Answer:
All electromagnetic waves travel at the same speed in a vacuum
Explanation:
All the wave listed in the question are electromagnetic waves. The speed of electromagnetic waves (collectively called light) in a vacuum is fixed. Its value is 3×10^8 ms^-1. This is a constant for all electromagnetic waves irrespective of their frequency.
Hence for any electromagnetic wave, its speed is 3×10^8 ms^-1, this will be the common velocity of all the electromagnetic waves listed in the question in a vacuum thus we can not rank them according to speed.
Some stove tops are smooth ceramic for easy cleaning. If the ceramic is 0.630 cm thick and heat conduction occurs through an area of 1.45 ✕ 10−2 m2 at a rate of 500 J/s, what is the temperature difference across it (in °C)? Ceramic has the same thermal conductivity as glass and concrete brick.
Answer:
The temperature difference [tex]\Delta T = 258.6 \ ^ o\ C[/tex]
Explanation:
From the question we are told that
The thickness is [tex]\Delta x = 0.630 cm = 0.0063 m[/tex]
The area is [tex]A = 1.45 *10^{-2 } \ m^2[/tex]
The rate is [tex]P = 500 J/s[/tex]
The thermal conductivity is [tex]\sigma = 0.84J[\cdot s \cdot m \cdot ^oC ][/tex]
Generally the rate heat conduction mathematically represented as
[tex]P = \sigma * A * \frac{\Delta T}{\Delta x }[/tex]
=> [tex]\Delta T = \frac{P * \Delta x }{\sigma * A }[/tex]
=> [tex]\Delta T = \frac{ 500 * 0.00630 }{ 0.84 * 1.45 *10^{-2} }[/tex]
=> [tex]\Delta T = 258.6 \ ^ o\ C[/tex]
3. What are the first steps that you should take if you are unable to get onto the Internet? (1 point)
O Check your router connections then restart your router.
O Plug the CPU to a power source and reboot the computer.
O Adjust the display properties and check the resolution.
Use the Control Panel to adjust the router settings.
Answer:
Check your router connections then restart your router.
Explanation:
Answer:
Check your router connections then restart your router.
Explanation:
Most internet access comes from routers so the problem is most likely the router.
When a mercury thermometer is heated, the mercury expands and rises in the thin tube of glass. What does this indicate about the relative rates of expansion for mercury and glass
Answer:
This means that mercury has a higher or faster expansion rate than glass
Explanation:
This is because When a container expands, the reservoir in the glass expands at the same rate as the glass. Thus, if there is something in a glass and both expand at the same rate, they have no change - but if the contents expand faster, they will fill the container to a higher level, and if the contents expand slower, they will fill the container to a lower level (relative to the new size of the container).
What is the magnitude of the applied electric field inside an aluminum wire of radius 1.4 mm that carries a 4.5-A current
Answer:
Explanation:
From the question we are told that
The radius is [tex]r = 1.4 \ mm = 1.4 *10^{-3} \ m[/tex]
The current is [tex]I = 4.5 \ A[/tex]
Generally the electric field is mathematically represented as
[tex]E = \frac{J}{\sigma }[/tex]
Where [tex]\sigma[/tex] is the conductivity of aluminum with value [tex]\sigma = 3.5 *10^{7} \ s/m[/tex]
J is the current density which mathematically represented as
[tex]J = \frac{I}{A}[/tex]
Here A is the cross-sectional area which is mathematically represented as
[tex]A = \pi r^2[/tex]
[tex]A = 3.142 * (1.4*10^{-3})^2[/tex]
[tex]A = 6.158*10^{-6} \ m^2[/tex]
So
[tex]J = \frac{ 4.5 }{6.158*10^{-6}}[/tex]
[tex]J = 730757 A/m^2[/tex]
So
[tex]E = \frac{ 730757}{3.5*10^{7} }[/tex]
[tex]E = 0.021 \ N/C[/tex]
The following equation is an example of
decay.
181
185
79
Au →
4
2
He+
Answer:
Alp decay.
Explanation:
From the above equation, the parent nucleus 185 79Au produces a daughter nuclei 181 77 Ir.
A careful observation of the atomic mass of the parent nucleus (185) and the atomic mass of the daughter nuclei (181) shows that the atomic mass of the daughter nuclei decreased by a factor of 4. Also, the atomic number of the daughter nuclei also decreased by a factor of 2 when compared with the parent nucleus as shown in the equation given above.
