Answer:
[tex]43.13 = 5.25h + 9[/tex]
Step-by-step explanation:
Let's solve this by making an equation.
$9 for the helmet, and $5.25 per hour.
h will stand for hours, C will stand for Amanda's cost.
[tex]C = 5.25h + 9[/tex]
Now, substitute in what we learned from the problem.
[tex]43.13 = 5.25h + 9[/tex]
This is an equation you can use to solve for the hours.
A researcher wishes to estimate the proportion of adults who have high-speed Internet access. What size sample should be obtained if she wishes the estimate to be within with % confidence if (a) she uses a previous estimate of ? (b) she does not use any prior estimates?
Answer:
732 samples ;
752 samples
Step-by-step explanation:
Given :
α = 90% ; M.E = 0.03 ; p = 0.58 ; 1 - p = 1 - 0.58 = 0.42
Using the relation :
n = (Z² * p * (1 - p)) / M.E²
Zcritical at 90% = 1.645
n = (1.645² * 0.58 * 0.42) / 0.03²
n = 0.65918769 / 0.0009
n = 732.43076
n = 732 samples
B.)
If no prior estimate is given, then p = 0.5 ; 1 - p = 1 - 0.5 = 0.5
n = (Z² * p * (1 - p)) / M.E²
Zcritical at 90% = 1.645
n = (1.645² * 0.5 * 0.5) / 0.03²
n = 0.67650625 / 0.0009
n = 751.67361
n = 752 samples
a soft drink vendor at a popular beach analyzes his sales recods and finds that if he sells x cans of soda pop in one day, his profit (in dollars) is given by
Complete Question:
A soft-drink vendor at a popular beach analyzes his sales records, and finds that if he sells x cans of soda pop in one day, his profit (in dollars) is given by P(x) = -0.001x² + 3x - 1800.
a. What is his maximum profit per day?
b. How many cans must be sold in order to obtain the maximum profit?
Answer:
a. $450
b. 1500 cans
Step-by-step explanation:
Given the following quadratic function;
P(x) = -0.001x² + 3x - 1800 ......equation 1
a. To find his maximum profit per day;
Since P(x) is a quadratic equation, P(x) would be maximum when [tex] x = \frac {-b}{2a} [/tex]
Note : the standard form of a quadratic equation is ax² + bx + c = 0 ......equation 2
Comparing eqn 1 and eqn 2, we have;
a = -0.001, b = 3 and c = -1800
Now, we determine the maximum profit;
[tex] x = \frac {-b}{2a} [/tex]
Substituting the values, we have;
[tex] x = \frac {-3}{2*(-0.001)} [/tex]
Cancelling out the negative signs, we have;
[tex] x = \frac {3}{2*0.001} [/tex]
[tex] x = \frac {3}{0.002} [/tex]
x at maximum = 1500
Substituting the value of "x" into equation 1;
P(1500) = -0.001 * 1500² + 3(1500) - 1800
P(1500) = -0.001 * 2250000 + 4500 - 1800
P(1500) = -2250 + 2700
P(1500) = $450
b. Therefore, the soft-drink vendor must sell 1500 cans in order to obtain the maximum profit.
identify the angles relationship
Not sure how to do this
g Find an equation of the line with slope m that passes through the given point. Put the answer in slope-intercept form. (-4, 8), undefined slope Hint: Any line parallel to Y axis has undefined slope.
Answer:
The equation is x + 4 = 0.
Step-by-step explanation:
Point (-4 , 8)
A line parallel to the Y axis has slope is infinite.
The equation of line is
[tex]y - y' = m (x-x')\\\\y - 8 =\frac{1}{0}(x+4)\\\\x + 4 = 0[/tex]
HELP ASAP PLEASE!!!!!!!!
Answer:
1
Step-by-step explanation:
1 : 1 :sqrt(2)
The legs are in the ratio of 1 to 1
tan 45 = opp side / adj side
tan 45 = 1/1
tan 45 =1
Answer:
Step-by-step explanation:
The weights of newborn baby boys born at a local hospital are believed to have a normal distribution with a mean weight of 35113511 grams and a variance of 253,009253,009. If a newborn baby boy born at the local hospital is randomly selected, find the probability that the weight will be less than 46174617 grams. Round your answer to four decimal places.
Answer:
The answer is "0.1397".
