Therefore , the solution of the given problem of percentage comes out to be were tuned in to a specific program or show at a given moment.
What is percentage?A number or figure stated as a fraction of 100 is referred to as "a%" in statistics. The versions that begin with "pct," "pct," and "pc" are also uncommon. The common way to indicate it is with the numeral "%," though. Furthermore, there are no indicators and a flat ratio of every single thing to the total number. Percentages are basically integers because they frequently add up to 100.
Here,
The TV ratings, also known as the TV audience share, are a measurement of the proportion of all television-owning households that are watching the same program at the same moment.
Networks and marketers use it as a gauge of a TV show's popularity to decide how successful a program will be and how much to charge for advertising during it.
Companies like Nielsen, which use a sample of homes with televisions to estimate the audience size for a given program or show, are usually in charge of gathering the TV ratings.
TV ratings are expressed as a proportion of all households with televisions that were tuned in to a specific program or show at a given moment.
To know more about percentage visit:
https://brainly.com/question/28269290
#SPJ1
Ñamandu es un genio dibujó un cuadrado de x cm cada lado en la parte superior del cuadrado partió en tres partes iguales quedando el corte expresado de esta manera x bajo 3 unió el primer punto de corte con el vértice del lado paralelo trazando un segmento a lo que llamó y Descubre que figuras se forman y entra el perímetro de cada figura formado
The figures created are a square and a right triangle, and the perimeter of the entire figure is (13x/3) + x × sqrt(10).
When Namandu divides the top side of the square into three equal parts, he creates two segments of length x/3 each. By connecting the first point of division with the vertex of the parallel side, he creates a right triangle with legs of length x/3 and x, and hypotenuse of length y.
Using the Pythagorean theorem, we can solve for y:
y^2 = (x/3)^2 + x^2
y^2 = x^2/9 + x^2
y^2 = (10x^2)/9
y = x×sqrt(10)/3
Now we can find the perimeter of each figure that is created
Perimeter of the original square = 4x
Perimeter of the right triangle = x + x/3 + y = x + x/3 + xsqrt(10)/3
Perimeter of the entire figure = 4x + x + x/3 + xsqrt(10)/3 = (13x/3) + x×sqrt(10)
Learn more about Pythagorean theorem here
brainly.com/question/14930619
#SPJ4
Use the following function to find d(0)
d(x)=-x+-3
d(0)=
When the function d(x) = -x +(-3), then the value of d(0) is -3
In mathematics, a function is a relationship between two sets of numbers, called the domain and range. A function assigns each element of the domain to exactly one element of the range.
In the given problem, we are given a function d(x)=-x-3. The notation d(0) represents the value of the function d(x) when x = 0.
To find d(0), we need to substitute x = 0 in the function d(x)=-x-3, which gives:
d(0) = -(0) - 3
The first term -(0) is equal to zero, and the second term -3 is a constant value that remains the same regardless of the value of x. Therefore, we can simplify the expression as
d(0) = -3
Learn more about function here
brainly.com/question/12431044
#SPJ4
which part of this graph shows a non-linear relationship
Answer:
A.
Step-by-step explanation:
Weight: 20kg Order: 10 mg q6 hours Therapeutic range : 2-3 mg/kg/day. What is daily dose? Is it safe? Is it therapeutic?
The daily dose is 40mg, this dose per kilogram per day is within the therapeutic range of 2-3mg/kg/day, which means that the medication is within the safe and effective range for this patient's weight.
The weight of the patient is 20kg, and the prescribed dosage is 10mg every 6 hours. To calculate the daily dose, we need to multiply the prescribed dosage by the number of doses per day. Since the medication is prescribed every 6 hours, this means that the patient will take it 4 times a day.
=> (10mg x 4 doses) = 40 mg
The therapeutic range is the range of doses at which the medication is most effective and safe. In this case, the therapeutic range is 2-3mg/kg/day. To determine if the daily dose is within the therapeutic range, we need to divide the daily dose (40mg) by the patient's weight (20kg) to get the dose per kilogram per day, which is 2mg/kg/day.
However, it's important to note that the therapeutic range is a general guideline and may vary depending on the patient's individual circumstances and medical history.
To know more about therapeutic here
https://brainly.com/question/14598348
#SPJ4
Alfonso wants to purchase a pool membership
for the summer. He has no more than y dollars to
spend. The Aquatics Club charges an initial fee
of $75 plus $20 per month. The Swimming Hole
charges an initial fee of $15 plus $65 per month.