This simply means that the parent nucleus has undergone alpha decay which is represented with a helium atom as 4 2He.
Therefore, the equation is an example of alpha decay.
The highest mountain on mars is olympus mons, rising 22000 meters above the martian surface. If we were to throw an object horizontaly off the mountain top, how long would it take to reach the surface? (Ignore atmospheric drag forces and use gMars=3.72m/s^2
a. 2.4 minutes
b. 0.79 minutes
c. 1.8 minutes
d. 3.0 minutes
Answer:
t = 1.81 min , the correct answer is c
Explanation:
This is a missile throwing exercise
The object is thrown horizontally, so its vertical speed is zero (voy = 0), let's use the equation
y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²
the final height is y = 0 and the initial height is y₀ = 22000 m
0 = y₀ + 0 - ½ g t²
t = √y 2y₀ / g
let's calculate
t = √(2 22000 / 3.72)
t = 108.76 s
let's reduce to minutes
t = 108.76 s (1 min / 60 s)
t = 1.81 min
The correct answer is c
If the
refractive index of benzere is 2.419,
what is the speed of light in benzene?
Answer:
[tex]v=1.24\times 10^8\ m/s[/tex]
Explanation:
Given that,
The refractive index of benzene is 2.419
We need to find the speed of light in benzene. The ratio of speed of light in vacuum to the speed of light in the medium equals the refractive index. So,
[tex]n=\dfrac{c}{v}\\\\v=\dfrac{c}{n}\\\\v=\dfrac{3\times 10^8}{2.419}\\\\v=1.24\times 10^8\ m/s[/tex]
So, the speed of light in bezene is [tex]1.24\times 10^8\ m/s[/tex].
The sun generates both mechanical and electromagnetic waves. Which statement about those waves is true?
OA. The mechanical waves reach Earth, while the electromagnetic waves do not.
OB. The electromagnetic waves reach Earth, while the mechanical waves do not.
OC. Both the mechanical waves and the electromagnetic waves reach Earth.
OD. Neither the mechanical waves nor the electromagnetic waves reach Earth.
Answer: The correct answer for this question is letter (B) The electromagnetic waves reach Earth, while the mechanical waves do not. The sun generates both mechanical and electromagnetic waves. Space, between the sun and the earth is a nearly vacuum. So mechanical wave can not spread out in the vacuum.
Hope this helps!
Answer:
The electromagnetic waves reach Earth, while the mechanical waves do not
Suppose you are planning a trip in which a spacecraft is to travel at a constant velocity for exactly six months, as measured by a clock on board the spacecraft, and then return home at the same speed. Upon return, the people on earth will have advanced exactly 120 years into the future. According to special relativity, how fast must you travel
Answer:
I must travel with a speed of 2.97 x 10^8 m/s
Explanation:
Sine the spacecraft flies at the same speed in the to and fro distance of the journey, then the time taken will be 6 months plus 6 months
Time that elapses on the spacecraft = 1 year
On earth the people have advanced 120 yrs
According to relativity, the time contraction on the spacecraft is gotten from
[tex]t[/tex] = [tex]t_{0} /\sqrt{1 - \beta ^{2} }[/tex]
where
[tex]t[/tex] is the time that elapses on the spacecraft = 120 years
[tex]t_{0}[/tex] = time here on Earth = 1 year
[tex]\beta[/tex] is the ratio v/c
where
v is the speed of the spacecraft = ?
c is the speed of light = 3 x 10^8 m/s
substituting values, we have
120 = 1/[tex]\sqrt{1 - \beta ^{2} }[/tex]
squaring both sides of the equation, we have
14400 = 1/[tex](1 - \beta ^{2} )[/tex]
14400 - 14400[tex]\beta ^{2}[/tex] = 1
14400 - 1 = 14400[tex]\beta ^{2}[/tex]
14399 = 14400[tex]\beta ^{2}[/tex]
[tex]\beta ^{2}[/tex] = 14399/14400 = 0.99
[tex]\beta = \sqrt{0.99}[/tex] = 0.99
substitute β = v/c
v/c = 0.99
but c = 3 x 10^8 m/s
v = 0.99c = 0.99 x 3 x 10^8 = 2.97 x 10^8 m/s
Kinetic and
A brick is resting on a smooth wooden board that is at a 30° angle. What is one way to overcome the static friction that is holding the brick in place?