Step-by-step explanation:
[tex]\mu=3511\\\\[/tex]
variance [tex]\ S^2= 253,009\\\\[/tex]
standard deviation [tex]\sigma =\sqrt{253,009}=503\\\\[/tex]
Finding the probability in which the weight will be less than [tex]4617 \ grams\\\\[/tex]
[tex]P(X<4617)=p[z<\frac{4617-3511}{503}]\\\\[/tex]
[tex]=p[z<\frac{1106}{503}]\\\\=p[z< 2.198]\\\\= .013975\approx 0.1397[/tex]
The average cost when producing x items is found by dividing the cost function, C(x), by the number of items,x. When is the average cost less than 100, given the cost function is C(x)= 20x+160?
A) ( 2, infinit)
B) (0,2)
C) (-infinit,0) U (2,infinit)
D) (- infinit,0] U [2,infinit)
9514 1404 393
Answer:
A) (2, ∞) . . . . or C) (-∞, 0) ∪ (2, ∞) if you don't think about it
Step-by-step explanation:
We want ...
C(x)/x < 100
(20x +160)/x < 100
20 +160/x < 100 . . . . . separate the terms on the left
160/x < 80 . . . . . . . subtract 20
160/80 < x . . . . . multiply by x/80 . . . . . assumes x > 0
x > 2 . . . . . . simplify
In interval notation this is (2, ∞). matches choice A
__
Technically (mathematically), we also have ...
160/80 > x . . . . and x < 0
which simplifies to x < 0, or the interval (-∞, 0).
If we include this solution, then choice C is the correct one.
_____
Comment on the solution
Since we are using x to count physical items, we want to assume that the practical domain of C(x) is whole numbers, where x ≥ 0, so this second interval is not in the domain of C(x). That is, the average cost of a negative number of items is meaningless.
Pls if anyone knows the answer that will be greatly appreciated :)
Answer:
I think the area is 60 but i couldn't figure out the perimeter, sorry.
Step-by-step explanation:
Answer:
perimeter = 36 m
area = 60 m²
Step-by-step explanation:
there is some missing information. for example about the types of the shapes. e.g. if the triangle on the top is an isosceles triangle (2 equal sides). or if the rectangle at the bottom is actually a square with 6 m on all sides. in order to make the sloped side of the top triangle a round, whole number, i assume that the bottom part is a square.
so, the area of this combined shape is the area of the bottom square plus the area of the top triangle.
area square As = 6×6 = 36 m²
so, one side of the triangle is also 6 m, the other is 14-6 = 8 m.
the area of such a right-angled triangle is half of the full rectangle of 6×8.
area triangle At = 6×8/2 = 48/2 = 24 m²
total area = As + At = 36 + 24 = 60 m²
the perimeter of the total shape is the sum of all sides.
so, 14, 6, 6 and ... the baseline/ Hypotenuse of the top triangle.
for that r need the mentioned Pythagoras :
c² = a² + b²
where a and b are the sides, and c is the Hypotenuse (the side opposite of the 90 degree angle).
so, in our case of an isosceles triangle with a 90 degree angle :
c² = 8² + 6² = 64 + 36 = 100
c = 10 m
so, the perimeter is
14+6+6+10 = 36 m
Suppose an annuity pays 6% annual interest, compounded semi-annually. You invest in this annuity by contributing $4,500 semiannually for 6 years. What will the annuity be worth after 6 years?
Answer:
$3240
Step-by-step explanation:
hope it is well understood
Answer: 59300
Step-by-step explanation:
Write each question as a single logarithm (Picture attached)
Answer:
a.
[tex] log_{5}( {u}^{3 \times {v}^{4} } ) [/tex]
b.
[tex] ln( \frac{1}{( {x}^{2} - 2x + 1 } ) [/tex]
c.
[tex] log_{2}(x { \sqrt{3x - 2} }^{4} ) [/tex]
I need help finding the answer to this question on edge.
Answer:
6
Step-by-step explanation:
We need to evaluate :-
[tex]\rm\implies \displaystyle\rm\sum^4_n (-1)^n (3n + 2 ) [/tex]
Here the [tex]\Sigma[/tex] is the sum operator . And here we need to find the sum from n = 1 to n = 4 . We can write it as ,
[tex]\rm\implies (-1)^1 ( 3*1 +2) + (-1)^2 ( 3*2+2) + (-1)^3(3*3+2) + (-1)^4(3*4+2) [/tex]
Now we know that for odd powers of -1 , we get -1 and for even powers we get 1 . Therefore ,
[tex]\rm\implies -1 ( 3 + 2 ) + 1 (6+2)+-1(9+2)+1(12+2)[/tex]
Now add the terms inside the brackets and then multiply it with the number outside the bracket . We will get ,
[tex]\rm\implies -1 * 5 + 1 * 8 + -1*11 + 1*14 \\\\\rm\implies -5 + 8 - 11 + 14 \\\\\rm\implies\boxed{\quad 6 \quad}[/tex]
Hence the required answer is 6.