Write a system of inequalities that you can use to
determine which company offers the better deal.
Let x represent the number of months.
The system of inequalities of the company with the better offer is 75 + 20x ≤ y and 15 + 65x ≤ y
Identifying the system of inequalitiesLet's use A to represent the total cost (in dollars) of purchasing a pool membership from the Aquatics Club,
Let S represent the total cost of purchasing a pool membership from the Swimming Hole.
Then we can write the following system of inequalities:
A = 75 + 20x (total cost of Aquatics Club membership)
S = 15 + 65x (total cost of Swimming Hole membership)
Alfonso has no more than y dollars to spend
So, we have
75 + 20x ≤ y
15 + 65x ≤ y
Hence, the system is 75 + 20x ≤ y and 15 + 65x ≤ y
Read more about system of inequalities at
https://brainly.com/question/23093488
#SPJ1
Can anyone please help with this math problem? Thanks!
Answer: Yes Sofia will have enough money
=======================================================
Explanation:
Refer to the drawing below. I've split the hexagon into two pieces. The bottom is a rectangle and the top is a trapezoid.
The area of the rectangle is 16*7 = 112 square meters.
The trapezoid has 16 as one of the parallel sides. The other side is x meters. We'll use the perimeter 54 to determine what x must be
sum of the exterior sides = perimeter
6+7+16+7+6+x = 54
42+x = 54
x = 54-42
x = 12
The top most side is 12 meters. This is the missing side of the trapezoid. The hexagon has a height of 12.66 meters, so the trapezoid's height must be 12.66-7 = 5.66 meters. Refer to the blue segment I marked in the drawing below.
area of the trapezoid = 0.5*height*(base1+base2)
area = 0.5*5.66*(16+12)
area = 79.24 square meters
----------------
Recap so far
area of the rectangle at the bottom = 112 square metersarea of the trapezoid up top = 79.24 square metersThe total area of the entire hexagon is therefore 112+79.24 = 191.24 square meters.
Let's convert that to square decimeters.
Recall that 1 decimeter = 10 centimeters
Multiply both sides by 10
1 decimeter = 10 centimeters
10*(1 decimeter) = 10*(10 centimeters)
10 decimeters = 100 centimeters
10 decimeters = 1 meter
Then,
[tex]191.24 \text{ sq m}= 191.24 \text{ sq m} * \frac{10 \text{ dm}}{1 \text{ m}} * \frac{10 \text{ dm}}{1 \text{ m}}\\\\= \frac{191.24*10*10}{1*1} \text{ sq dm}\\\\= 19124 \text{ sq dm}\\\\[/tex]
The entire lawn is 19124 square decimeters.
----------------
We have one final block of calculations to determine the total price.
x = number of rolls
1 roll covers 90 square decimeters
x rolls cover 90x square decimeters
90x = 19124
x = 19124/90
x = 212.489 approximately
Round up to the nearest integer to get x = 213. It doesn't matter that 212.489 is closer to 212. We round up to clear the hurdle. It means we'll have leftover grass that isn't used (perhaps it could be handy to have some back up grass just in case mistakes are made, and some patches need to be redone).
In short, Sofia needs 213 rolls.
1 roll costs $4.50
213 rolls will cost 213*4.50 = 958.50 dollars.
This is under the $1000 threshold (with 1000-958.50 = 41.50 dollars to spare).
Sofia will have enough money to pay for all of the grass.
The average between 3. 15 and x is 40 what is x?
The value of x that makes the average between 3.15 and x equal to 40 is 76.85.
In this problem, we are given two numbers, 3.15 and x, and told that the average between them is 40. We can set up an equation to solve for x as follows:
(3.15 + x) / 2 = 40
To find the average between 3.15 and x, we add the two numbers together and divide by 2, which gives us the equation above.
To solve for x, we can start by multiplying both sides of the equation by 2:
3.15 + x = 80
Next, we can subtract 3.15 from both sides of the equation:
x = 76.85
To know more about average here
https://brainly.com/question/16956746
#SPJ4
HELP PLS ILL GIVE U POINTS
Answer:
i think 16 im not sure
Step-by-step explanation:
Consider a square whose side-length is one unit. Select any five points from inside this square. Prove that at least two of these points are within squareroot 2/2 units of each other.