11 point)
O raise the board to a higher angle
O press down on the brick in a direction that is perpendicular to the board
O roughen up the texture of the wooden board
o lower the board so it's level with the ground
Answer:
raise the board to a higher angle
Explanation:
Static friction is the force opposite to the applied force.
Static friction is dependent on the angle of inclination, it means as the angle of incline increases, the force of friction will increases as normal force will decrease.
So, if the board will be raised to a higher angle, it will increase the angle of incline and will overcome the static friction and block will be able slide.
Hence, the correct option is "raise the board to a higher angle".
Matter's resistance to a change in motion is called _____ and is directly proportional to the mass of an object
Answer:
Matter's resistance to a change in motion is called INERTIA and is directly proportional to the mass of an object.
Explanation:
A body is thrown vertically upwards with a speed of 95m / s and after 7s it reaches its maximum height. How fast does it reach its maximum height? What was the maximum height reached?
Explanation:
u = 95 m/sec ( Initial speed)
t = 7 sec ( Time of ascent)
According to Equations of Motion :
[tex]s = ut - \frac{1}{2} g {t}^{2} [/tex]
Max. Height = 95 * 7 - 4.9 * 49 = 424. 9 = 425 m
Answer:
332.5 m
Explanation:
At the maximum height, the velocity is 0.
Given:
v₀ = 95 m/s
v = 0 m/s
t = 7 s
Find: Δy
Δy = ½ (v + v₀) t
Δy = ½ (0 m/s + 95 m/s) (7 s)
Δy = 332.5 m
A 590-turn solenoid is 12 cm long. The current in it is 36 A . A straight wire cuts through the center of the solenoid, along a 4.5-cm diameter. This wire carries a 27-A current downward (and is connected by other wires that don't concern us).
What is the magnitude of the force on this wire assuming the solenoid's field points due east?
Complete Question
A 590-turn solenoid is 12 cm long. The current in it is 36 A . A 2 cm straight wire cuts through the center of the solenoid, along a 4.5-cm diameter. This wire carries a 27-A current downward (and is connected by other wires that don't concern us).
What is the magnitude of the force on this wire assuming the solenoid's field points due east?
Answer:
The force is [tex]F = 0.1602 \ N[/tex]
Explanation:
From the question we are told that
The number of turns is [tex]N = 590 \ turns[/tex]
The length of the solenoid is [tex]L = 12 \ cm = 0.12 \ m[/tex]
The current is [tex]I = 36 \ A[/tex]
The diameter is [tex]D = 4.5 \ cm = 0.045 \ m[/tex]
The current carried by the wire is [tex]I = 27 \ A[/tex]
The length of the wire is [tex]l = 2 cm = 0.02 \ m[/tex]
Generally the magnitude of the force on this wire assuming the solenoid's field points due east is mathematically represented as
[tex]F = B * I * l[/tex]
Here B is the magnetic field which is mathematically represented as
[tex]B = \frac{\mu_o * N * I }{L}[/tex]
Here [tex]\mu _o[/tex] is permeability of free space with value [tex]\mu_ o = 4\pi *10^{-7} \ N/A^2[/tex]
substituting values
[tex]B = \frac{4 \pi *10^{-7} * 590 * 36 }{ 0.12}[/tex]
[tex]B = 0.2225 \ T[/tex]
So
[tex]F = 0.2225 * 36 * 0.02[/tex]
[tex]F = 0.1602 \ N[/tex]
Two long, parallel wires are separated by a distance of 2.60 cm. The force per unit length that each wire exerts on the other is 4.30×10^−5 N/m, and the wires repel each other. The current in one wire is 0.520 A.Required:a. What is the current in the second wire? b. Are the two currents in the same direction or in opposite directions?
Answer:
10.75 A
The current is in opposite direction since it causes a repulsion force between the wires
Explanation:
Force per unit length on the wires = 4.30×10^−5 N/m
distance between wires = 2.6 cm = 0.026 m
current through one wire = 0.52 A
current on the other wire = ?