A car travels 1/8 mile in 2/13 minutes. What is the speed in terms of miles per minute?
Answer:
13/16 miles per minute
Step-by-step explanation:
Take the miles and divide by the minutes
1/8 ÷ 2/13
Copy dot flip
1/8 * 13/2
13/16 miles per minute
Michael invest $P at a rate of 3.8% per year compounded interest. After 30 years the value of this investment is $1,469. Calculate the value of P.
Answer:
Step-by-step explanation:
The formula for this is
[tex]A(t)=P(1+r)^t[/tex] and we have everything but the P. Filling in:
[tex]1469=P(1+.038)^{30[/tex] and
[tex]1469=P(1.038)^{30[/tex] and
1469 = P(3.061403718) so
P = 479.85
Solve for x.
7(x+2) = 6(x+5)
O x=-44
O X=-16
O x= 44
O x= 16
Answer:
x = 16
Step-by-step explanation:
7(x + 2) = 6(x + 5)
First, to start solving this problem, we have to distribute the "7" to the "x + 2" in the parenthesis and the "6" to the "x + 5" in the parenthesis.
7x + 14 = 6x + 30
Next, let's subtract "6x" from both sides of this equation!
x + 14 = 30
Now, we have to subtract "14" from both sides of the equation.
x = 16
Lastly! Let's make sure our "x=" equation is correct by inputting our value into the "x" values.
7(16 + 2) = 6(16 + 5)
7(18) = 6(21)
126 = 126
Since our equations equal each other we know that our x-value is correct!
Hope this Helps! :)
Have any questions? Ask below in the comments and I will try my best to answer.
-SGO
A sofa regularly sells for $760. The sale price is $676.40. Find the percent decrease of the sale price from the regular price.
Answer: (760 - 676. 40) × 100 ÷ 760 = 11%
Step-by-step explanation:
Answer:
11% decrease
Step-by-step explanation:
Concepts:
Percent change is the change between an old value and its new value represented as a %. If a percent change is a decrease, it means that the new value is less than the old value. If a percent change is a increase, it means that the old value is less than the new value. The formula for percent change is: (NV - OV)/OV · 100 = C, where NV = New Value, OV = Old Value, and C = Percent Change.The sale price is the price at which something sells or sold after the price has been reduced by sales, discounts, etc.Solving:
Let's find the percent change by using the formula.
1. Formula for Percent Change
(NV - OV)/OV · 100 = C2. Plug in the values of NV and OV
(676.40 - 760)/760 · 100 = C3. Simplify
-83.6/760 · 100 = C-0.11 · 100 = C-11 = CTherefore, our percent decrease is 11% decrease.
What is the derivative of x^2?
Answer:
[tex]\displaystyle \frac{d}{dx}[x^2] = 2x[/tex]
General Formulas and Concepts:
Calculus
Differentiation
DerivativesDerivative NotationBasic Power Rule:
f(x) = cxⁿf’(x) = c·nxⁿ⁻¹Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = x^2[/tex]
Step 2: Differentiate
Basic Power Rule: [tex]\displaystyle \frac{dy}{dx} = 2x^{2 - 1}[/tex]Simplify: [tex]\displaystyle \frac{dy}{dx} = 2x[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Suppose f(x)=x^2. What is the graph of g(x)=1/2f(x)?
9514 1404 393
Answer:
see attached
Step-by-step explanation:
The graph of g(x) is a vertically scaled version of the graph of f(x). The scale factor is 1/2, so vertical height at a given value of x is 1/2 what it is for f(x). This will make the graph appear shorter and fatter than for f(x).
The graph of g(x) is attached.
can someone help me out with this question???