The given square with a side length of one unit is known to contain five points. One must prove that at least two of these points are within square root 2/2 units of each other.
According to the Pigeonhole principle, "if n items are put into m containers, with n > m, then at least one container must contain more than one item."In this context, the square is the container, and the points inside it are the objects. If more than four points are picked, the theorem is true, and two points are nearer to each other than the square root of 2/2 units.
Let's place four points on the square's four corners. The distance between any two of these points is the square root of two units since the square's side length is 1.
Let's add another point to the mix. That point is either inside the square or outside it. Without loss of generality, let us assume that the point is inside the square. It must then be within the perimeter outlined by joining the square's corners to the point that was not a corner already.
The perimeter of the square described above is a square with a side length of square root 2 units.
Since we have five points in the square, at least two of them must be in the same smaller square, due to the pigeonhole principle. Without loss of generality, let's assume that two of the points are in the upper-left square. As a result, any points within this square are within the square root 2 units of any of the other four points. Hence, at least two points of the five selected are within the square root of 2/2 units of each other.
To know more about the "pigeonhole principle": https://brainly.com/question/13982786
#SPJ11
A space probe near Neptune communicates with Earth using bit strings. Suppose that in its transmissions it sends a 1 one-third of the time and a 0 two-thirds of the time. When a 0 is sent, the probability that it is received correctly is 0.8 and the probability that it is received incorrectly (as a 1) is 0.2. When a 1 is sent the probability that it is received correctly is 0.8 and the probability that it is received incorrectly (as a 0) is 0.2.
Find the probability that a 0 is received. (Enter the value of the probability in decimal format and round the final answer to one decimal place.)
P(0 received correctly) = P(0 sent) × P(0 received correctly | 0 sent)= [tex](2/3) × 0.8= 0.5333[/tex] (rounded to 1 decimal place)Thus, the probability that a 0 is received is 0.5333 (rounded to 1 decimal place).
0.5333
A space probe near Neptune communicates with Earth using bit strings. Suppose that in its transmissions it sends a 1 one-third of the time and a 0 two-thirds of the time. When a 0 is sent, the probability that it is received correctly is 0.8 and the probability that it is received incorrectly (as a 1) is 0.2. When a 1 is sent the probability that it is received correctly is 0.8 and the probability that it is received incorrectly (as a 0) is 0.2.The probability that a 0 is received correctly is given in the problem as 0.8, and the probability that a 0 is sent is 2/3. Therefore, the probability that a 0 is received correctly
for such more questions on probability
https://brainly.com/question/13604758
#SPJ11
In a regular pentagon PQRST. PR intersects QS
at O. Calculate angle ROS.
Answer: 72°
Step-by-step explanation:
To find the interior angle of this shape, use the formula 180(n-2)/n, where n is the amount of sides. Plugging 5 in for the interior angle of a pentagon, you get 180(3)/5, or 108°.
Using the statement that PR intersects QS, we can see that triangle QOR is isosceles (to get this, look at triangle PQR, and note that because it has 2 equal side lengths, and its last length is not equivalent to the other 2 sides, it is isosceles). Solving for angle PRQ, we know one angle is 108°, and the other two are equal. The total angle in a triangle is 180°, so (180°-108°)/2 = 36° (angles QPR and PRQ).
Since the angle of R = 108°, we can find angle PRS as 108° - 36°, or 72°. Since triangles PQR and QRS are similar (share the same angles and side lengths), we can see that angle RQS and RSQ are both 36°.
Since ORS is a triangle, its angle total is 180°. Since we know the angles ORS and OSR (respectively) already as 72° and 36°, we can subtract these angles to find angle ROS. 180°-72°-36° = 72°
What are the zeros of the function? Set the function = 0, factor, and use the zero-product property. Show your steps!
f(x) = x² + 7x – 60
(100 POINTS AND BRAINLIEST)
The zeroes of the function are -12 and 5.
What is meant by Zeros of the function?Zeros of a function are the values of the input variables that make the output of the function equal to zero. The zeros are the solutions of equation f(x) = 0.
According to the question:
To find the zeros of the function
f(x) = x² + 7x - 60, we must set f(x) equal to zero and solve for x.