Recall that the force per unit length of two wires conducting and lying parallel and close to each other is given as
[tex]F/l[/tex] = [tex]\frac{u_{0}I_{1} I_{2} }{2\pi r }[/tex]
where [tex]F/l[/tex] is the force per unit length on the wires
[tex]u_{0}[/tex] = permeability of vacuum = 4π × 10^−7 T-m/A
[tex]I_{1}[/tex] = current on the first wire = 0.520 A
[tex]I_{2}[/tex] = current on the other wire = ?
r = the distance between the two wire = 0.026 m
substituting the value into the equation, we have
4.30×10^−5 = [tex]\frac{4\pi *10^{-7}*0.520*I_{2} }{2\pi *0.026}[/tex] = [tex]\frac{ 2*10^{-7}*0.520*I_{2} }{0.026}[/tex]
4.30×10^−5 = 4 x 10^-6 [tex]I_{2}[/tex]
[tex]I_{2}[/tex] = (4.30×10^-5)/(4 x 10^-6) = 10.75 A
The current is in opposite direction since it causes a repulsion force between the wires.
A 750 gram grinding wheel 25.0 cm in diameter is in the shape of a uniform solid disk. (we can ignore the small hole at the center). when it is in use, it turns at a consant 220 rpm about an axle perpendicular to its face through its center. When the power switch is turned off, you observe that the wheel stops in 45.0 s with constant angular acceleration due to friction at the axle. What torque does friction exert while this wheel is slowing down?
Answer:
Torque = 0.012 N.m
Explanation:
We are given;
Mass of wheel;m = 750 g = 0.75 kg
Radius of wheel;r = 25 cm = 0.25 m
Final angular velocity; ω_f = 0
Initial angular velocity; ω_i = 220 rpm
Time taken;t = 45 seconds
Converting 220 rpm to rad/s we have;
220 × 2π/60 = 22π/3 rad/s
Equation of rotational motion is;
ω_f = ω_i + αt
Where α is angular acceleration
Making α the subject, we have;
α = (ω_f - ω_i)/t
α = (0 - 22π/3)/45
α = -0.512 rad/s²
The formula for the Moment of inertia is given as;
I = ½mr²
I = (1/2) × 0.75 × 0.25²
I = 0.0234375 kg.m²
Formula for torque is;
Torque = Iα
For α, we will take the absolute value as the negative sign denotes decrease in acceleration.
Thus;
Torque = 0.0234375 × 0.512
Torque = 0.012 N.m
To get an idea of the order of magnitude of inductance, calculate the self-inductance in henries for a solenoid with 1500 loops of wire wound on a rod 13 cm long with radius 2 cm
Answer:
The self-inductance in henries for the solenoid is 0.0274 H.
Explanation:
Given;
number of turns, N = 1500 turns
length of the solenoid, L = 13 cm = 0.13 m
radius of the wire, r = 2 cm = 0.02 m
The self-inductance in henries for a solenoid is given by;
[tex]L = \frac{\mu_oN^2A}{l}[/tex]
where;
[tex]\mu_o[/tex] is permeability of free space = [tex]4\pi*10^{-7} \ H/m[/tex]
A is the area of the solenoid = πr² = π(0.02)² = 0.00126 m²
[tex]L = \frac{4\pi *10^{-7}(1500)^2*(0.00126)}{0.13} \\\\L = 0.0274 \ H[/tex]
Therefore, the self-inductance in henries for the solenoid is 0.0274 H.
To protect her new two-wheeler, Iroda Bike
buys a length of chain. She finds that its
linear density is 0.65 lb/ft.
If she wants to keep its weight below 1.4 lb,
what length of chain is she allowed?
Answer in units of ft.
Answer:
2.2 ft
Explanation:
0.65 lb / 1 ft = 1.4 lb / x
x ≈ 2.2 ft
What is the de Broglie wavelength of an object with a mass of 2.50 kg moving at a speed of 2.70 m/s? (Useful constant: h = 6.63×10-34 Js.)
Answer:
9.82 × [tex]10^{-35}[/tex] Hz
Explanation:
De Broglie equation is used to determine the wavelength of a particle (e.g electron) in motion. It is given as:
λ = [tex]\frac{h}{mv}[/tex]
where: λ is the required wavelength of the moving electron, h is the Planck's constant, m is the mass of the particle, v is its speed.
