64, 43.45, 42.79, 42.28
Answer:
43.29Step-by-step explanation:
[tex]44.64+ 43.45+42.79+42.28\\\\= \frac{44.64+ 43.45+42.79+42.28}{4} \\\\\\= \frac{173.16}{4} \\\\= 43.29\\[/tex]