So we start with the equation:
x² + 7x - 60 = 0
Next, we need to factor the left side of the equation. We are looking for two numbers that multiply to -60 and add to 7. After some trial and error, we find that the numbers are 12 and -5:
x² + 7x - 60 = (x + 12)(x - 5) = 0
Now we can apply the zero product property, which states that if the product of two factors is zero, then at least one of the factors must be zero. Therefore, we set each factor equal to zero and solve for x:
x + 12 = 0 or x - 5 = 0
Solving for x, we get:
x = -12 or x = 5
The zeros of the function f(x) = x² + 7x - 60 are therefore x = -12 and x = 5.
To know more about Zeros of the function visit:
brainly.com/question/16633170
#SPJ1
Let n be a positive integer. If a == (3^{2n}+4)^-1 mod(9), what is the remainder when a is divided by 9?
Let n be a positive integer. We can use the properties of modular arithmetic to calculate this remainder. Let's start with a = (32n + 4)-1 mod 9. We can rewrite this as a = 9 - (32n + 4)-1 because 9 = 0 mod 9.
We can use Fermat's Little Theorem to calculate (32n + 4)-1. This theorem states that (32n + 4)-1 mod 9 = (32n + 4)8 mod 9.
Using the identity (a + b)n mod m = ((a mod m) + (b mod m))n mod m, we can simplify the equation to (32n mod 9 + 4 mod 9)8 mod 9.
32n mod 9 = 0, so (32n mod 9 + 4 mod 9)8 mod 9 = 48 mod 9 = 1.
Finally, a = 9 - 1 = 8 mod 9, so the remainder when a is divided by 9 is 8.
Learn more about positive integer:
https://brainly.com/question/16952898
#SPJ11
a parachutist rate during a free fall reaches 132 feet per second. what is this rate in meters per second? at this rate, how many meters will the parachutist fall during 10 seconds of free fall. in your computations, assume that 1 meter is equal to 3.3 feet. (do not round your answer)
Parachutist's rate during free fall is 40 meters per second and will fall approximately 490 meters during 10 seconds of free fall.
How to convert feet to meters?First, we need to convert 132 feet per second to meters per second. We know that 1 meter is equal to 3.3 feet, so we can use the following conversion factor:
[tex]$\frac{3meter}{3.3 feet}[/tex]
To convert feet per second to meters per second, we can multiply by the conversion factor:
[tex]132 (\frac{1}{3.3} ) = 40 meters/second[/tex]
Therefore, the parachutist's rate during free fall is 40 meters per second.
Next, we can use the following formula to find the distance the parachutist falls during 10 seconds of free fall:
distance =[tex]\frac{1}{2}[/tex] * acceleration * time²
where acceleration due to gravity is approximately 9.8 meters/second^2.
Substituting the given values, we get:
distance = [tex]\frac{1}{2}[/tex] * 9.8 meters/second² * (10 seconds)²
distance = 490 meters
Therefore, the parachutist will fall approximately 490 meters during 10 seconds of free fall.
To know more about Foot visit:
brainly.com/question/14230645
#SPJ1
Suppose that the insurance companies did do a survey. They randomly surveyed 400 drivers and found that 320 claimed they always buckle up. We are interested in the population proportion of drivers who claim they always buckle up.a.i. x = __________ii. n = __________iii. p′ = __________b. Define the random variables X and P′, in words.c. Which distribution should you use for this problem? Explain your choice.d. Construct a 95% confidence interval for the population proportion who claim they always buckle up.i. State the confidence interval.ii. Sketch the graph.iii. Calculate the error bound.e. If this survey were done by telephone, list three difficulties the companies might have in obtaining random results.
We are interested in the population proportion of drivers who claim they always buckle upa.i. x = 320 ii. n = 400 iii. p′ = 0.8
b. The random variable X represents the number of drivers out of the sample of 400 who claim they always buckle up, while P′ represents the sample proportion of drivers who claim they always buckle up.
c. The distribution to use for this problem is the normal distribution because the sample size is large enough (n=400) and the population proportion is not known.
d. i. The 95% confidence interval for the population proportion who claim they always buckle up is (0.7709, 0.8291).
ii. The graph is a normal distribution curve with mean p′ = 0.8 and standard deviation σ = sqrt[p′(1-p′)/n].
iii. The error bound is 0.0291.
e. Three difficulties the insurance companies might have in obtaining random results from a telephone survey are:
Selection bias: The survey might not be truly random if the telephone numbers selected are not representative of the population of interest.