Given that: h = 6.63 ×[tex]10^{-34}[/tex] Js, m = 2.50 kg, v = 2.70 m/s, the wavelength, λ, can be determined as follows;
λ = [tex]\frac{h}{mv}[/tex]
= [tex]\frac{6.63*10^{-34} }{2.5*2.7}[/tex]
= [tex]\frac{6.63 * 10^{-34} }{6.75}[/tex]
= 9.8222 × [tex]10^{-35}[/tex]
The wavelength of the object is 9.82 × [tex]10^{-35}[/tex] Hz.
Four charges each of magnitude 15 µC are arranged on the corners of a square of side 5 cm. What is the total potential energy of the system?
Answer:
-105J
Explanation:
See attached file
A dentist uses a concave mirror (focal length 2 cm) to examine some teeth. If the distance from the object to the mirror is 1 cm, what is the magnification of the tooth
Answer: 2
Explanation:
1/2=1/1 +1/x
x=-2
magnification= 2/1
magnification=2
Water flows at speed v in a pipe of radius R. At what speed does the water flow through a constriction in which the radius of the pipe is R/3
Answer:
v₂ = 9 v
Explanation:
For this exercise in fluid mechanics, let's use the continuity equation
v₁ A₁ = v₂ A₂
where v is the velocity of the fluid, A the area of the pipe and the subscripts correspond to two places of interest.
The area of a circle is
A = π R²
let's use the subscript 1 for the starting point and the subscript 2 for the part with the constraint
In this case v₁ = v and the area is
A₁ = π R²
in the second point
A₂= π (R / 3)²
we substitute in the continuity equation
v π R² = v₂ π R² / 9
v = v₂ / 9
v₂ = 9 v
A high school physics student claims her muscle car can achieve a constant acceleration of 10 ft/s/s. Her friend develops an accelerometer to confirm the feat. The accelerometer consists of a 1 ft long rod (mass=4 kg) with one end attached to the ceiling of the car, but free to rotate. During acceleration, the rod rotates. What will be the angle of rotation of the rod during this acceleration? Assume the road is flat and straight.
Answer: Ф = 17.2657 ≈ 17°
Explanation:
we simply apply ET =0 about the ending of the rod
so In.g.L/2sinФ - In.a.L/2cosФ = 0
g.sinФ - a.cosФ = 0
g.sinФ = a.cosФ
∴ tanФ = a/g
Ф = tan⁻¹ a / g
Ф = tan⁻¹ ( 10 / 32.17405)
Ф = tan⁻¹ 0.31080948777
Ф = 17.2657 ≈ 17°
Therefore the angle of rotation of the rod during this acceleration is 17.2657 ≈ 17°
A 1.5 V battery is connected to a 1000 ohm resistor and a 500 ohm resistor in series. The voltage across the 1000 ohm resistor is _____ V.
Answer:
1 volt and 0.5 voltExplanation:
Given data
voltage supplied Vs= 1.5 volts
resistance R1= 1000 ohms
resistance R2= 500 ohms
The total resistance is
Rt= 1000+ 500
Rt= 1500 ohms
The current I is given as
[tex]I= \frac{Vs}{Rt} \\\\ I= \frac{1.5}{1500} = 0.001mA[/tex]
Voltage across R1
[tex]VR1= Vs(\frac{R1}{R1+R2} )=1.5(\frac{1000}{1000+500} )= 1.5(\frac{1000}{1500} )\\ \\\ VR1= 1v[/tex]
Voltage across R2
[tex]VR2= Vs(\frac{R2}{R1+R2} )=1.5(\frac{500}{1000+500} )= 1.5(\frac{500}{1500} ) \\\ VR2=0.5v[/tex]
In series connection the current is the same for all components while the voltage divides across all components,the voltages consumed by each individual resistance is equal to the source voltage.
When light travels from one medium to another with a different index of refraction, how is the light's frequency and wavelength affected
Answer:
The frequency does not change, but the wavelength does
Explanation:
Here are the options
A. When a light wave travels from a medium with a lower index of refraction to a medium with a higher index of refraction, the frequency changes and the wavelength does not.
B. The frequency does change, but the wavelength remains unchanged.
C. Both the frequency and wavelength change.
D. When a light wave travels from a medium with a lower index of refraction to a medium with a higher index of refraction, neither the wavelength nor the frequency changes.
E. The frequency does not change, but its wavelength does.
When light goes through one medium to the next, the frequency doesn't really change seeing as frequency is dependent on wavelength and light wave velocity. And when the wavelength shifts from one medium to the next.
