Answer:
d. The sample mean used to build this interval was 170 pounds.
Step-by-step explanation:
Confidence interval concepts:
A confidence interval has two bounds, a lower bound and an upper bound.
A confidence interval is symmetric, which means that the point estimate used is the mid point between these two bounds, that is, the mean of the two bounds.
The margin of error is the difference between the two bounds, divided by 2.
In this question:
Bounds 160 and 180, so the sample mean used was (160+180)/2 = 170, and thus the correct answer is given by option d.
ok i think you guys can do it
[tex] {64}^{ \frac{2}{3} } \div {27}^{ \frac{5}{3} } \times 54 \\ = > \: {({2}^{3} )}^{ \frac{2}{3} } \div ({{3}^{3}})^{ \frac{5}{3} } \times 54 \\ = > \: {2}^{2} \div {3}^{5} \times 54 \\ = > \: 4 \div 243 \times 54 \\ = > \: 4 \div 13122 \\ = > \: \frac{4}{13122} \\ = > \: \frac{2}{6561} [/tex]
Hope it helps!!!!!!!!!!
PUWID, du then solve.
Timothy's father will build a shed for his tools. It will be a square with a
1 side that measures 8 m. What is the area of the shed?
1. What is asked?
testy
Answer:
The area of the shed=[tex]64m^2[/tex]
Step-by-step explanation:
We are given that
Side of square =8m
We have to find the area of the shed.
To find the area of shed we will find the area of square.
We know that
Area of square=[tex]side\times side[/tex]
Using the formula
Area of square=[tex]8\times 8[/tex]
Area of square=[tex]64m^2[/tex]
Area of shed=Area of square
Area of shed=64 square m
Hence, the area of the shed=[tex]64m^2[/tex]
Use the Central Limit Theorem to find the mean and standard error of the mean of the indicated samplingg distribution.
The amounts of time employees of a telecommunications company have worked for the company are normally distributed with a mean of 5.5 years and a standard deviation of 2.1 years. Random samples of size 17 are drawn from the population and the mean of each sample is determined.
a. 1.33 years, 2.1 years
b. 5.5 years, 0.12 years
c. 5.5 years, 0.51 years
d. 1.33 years, 0.51 years
Answer:
c. 5.5 years, 0.51 years
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Mean of 5.5 years and a standard deviation of 2.1 years.
This means that, for the population, [tex]\mu = 5.5, \sigma = 2.1[/tex]
Random samples of size 17.
This means that [tex]n = 17[/tex]
Use the Central Limit Theorem to find the mean and standard error of the mean of the indicated sampling distribution.
The mean is the same as the mean for the population, that is, 5.5 years.
The standard deviation is:
[tex]s = \frac{\sigma}{\sqrt{n}} = \frac{2.1}{\sqrt{17}} = 0.51[/tex]
This means that the correct answer is given by option c.
There are twelve shirts in my closet. Five are red, four are blue, and three are green. What is
the probability that I choose a red or blue shirt to wear tomorrow?
O 65%
0 75%
0 80%
60%
58%
Answer:
the probability that I chose red or blue is 75%
75%
What is the most specific name for a quadrilateral with one pair of parallel sides?
A. trapezoid
B. rectangle
C. parallelogram
D. quadrilateral
help me pls
Answer:
C: parallelogram
Step-by-step explanation:
List the angles in order from the smallest to the largest.
Answer:
D. <S, <R, <T
Step-by-step explanation:
Recall: On a triangle, the bigger an angle measure the longer the side opposite it and vice versa.
In ∆RST,
The longest side, SR = 22, is opposite to <T
Therefore, <T is the biggest angle.
Medium side, ST = 21, is opposite to <R, therefore,
<R is the medium angle measure
The smallest angle measure <S is opposite to the shortest side, RT.
Angels I'm order form the smallest to largest will be:
<S, <R, <T
Hi, Friends,
please help me solve this problem.
Q. terms of a geometric sequence are found by the formula Tn = ar n-1 If a = 3 and r = 2 , find the 4 terms of the sequence.
9514 1404 393
Answer:
3, 6, 12, 24
Step-by-step explanation:
It helps if the formula is properly written.
Tn = a·r^(n-1)
Fill in the given values for a, r, and use n = 1 to 4.