Nonresponse bias: People may choose not to participate in the survey or may not be reached, which could bias the results.
Social desirability bias: Respondents may give socially desirable answers rather than their true opinions, which could also bias the results.
For more questions like Variable click the link below:
https://brainly.com/question/17344045
#SPJ11
an equation of a circle is given by (x+3)^2+(y_9)^2=5^2 apply the distributive property to the square binomials and rearrange the equation so that one side is 0.
The equation of the circle is [tex]x^2 + y^2 + 6x - 18y + 65 = 0[/tex].
Given:
Equation of the circle is [tex](x+3)^2+(y-9)^2=5^2[/tex]
Expand the equation
[tex](x+3)^2 = (x+3)(x+3) = x^2 + 3x + 3x + 9 = x^2 + 6x + 9[/tex]
[tex](y-9)^2 = (y-9)(y-9) = y^2 - 9y - 9y + 81 = y^2 - 18y + 81[/tex]
[tex]5^2 = 25[/tex]
Then, substitute the expanded expressions into the equation
[tex](x+3)^2+(y-9)^2=5^2\\(x^2 + 6x + 9) + (y^2 - 18y + 81) = 25\\[/tex]
Simplify and combine like terms
[tex](x^2 + 6x + 9) + (y^2 - 18y + 81) = 25\\x^2 + y^2 + 6x - 18y + 90 = 25[/tex]
Rearrange the equation so that one side is 0
[tex]x^2 + y^2 + 6x - 18y + 90 = 25\\x^2 + y^2 + 6x - 18y + 90 - 25 = 0\\x^2 + y^2 + 6x - 18y + 65 = 0[/tex]
Thus, the equation of a circle [tex](x+3)^2+(y-9)^2=5^2[/tex] can be rearranged using the distributive property to form [tex]x^2 + y^2 + 6x - 18y + 65 = 0[/tex], with one side equaling 0.
Learn more about distributive property here: https://brainly.com/question/2807928
#SPJ11
1 0 6
0 1 1
0 0 0
Find the solution(s) to the system, if it exists. State the solution as a point (be sure to use parentheses), use parameter(s) s and t if needed. If the system is inconsistent, then state no solution.
The system has infinitely many solutions, which can be written as (x, y, z) = (1 - 60s, -10 + 600s, s) where s is a parameter.
To solve the system of equations:
1x + 0y + 60z = 1
1x + 10y + 0z = 0
0x + 0y + 0z = 0
The third equation is an identity, implying that it does not give us any new information. The first two equations can be used to solve for x, y, and z:
From the first equation, we get x = 1 - 60z
From the second equation, we get y = 0 - 10x = -10(1 - 60z) = -10 + 600z
Therefore, the solution to the system can be written as a point in terms of z as:
(x, y, z) = (1 - 60z, -10 + 600z, z)
Since z can take on any value, there are infinitely many solutions to the system, which can be parameterized as:
(x, y, z) = (1 - 60s, -10 + 600s, s) where s is a parameter.
he system has infinitely many solutions, which can be written as (x, y, z) = (1 - 60s, -10 + 600s, s) where s is a parameter.
For more questions like Equation click the link below:
https://brainly.com/question/29657983
#SPJ11
how to calculate the product of two random variable that follows normal distribution with mean 0 and variance 1
The product of two random variables that follows the normal distribution with mean 0 and variance 1 is expected 0.
To compute the product of two random variables that are normal distributed with a mean of 0 and a variance of 1, the following procedure can be employed:
Since the mean of the normal distribution is 0 and the variance is 1, we can assume that the standard deviation is also 1.Thus, we can write the probability density function of the normal distribution as:
f(x) = (1/√2π) * e^(-x^2/2)
Using the definition of expected value, we can write the expected value of a random variable X as:E[X] = ∫x * f(x) dx, where the integral is taken over the entire range of X.
Similarly, we can write the expected value of a random variable Y as:E[Y] = ∫y * f(y) dy, where the integral is taken over the entire range of Y.