Answer:
a
Step-by-step explanation:
Give the properties for the equation x2 + y2 + 8x - 2y +15 = 0
Radius √2 4 2
Answer:
ind the center and radius of the sphere: x2 + y2 +z2-8x + 2y + 62+1 0 2) Find an equation of the sphere that passes through the point (6,-2, 3) and has center (-1,2, 1). Find the curve in which the sphere from #2 intersects the yz-plane. For #4-11, u : ? + j-2k 4) 2u +3v 5) Iv 6) uv and v-3i-2j + k 8) Ivxu 9) comp,v 10) proju 11) Find the angle between u and v 12) Find the scalar triple product of a, b, and c. If a (3, 1,2), b (-1,1,0), and c (0,0,-4) 13) Find the values of x such that (3,2, x) and (2x, 4, x) are orthogonal 14) Find two unit vectors that are orthogonal to both j + 2k and i-2j+3k 15) Find the acute angle between two diagonals of a cube 16) Find a vector perpendicular to the plane through the points A(1,0,0), B(2,0,-1) and C(1,4,3) 17) Find parametric equations for the line through (4,-1, 2) and (1, 1, 5) 18) Find parametric equations for the line through (-2, 2, 4) and perpendicular to the plane 2x-y+5z 12 19) Find an equation of the plane through (2, 1,0) and parallel to x + 4y -3z 1 20) Find an equation of the plane through (3, -1, 1), (4, 0, 2), and (6, 3, 1). 21) Show that the planes x y-z 1 and 2x 3y + 4z 5 are neither parallel nor perpendicular. Find the angle between the planes.
What is the value of Z? Z =2^3
the value of Zis 8.
Z =2^3=8
Now we have to,
find the required value of Z.
→ Z = 2^3
→ [Z = 8]
Therefore, value of Z is 8.
A drinking container is shaped like a cone and must hold at least 10 ounces of fluid. The radius of the top of the container is 2.25 inches. The steps for determining the height of the cone-shaped container are shown below.
9514 1404 393
Answer:
C. h ≥ 1.9 in
Step-by-step explanation:
As the final step, divide both sides of the inequality by 5.3:
(5.3h)/5.3 ≥ 10/5.3
h ≥ 1.9
Find the y-intercept from the line passing through (1, 3) and having slope m=2.
Answer:
The y intercept is 1
Step-by-step explanation:
The slope intercept form of a line is
y = mx+b where m is the slope and b is the y intercept
y = 2x+b
Substitute the point into the equation and solve for y
3 = 2(1)+b
3 =2+b
1 = b
The y intercept is 1
find c.round to the nearest tenth
Answer:
we need a picture...
Step-by-step explanation:
describe how you could use the point-slope formula to find the equation of a line that is perpendicular to a given line and passes through a given point
Answer:
Using the slope intercept formula, we can see the slope of line p is ¼. Since line k is perpendicular to line p it must have a slope that is the negative reciprocal. (-4/1) If we set up the formula y=mx+b, using the given point and a slope of (-4), we can solve for our b or y-intercept. In this case it would be 17.
A number is chosen at random from 1 to 50. What is the probability of selecting
multiples of 10.
Answer: 25
Step-by-step explanation:
Find the length of XW.
Answer:
XW = 78
Step-by-step explanation:
Both triangles are similar, therefore based on triangle similarity theorem we have the following:
XW/XZ = VW/YZ
Substitute
XW/6 = 104/8
XW/6 = 13
Cross multiply
XW = 13*6
XW = 78
I need help solving this problem
Answer:
300
Step-by-step explanation:
If he is correct, what is the probability that the mean of a sample of 68 computers would differ from the population mean by less than 2.08 months
Complete Question
The quality control manager at a computer manufacturing company believes that the mean life of a computer is 91 months with a standard deviation of 10 months if he is correct. what is the probability that the mean of a sample of 68 computers would differ from the population mean by less than 2.08 months? Round your answer to four decimal places. Answer How to enter your answer Tables Keypad
Answer:
[tex]P(-1.72<Z<1.72)=0.9146[/tex]
Step-by-step explanation:
From the question we are told that:
Population mean \mu=91
Sample Mean \=x =2.08
Standard Deviation \sigma=10
Sample size n=68
Generally the Probability that The sample mean would differ from the population mean
P(|\=x-\mu|<2.08)
From Table
[tex]P(|\=x-\mu|<2.08)=P(|z|<1.72)[/tex]
T Test
[tex]Z=\frac{\=x-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]
[tex]Z=\frac{2.08}{\frac{10}{\sqrt{68} } }[/tex]
[tex]Z=1.72[/tex]
[tex]P(|\=x-\mu|<2.08)=P(|z|<1.72)[/tex]
[tex]P(-1.72<Z<1.72)[/tex]
Therefore From Table
[tex]P(-1.72<Z<1.72)=0.9146[/tex]
please help me its timed -H.M
Answer:
f(3) = g(3)
General Formulas and Concepts:
Algebra I
Functions
Function NotationGraphingStep-by-step explanation:
We can see from the graph that the lines intersect at (3, 6). If this is the case, then that means that when x = 3 for both functions, it outputs f(x) = 6.
Rewriting this in terms of function notation:
f(3) = 6, g(3) = 6
∴ f(3) = g(3)