[tex]n= \frac{C}{V} \ and\ \frac{\lambda_o}{\lambda_m}[/tex]
where [tex]\lambda_o[/tex] indicates wavelength in vacuum
[tex]\lambda_m[/tex] indicates wavelength in medium
n indicates refractive index
v indicates velocity of light wave
c indicates velocity of light
And wavelength is medium-dependent. Frequency Here = v[tex]\lambda[/tex] and shift in wavelength and velocity, not shifts in overall frequency.
Therefore the correct option is E
A car travels at 45 km/h. If the driver breaks 0.65 seconds after seeing the traffic light turn yellow, how far will the car continue to travel before it begins to slow?
Answer:
8.1 m
Explanation:
Convert km/h to m/s.
45 km/h × (1000 m/km) × (1 h / 3600 s) = 12.5 m/s
Distance = speed × time
d = (12.5 m/s) (0.65 s)
d = 8.125 m
A plano-convex glass lens of radius of curvature 1.4 m rests on an optically flat glass plate. The arrangement is illuminated from above with monochromatic light of 520-nm wavelength. The indexes of refraction of the lens and plate are 1.6. Determine the radii of the first and second bright fringes in the reflected light.
Given that,
Radius of curvature = 1.4 m
Wavelength = 520 nm
Refraction indexes = 1.6
We know tha,
The condition for constructive interference as,
[tex]t=(m+\dfrac{1}{2})\dfrac{\lambda}{2}[/tex]
Where, [tex]\lambda=wavelength[/tex]
We need to calculate the radius of first bright fringes
Using formula of radius
[tex]r_{1}=\sqrt{2tR}[/tex]
Put the value of t
[tex]r_{1}=\sqrt{2\times(m+\dfrac{1}{2})\dfrac{\lambda}{2}\times R}[/tex]
Put the value into the formula
[tex]r_{1}=\sqrt{2\times(0+\dfrac{1}{2})\dfrac{520\times10^{-9}}{2}\times1.4}[/tex]
[tex]r_{1}=0.603\ mm[/tex]
We need to calculate the radius of second bright fringes
Using formula of radius
[tex]r_{2}=\sqrt{2\times(m+\dfrac{1}{2})\dfrac{\lambda}{2}\times R}[/tex]
Put the value into the formula
[tex]r_{1}=\sqrt{2\times(1+\dfrac{1}{2})\dfrac{520\times10^{-9}}{2}\times1.4}[/tex]
[tex]r_{1}=1.04\ mm[/tex]
Hence, The radius of first bright fringe is 0.603 mm
The radius of second bright fringe is 1.04 mm.
The positron has the same mass as an electron, with an electric charge of +e. A positron follows a uniform circular motion of radius 5.03 mm due to the force of a uniform magnetic field of 0.85 T. How many complete revolutions does the positron perform If it spends 2.30 s inside the field? (electron mass = 9.11 x 10-31 kg, electron charge = -1.6 x 10-19 C)
Answer:
5.465 × 10^10 revolutions
Explanation:
Formula for Magnetic Field = m. v/ q . r
M = mass of electron = mass of positron = 9.11 x 10^-31 kg,
radius of the positron = 5.03 mm
We convert to meters.