Since the two random variables are independent, the expected value of their product is the product of their expected values. Thus, we can write:E[XY] = E[X] * E[Y]
Substituting the probability density function of the normal distribution into the expected value formula, we can write:E[X] = ∫x * f(x) dx = ∫x * (1/√2π) * e^(-x^2/2) dx = 0
E[Y] = ∫y * f(y) dy = ∫y * (1/√2π) * e^(-y^2/2) dy = 0
Thus, the expected value of the product of two random variables that follow a normal distribution with mean 0 and variance 1 is:E[XY] = E[X] * E[Y]
= 0 * 0 ⇒ 0
Therefore, the product of two random variables that follow a normal distribution with mean 0 and variance 1 has an expected value of 0.
To know more about the "normal distribution": https://brainly.com/question/4079902
#SPJ11
Question
Find the value of y
for the given value of x
.
y=x+5;x=3
Answer: y is equal to 8
Step-by-step explanation:
by substituting the x for its vale of three we can add the two values to get 8 or y=8
Luke bought 4 kilograms of apples and 0.29 kilograms of oranges. How much fruit did he buy
in all?
He bought 4.29 Kilos of fruit.
4+0.29=4.29
Luke bought 4.29 kilograms of fruit in all
Step-by-step explanation:
Simple addition will be used to find the total fruit Luke bought.
Given
Amount of apples he bought = 4 kilograms
Amount of oranges he bought = 0.29 kilograms
so the total fruit will be:
[tex]\text{total fruit}=\text{Apples}+\text{oranges}[/tex]
[tex]=4+0.29[/tex]
[tex]=4.29[/tex]
So,
Luke bought 4.29 kilograms of fruit in all
Keywords: Measurement, addition
Learn more about addition at:
https://brainly.com/question/568799https://brainly.com/question/567922#LearnwithBrainly
What is an equation for the quadratic function represented by the table shown?
Factor completely.
7b^2-63
Thank you :DDD
Since both terms are perfect squares, factor using the difference of squares formula, [tex]a^2-b^2=(a+b)(a-b)[/tex] where [tex]a=b[/tex] and [tex]b=3[/tex]
Answer:[tex]7(b+3)(b-3)[/tex]The tires on Mavis’ car will have to be replaced when they each have 160 000 km of wear on them. If new tires cost $140.00 each, what is the total cost of the wear on Mavis’ tires for a year in which she drives 25 000 km?
Answer:
If the tires on Mavis’ car have to be replaced when they each have 160 000 km of wear, then the total distance Mavis can drive on a set of tires is:
4 tires * 160,000 km = 640,000 km
If Mavis drives 25,000 km in a year, she will need to replace her tires after:
640,000 km ÷ 25,000 km/year = 25.6 years
Since Mavis will need to replace her tires once every 25.6 years, the cost of the wear on her tires for a single year is:
$140.00/tire * 4 tires = $560.00
So the total cost of the wear on Mavis’ tires for a year in which she drives 25,000 km is $560.00.
Step-by-step explanation:
source: trust me bro
I NEED HELPP PLEASEEEEEEEE
The slope between the points (-3, 0) and (0, -1) is -1/3.
What is slope?The slope of a line serves as a gauge for its steepness. It may be calculated by dividing the difference in y-coordinate by the difference in x-coordinate between any two points on a line. A line's slope might be zero, positive, negative, or undefinable. A line with a positive slope is moving upward from left to right, a negative slope is moving downward from left to right, and a line with a zero slope is level. The line is vertical if the slope is undefinable.
Let us consider the first two points (-3, 0) and (0, -1).
The slope of the line is given as:
m = (y2 - y1) / (x2 - x1)
Substituting the values we have:
m = (-1 - 0) / (0 - (-3)) = -1/3
Hence, the slope between the points (-3, 0) and (0, -1) is -1/3.
Learn more about slope of line here:
https://brainly.com/question/11559942
#SPJ1
Let A, B, and C be subsets of some universal set U. (a) Draw two general Venn diagrams for the sets A, B, and C. On one, shade the region that represents A - (B nC), and on the other, shade the region that represents (A -B) U (A C). Based on the Venn diagrams, make a conjecture about the relationship between the sets A-(BnC) and (A -B)U (A -C). (b) Use the choose-an-element method to prove the conjecture from Exer- cise (5a). (c) Use the algebra of sets to prove the conjecture from Exercise (5a).
In conclusion, we can prove that[tex](A -B) U (A C)[/tex] is a superset of[tex]A - (B nC)[/tex] using both the choose-an-element method and the algebra of sets.
To answer this question, let's first draw two Venn diagrams to represent the sets A, B, and C. In the first Venn diagram, shade the region that represents[tex]A - (B nC)[/tex].