T1 = 3·2^(1-1) = 3
T2 = 3·2^(2-1) = 6
T3 = 3·2^(3 -1) = 12
T4 = 3·2^(4 -1) = 24
__
Additional comment
The value a=3 tells you the first term is 3. The value r=2 tells you each term is 2 times the previous one. Knowing this, you can write down the sequence based on your knowledge of multiplication tables (×2). You can use the formula as we did above, but it isn't necessary.
3, 6, 12, 24, ...
express the ratio as a fraction in the lowest terms 100cm:5m
Step-by-step explanation:
we know that 1m=100cm
so 1m:5m(final)
1:5
Answer:
1/5
Step-by-step explanation:
Since 100cm = 1m
then
100cm:5m becomes 1m:5m
which in fraction is 1/5
a mountain railway AB is of length 864m and rises at an angle of 120° to the horizontal.A train is 856m above sea level when it is at A calculate the height above sea level of the train when it reaches B
9514 1404 393
Answer:
1604 m
Step-by-step explanation:
The relevant trig relation is ...
Sin = Opposite/Hypotenuse
Here, the "opposite" is the elevation of point B above point A, and the "hypotenuse" is the length of the railway. Then the total height of point B is ...
B = 856 + 864·sin(120°)
B = 856 +864(√3)/2 = 856 +432√3 ≈ 1604.246
The height of the train at point B is about 1604 m above sea level.
Find the value for the side marked below.
Round your answer to the nearest tenth.
у
100
49°
y = [?]
Answer:
y = 75.5
Step-by-step explanation:
Reference angle (θ) = 49°
Hypotenuse = 100
Opposite = y
Apply trigonometric function, SOH. Which is:
Sin θ = Opp/Hyp
Plug in the values
Sin 49 = y/100
100*Sin 49 = y
y = 75.5 (nearest tenth)
Which point represents the unit rate?
A
B
C
D
Answer:
Point C represents the unit rate
Step-by-step explanation:
The answer to this 6th grade summer school math question is
Answer 7.84
Will give brainliest answer
Answer:
not equivalent
equivalent
not equivalent
Step-by-step explanation:
25 is by itself already 5²
therefore
[tex] {25}^{m} = {5}^{2m} [/tex]
when we divide one time by 5, we simply take away 1 from the power making it
[tex] {5}^{2m - 1} [/tex]
the other options are wrong
[tex] {25}^{m - 1} [/tex]
would be right, if we have
[tex] {25}^{m} \div 25[/tex]
but we don't.
and
[tex] {25}^{2m - 1} [/tex]
would even square
[tex] {25}^{m} [/tex]
and then divide by 25. no, the original excision is nothing like that.
An elected government official is interested in the opinion of teachers in her voting area. She randomly selected five schools at random from the 20 schools in her area and then interviews each of the teachers in those five schools. The government official is using
Answer:
a simple random sample (SRS).
Step-by-step explanation:
In Statistics, sampling can be defined as a process used to collect or select data (objects, observations, or individuals) from a larger statistical population using specific procedures.
There are various types of sampling used by researchers and these are;
1. Systematic sampling.
2. Convenience sampling.
3. Stratified sampling.
4. Cluster sampling.
5. Random sampling.
Random sampling also referred to as simple random sample (SRS) involves randomly selecting a subset of a larger population.
In this scenario, an elected government official randomly selected five schools at random from the 20 schools in her area and then interviews each of the teachers in those five schools, in order to get their opinions about voting. Thus, the government official is using a simple random sample (SRS).
Problem is in the picture below
Answer:
68.1
Step-by-step explanation:
If those angles are congruent, then all side lengths follow the same ratio.
So the smaller triangle side length of 9 over the small side length of the bigger triangle 21.5, is the ratio for all the sides.
9/21.5 = unknown side / 48
unknown side = 48 * 9/21.5
So to find the length of CD, multiply 48 by our ratio to get ~ 20.1
Add that to our 48 and we get 68.1
Find the equation of the line tangent to y = sin(x) going through х = pi/4
Answer:
[tex]\displaystyle y - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \bigg( x - \frac{\pi}{4} \bigg)[/tex]
General Formulas and Concepts:
Algebra I
Coordinates (x, y)
Functions
Function Notation
Point-Slope Form: y - y₁ = m(x - x₁)
x₁ - x coordinate y₁ - y coordinate m - slopePre-Calculus
Unit CircleCalculus
Derivatives
The definition of a derivative is the slope of the tangent lineDerivative Notation
Trig Derivative: [tex]\displaystyle \frac{d}{dx}[sin(u)] = u'cos(u)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = sin(x)[/tex]
[tex]\displaystyle x = \frac{\pi}{4}[/tex]
Step 2: Differentiate
Trig Derivative: [tex]\displaystyle y' = cos(x)[/tex]Step 3: Find Tangent Slope
Substitute in x [Derivative]: [tex]\displaystyle y' \bigg( \frac{\pi}{4} \bigg) = cos \bigg( \frac{\pi}{4} \bigg)[/tex]Evaluate [Unit Circle]: [tex]\displaystyle y' \bigg( \frac{\pi}{4} \bigg) = \frac{\sqrt{2}}{2}[/tex]Step 4: Find Tangent Equation
Substitute in x [Function y]: [tex]\displaystyle y \bigg( \frac{\pi}{4} \bigg) = sin \bigg( \frac{\pi}{4} \bigg)[/tex]Evaluate [Unit Circle]: [tex]\displaystyle y \bigg( \frac{\pi}{4} \bigg) = \frac{\sqrt{2}}{2}[/tex]Substitute in variables [Point-Slope Form]: [tex]\displaystyle y - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \bigg( x - \frac{\pi}{4} \bigg)[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Question 3
Solve In(x + 1) = 1.
A) X= 2
B) x = e + 1
C)x= e
D)x= e-1
Answer:
D) x = e - 1
General Formulas and Concepts:
Pre-Algebra
Equality PropertiesAlgebra II
Natural Logarithms ln and Euler's number eSolving logarithmic equationsStep-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle ln(x + 1) = 1[/tex]
Step 2: Solve for x
[Equality Property] e both sides: [tex]\displaystyle e^{ln(x + 1)} = e^1[/tex]Simplify: [tex]\displaystyle x + 1 = e^1[/tex][Equality Property] Isolate x: [tex]\displaystyle x = e - 1[/tex]82 less than r is less than -164
Answer:
82<r<-164
Step-by-step explanation:
We need to form an inequality of the given statement.
82 less than r is less than -164
Less than is written as <.
82 less than r means, 82<r
r is less than -164, r<-164
Combining two statements,
82<r<-164
Hence, the expression for 82 less than r is less than -164 is 82<r<-164.
Can someone help me?
Answer:
x = 80
Step-by-step explanation:
3x/2=120°
3x=240°
x=80°
Answered by GAUTHMATH
What was the original price of the car? Show all work
Answer:
I got u, it is litearly 16540/83.8 = $19737.5
Step-by-step explanation:
its very simple sincen 100-16.2=83.8
What is the domain of this function y= 1/ square root 2-x
Answer:
Domain:
( − ∞ , 2 ] , { x | x ≤ 2 }
Range:
[ 0 , ∞ ) , { y | y ≥ 0 }
20. In the image, ABC has measure 58°. What is the measure of ABD?
A. 116°
OB. 29°
O C. 58
OD. There is not enough information to determine LABD.
Answer:
Option B, 29°
Step-by-step explanation:
The diagram is a angle bisecting diagram which divides the 58° angle into two 29° angles.
Answered by GAUTHMATH
Which of the following indicates that Triangle ABC and Triangle DEF are similar?
Answer:
D
Step-by-step explanation:
The symbol ~ means similarity (same shapes, not same size)
In point estimation a. data from the sample is used to estimate the population parameter. b. the mean of the population equals the mean of the sample.
Answer:
a. data from the sample is used to estimate the population parameter.
Step-by-step explanation:
Given
Point estimation
Required
The true statement
Point estimation literally means taking data from the sample to estimate the corresponding population parameter
For instance:
Sample mean estimates population mean
Sample standard deviation estimates population standard deviation
Sample variance estimates population variance
Hence;
(a) is correct
Barnaby decided to count the number of ducks and geese flying south for the winter. On the first day he counted 175 ducks and 63 geese. By the end of migration, Barnaby had counted 4,725 geese. If the ratio of ducks to geese remained the same (175 to 63), how many ducks did he count?
Answer:
13,125 ducks
Step-by-step explanation:
The ratio of ducks:geese on the first day was:
175:63
On the last day (end of migration), he counted 4,725 geese.
To find the number of ducks using the same ratio, we are first going to divide 4,725 by 63 to find what number all the ducks and geese multiplied by:
4,725/63 = 75
The geese multiplied by 75. This means the ducks also multiplied by 75:
175*75 = 13,125
Barnaby counted 13,125 ducks.
Hope it helps (●'◡'●)
a garden has more roses than daisies, and it has 9 daisies.furthermore, each flower in the garden has more then 3 petals.Let r represent the number of roses and let P represent the total number of petals in the garden. let’s compare the expressions P and 3(r+9). which statement is correct
Answer:
There is not enough info to tell
Step-by-step explanation:
Khan acadamey
Part 1: Joe and Hope were both asked to factor the following polynomial completely. Is one of them correct? Both of them? Neither of them? Explain what each of them did was correct and/or incorrect.
Part 2:
Find all the values of k so the the quadratic expression factors into two binomials. Explain the process used to find the values.
3x^2 + kx - 8
If we simplify, both Joe and Hope factored the polynomial correctly but Joe didn't complete it fully.
The first binomial can be further factored:
8x + 12 = 4(2x + 3)Part 2The quadratic expression needs to have two roots in order to be factored as two binomials.
The discriminant must be positive or zero:
D = b² - 4ac ≥ 0We have a = 3, b = k, c = -8
So we get following inequality:
k² - 4*3*(-8) ≥ 0k² + 96 ≥ 0Since k² is positive for any value of k, the solution is any value of k:
k ∈ RHope this attachment helps you.
Write a compound inequality to represent all of the numbers between -4 and 6.
Answer:
-4 < x < 6
Step-by-step explanation:
Translate the sentence into an inequality.
The sum of 5 and c is greater than – 22.
what da hell the answer ?
Answer:
5 + c > -22
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightAlgebra I
InequalitiesStep-by-step explanation:
Step 1: Define
Sum of 5 and c is greater than -22
↓ Identify
Sum = addition
5 + cIs greater than = inequality
>Add them all together:
5 + c > -22
We know that the remainder Rn will satisfy |Rn| ⤠bn + 1 = 1 (n + 1)9n + 1. We must make n large enough so that this is less than 0.0001. Rounding to five decimal places, we have b2 = _________ , b3 =_________and b4 =__________
This question is incomplete, the complete question is;
We know that the remainder R[tex]_n[/tex] will satisfy | R[tex]_n[/tex] | ≤ b[tex]_{ n + 1[/tex] = 1 / ( n + 1 )9[tex]^{ n + 1[/tex].
We must make n large enough so that this is less than 0.0001.
Rounding to five decimal places,
we have b₂ = _________ , b₃ =_________and b₄ =__________
Answer:
b₂ = 0.00617, b = 0.00046 and b₄ = 0.00004
Step-by-step explanation:
Given the data in the question;
| R[tex]_n[/tex] | ≤ b[tex]_{ n + 1[/tex] = 1 / ( n + 1 )9[tex]^{ n + 1[/tex]
Now,
b[tex]_{ n + 1[/tex] = 1 / ( n + 1 )9[tex]^{ n + 1[/tex]
b₂ = b[tex]_{ 1 + 1[/tex] = 1 / ( 1 + 1 )9[tex]^{ 1 + 1[/tex] = 1 / (2)9² = 1 / 162 = 0.00617 { 5 decimal places }
b₃ = b[tex]_{ 2 + 1[/tex] = 1 / ( 2 + 1 )9[tex]^{ 2 + 1[/tex] = 1 / (3)9³ = 1 / 2187 = 0.00046 { 5 decimal places }
b₄ = b[tex]_{ 3 + 1[/tex] = 1 / ( 3 + 1 )9[tex]^{ 3 + 1[/tex] = 1 / (4)9⁴ = 1 / 19683 = 0.00004 { 5 decimal places }
Therefore, b₂ = 0.00062, b = 0.00046 and b₄ = 0.00004