1000mm = 1m
5.03mm = xm
Cross multiply
x = 5.03/1000mm
x = 0.00503m
q = Electric charge = -1.6 x 10^-19 C
Magnetic field (B) = 0.85 T
Speed of the positron is unknown
0.85 = 9.11 x 10^-31 kg × v/ -1.6 x 10^-19 C × 0.00503
0.85 × 1.6 x 10^-19 C × 0.00503 = 9.11 x 10^-31 kg × v
v = 0.85 × -1.6 x 10^-19 C × 0.00503/9.11 x 10^-31 kg
v = 6.8408 ×10-22/ 9.11 x 10^-31 kg
v = 750911086.72m/s
Formula for complete revolutions =
Speed × time / Circumference
Time = 2.30s
Circumference of the circular path = 2πr
r =0.00503
Circumference = 2 × π × 0.00503
= 0.0316044221
Revolution = 750911086.72 × 2.30/0.0316044221
= 1727095499.5/0.0316044221
= 546541562294 revolutions
Approximately = 5.465 × 10^10 revolutions
An unstable particle at rest spontaneously breaks into two fragments of unequal mass. The mass of the first fragment is 3.00 10-28 kg, and that of the other is 1.86 10-27 kg. If the lighter fragment has a speed of 0.844c after the breakup, what is the speed of the heavier fragment
Answer: Speed = [tex]3.10^{-31}[/tex] m/s
Explanation: Like in classical physics, when external net force is zero, relativistic momentum is conserved, i.e.:
[tex]p_{f} = p_{i}[/tex]
Relativistic momentum is calculated as:
p = [tex]\frac{mu}{\sqrt{1-\frac{u^{2}}{c^{2}} } }[/tex]
where:
m is rest mass
u is velocity relative to an observer
c is light speed, which is constant (c=[tex]3.10^{8}[/tex]m/s)
Initial momentum is zero, then:
[tex]p_{f}[/tex] = 0
[tex]p_{1}-p_{2}[/tex] = 0
[tex]p_{1} = p_{2}[/tex]
To find speed of the heavier fragment:
[tex]\frac{mu_{1}}{\sqrt{1-\frac{u^{2}_{1}}{c^{2}} } }=\frac{mu_{2}}{\sqrt{1-\frac{u^{2}_{2}}{c^{2}} } }[/tex]
[tex]\frac{1.86.10^{-27}u_{1}}{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } }=\frac{3.10^{-28}.0.844.3.10^{8}}{\sqrt{1-\frac{(0.844c)^{2}}{c^{2}} } }[/tex]
[tex]\frac{1.86.10^{-27}u_{1}}{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } }=1.42.10^{-19}[/tex]
[tex]1.86.10^{-27}u_{1} = 1.42.10^{-19}.{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } }[/tex]
[tex](1.86.10^{-27}u_{1})^{2} = (1.42.10^{-19}.{\sqrt{1-\frac{u^{2}_{1}}{(3.10^{8})^{2}} } })^{2}[/tex]
[tex]3.46.10^{-54}.u_{1}^{2} = 2.02.10^{-38}.(1-\frac{u_{1}^{2}}{9.10^{16}} )[/tex]
[tex]3.46.10^{-54}.u_{1}^{2} = 2.02.10^{-38} -[2.02.10^{-38}(\frac{u_{1}^{2}}{9.10^{16}} )][/tex]
[tex]3.46.10^{-54}.u_{1}^{2} = 2.02.10^{-38} -2.24.10^{-23}.u^{2}_{1}[/tex]
[tex]3.46.10^{-54}.u_{1}^{2}+2.24.10^{-23}.u^{2}_{1} = 2.02.10^{-38}[/tex]
[tex]2.24.10^{-23}.u^{2}_{1} = 2.02.10^{-38}[/tex]
[tex]u^{2}_{1} = \frac{2.02.10^{-38}}{2.24.10^{-23}}[/tex]
[tex]u_{1} = \sqrt{9.02.10^{-62}}[/tex]
[tex]u_{1} = 3.10^{-31}[/tex]
The speed of the heavier fragment is [tex]u_{1} = 3.10^{-31}[/tex]m/s.
A long bar slides on two contact points and is in motion with velocity ν. A steady, uniform, magnetic field B is present. The induced current through resistor R is:
Answer:
The induced current in the resistor is I = BLv/R
Explanation:
The induced emf ε in the long bar of length, L in a magnetic field of strength, B moving with a velocity, v is given by
ε = BLv.
Now, the current I in the resistor is given by
I = ε/R where ε = induced emf in circuit and R = resistance of resistor.
So, the current I = ε/R.
substituting the value of ε the induced emf, we have
I = ε/R
I = BLv/R
So, the induced current through the resistor is given by I = BLv/R
How much work is needed to pump all the water out of a cylindrical tank with a height of 10 m and a radius of 5 m
Answer:
Explanation:
volume of water being lifted
= π r² h , where r is radius of cylinder and h is height of cylinder
= 3.14 x5² x 10
= 785 m³
mass of water = 785 x 10³ kg
mass of this much of water is lifted so that its centre of mass is lifted by height
10 / 2 = 5m .
So work done = mgh , m is mass of water , h is displacement of centre of mass and g is acceleration due to gravity
= 785 x 10³ x 9.8 x 5
= 38.465 x 10⁶ J