This is the region outside of the intersection of B and C and inside of A. In the second Venn diagram, shade the region that represents [tex](A -B) U (A C).[/tex] This is the union of the region outside of B and the region outside of C, both of which are inside of A. Based on these diagrams, we can make the conjecture that (A -B) U (A C) is a superset of A - (B nC).
To prove this conjecture, we can use the choose-an-element method. Let a be an element of A - (B nC). This means that a is in A, but not in B or C. Since a is in A, it is also in (A -B) U (A C), and therefore (A -B) U (A C) is a superset of A - (B n C).
We can also use the algebra of sets to prove this conjecture.[tex]A - (B n C) = (A -B) U (A -C) since A - (B n C)[/tex]is the union of the regions outside of B and outside of C, both of which are inside of A. This implies that (A -B) U (A C) is a superset of A - (B nC).
for such more questions on Venn diagram
https://brainly.com/question/30599101
#SPJ11
evaluate the diagram below, and find the measures of the missing angles
Answer:
A=100
B= 80
C=80
D=100
E=80
F=80
G=100
Step-by-step explanation:
Please help quick with this question.
Answer:
b = [tex]\frac{S-2la}{h+l}[/tex]
Step-by-step explanation:
S = bh + lb + 2la ( reversing the equation )
bh + lb + 2la = S ( subtract 2la from both sides )
bh + lb = S - 2la ← factor out b from each term on the left side
b(h + l) = S - 2la ← divide both sides by (h + l)
b = [tex]\frac{S-2la}{h+l}[/tex]
The graph shows the velocity, v metres per second, of a car at time t seconds. Work out an estimate for the distance the car travelled for the first 8 seconds. Use 4 strips of equal width. -1-500- -1000- -500 0 V t
please help!!!
To estimate the distance traveled we need to find the area under the velocity-time graph from 0 to 8 seconds So,The estimate for the distance the car traveled for the first 8 seconds is 4000 meters.
Define velocity-time graph?A velocity-time graph is a graphical representation that shows the velocity of an object on the y-axis and time on the x-axis. It is used to depict the change in velocity over time and can provide information about the acceleration or deceleration of an object.
The height of each strip can be estimated by taking the average of the velocities at the beginning and end of the strip.
Using the trapezium rule, the estimated area of each strip is:
Strip 1: 0.5 x (0 + 2) x (0 + (-500)) = -500 m/s
Strip 2: 0.5 x (2 + 4) x (-500 + (-1000)) = -1500 m/s
Strip 3: 0.5 x (4 + 6) x (-1000 + (-500)) = -1500 m/s
Strip 4: 0.5 x (6 + 8) x (-500 + 0) = -500 m/s
The total estimated area is the sum of the areas of the 4 strips:
Total estimated area = -500 + (-1500) + (-1500) + (-500) = -4000 m/s
Since the area represents the distance traveled by the car, we can take the absolute value of the area to get the estimated distance traveled:
Estimated distance traveled is = |-4000| = 4000 meters
To know more about areas visit:
https://brainly.com/question/18066837
#SPJ1
6. 4 The point Q (3, -1) has been translated from P by the vector (3) What are the coordinates of the point P?
The coordinates of the point P is (-1,2) .
What is translation?
In mathematics, a translation is a geometric transformation that moves every point of a figure or a space by the same amount in a given direction. The amount and direction of the movement can be described using a vector, which is a mathematical object that has both magnitude and direction.
Finding the coordinates of the point P :
The coordinates of point P can be found by subtracting the vector from point Q.
To find the coordinates of point P, we need to subtract the vector [tex]\begin{pmatrix}4\\-3\end{pmatrix}[/tex] from the coordinates of point Q, which are (3, -1).
Subtracting the x-coordinate of the vector from the x-coordinate of point Q gives us:
3 - 4 = -1
Similarly, subtracting the y-coordinate of the vector from the y-coordinate of point Q gives us:
-1 - (-3) = 2
Therefore, the coordinates of point P are (-1, 2).
So, the correct answer is (C) (-1, 2).
To know more about coordinates visit :
brainly.com/question/16634867
#SPJ1
using the net below find the area of the triangular prism
6 cm
3 cm
4 cm
6 cm
5 cm
2 cm
Answer:153
Step-by-step explanation: