Answer:
100
Step-by-step explanation:
f(1) = 1
f(2) = -10×f(1) = -10 × 1 = -10
f(3) = -10×f(2) = -10 × -10 × f(1) = -10 × -10 × 1 = 100
f(n) = -10 to the power of n-1
Answer:
c - 100
Step-by-step explanation:
I’m struggling with this question someone help ASAP plz
Answer:
The correct answer is:
30 = 10 + 3(h - 2)30 = 10 + 3h - 6
26 = 3h
h = 8.67
Step-by-step explanation:
We're gonna calculate by our part the hours a new costumer can rent a bike and pay a total of $30, using the original function:
f (h) = 10 + 3(h - 2)Where:
f (h) = Total cost. h = the number of hours.We know The total money spent must be $30, by this reason, the function change to:
30 = 10 + 3(h - 2)Now, we must clear the h variable, by this reason, we multiply 3 by h and 2:
30 = 10 + 3*h - 3*2 30 = 10 + 3h - 6We pass the 10 and the -6 to the left side of the equality:
30 - 10 + 6 = 3h (Remember to change the signs when you do this step) 26 = 3hFinally, we pass the 3 to the left side of the equality:
26 / 3 = h (the 3 pass to divide because is multiplying the x)
8.666666666667 = hIf we just use two decimals, the number of hours is:
h = 8.67How the third option is the one that shows this calculation and result, that is the correct answer.
What is the sum?
8+(-12)
-20
4
ОО
20
The time to complete an exam in a statistics class is a normal random variable with a mean of 50 minutes and a standard deviation of 10 minutes. What is the probability, given a class size of 30 students, the average time to complete the test is less than 48.5 minutes
Answer:
0.2061 = 20.61% probability, given a class size of 30 students, the average time to complete the test is less than 48.5 minutes
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Mean of 50 minutes and a standard deviation of 10 minutes.
This means that [tex]\mu = 50, \sigma = 10[/tex]
Class size of 30 students
This means that [tex]n = 30, s = \frac{10}{\sqrt{30}}[/tex]
What is the probability, given a class size of 30 students, the average time to complete the test is less than 48.5 minutes.
This is the p-value of Z when X = 48.5. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{48.5 - 50}{\frac{10}{\sqrt{30}}}[/tex]
[tex]Z = -0.82[/tex]
[tex]Z = -0.82[/tex] has a p-value of 0.2061
0.2061 = 20.61% probability, given a class size of 30 students, the average time to complete the test is less than 48.5 minutes
a Given: △CDE, DK ⊥ CE ,CD=DE Area of △CDE = 29cm2 m∠CDE=31° Find: DK
Answer:
DK = 10.23 units (approx)
Step-by-step explanation:
(DK * (CK + KE))/2 = 29
DK * CK = 29
180 - 31 = 149
149/2 = 74.5 --> degree of other angles
tan 74.5 = DK/CK
CK * tan 74.5 = DK
CK * CK * tan 74.5 = 29
CK = 2.83591462
2.83591462 * tan 74.5 = DK
DK = 10.22597776
So DK is approximately 10.23 units.
Hope this helps!
X is a normally distributed random variable with a mean of 22 and a standard deviation of 5. The probability that x is less than 9.7 is:_________
a. 0.0069
b. 0.000
c. 0.4931
d. 0.9931
Answer:
0.0069
Step-by-step explanation:
According to the Question,
Given That, X is a normally distributed random variable with a mean of 22 and a standard deviation of 5. The probability that x is less than 9.7We have, μ=22 , σ= 5 , P(X<9.7)=Area to the left of 9.7.
Z = (x-μ)/σ
Z = (9.7-22) / 5 ⇒ -2.46
Thus,
P(X<9.7)=P(Z < -2.46) ⇒ 0.0069 (From z-table)15. Mark Twain one observed that the lower Mississippi River is very crooked and that over the years, as the bends and turns straighten out, the river gets shorter and shorter. Using numerical data about the length of the lower part of the river, he noticed that in the year 1700 the river was more than 1200 miles long, yet by the year 1875 it was only 973 miles long. Twain concluded that any person “can see that 742 years from now the lower Mississippi will be only a mile and three-quarters lone.” What is wrong with his inductive reasoning?
Answer:
Step-by-step explanation:
I'm sure he was making a joke at the expense of people who rely on mathematics rather than common sense. It is funny, but then Twain was a remarkably funny author..
The problem is that the comparison is apt using some sort of proportion, but it is absurd to think that the land holding the river would also shrink a proportional amount.
The river reached a minimum (presumably) in 1875 by cutting out all the loops that were there in 1700. The Mississippi was then a straight line from it's beginning to its delta on the gulf of Mexico. It could not get any shorter. Still, Twain managed to get laughs with his whimsical humor.
Thanks for posting. This made my evening.
What do the chi-square test for independence, the Pearson correlation, and simple linear regressions all have in common
Answer:
They all test relationship when it involves two variables
Explanation:
All of the statistical methods listed above all measure the relationship between two variables.
The Chi Square test tests the relationship between two nominal/categorical variable groups.
The Pearson correlation test tests relationship between two continuous variables using the Pearson correlation coefficient to determine statistical relationship between them.
The simple linear regression measures relationship between two variables: dependent/response variable and independent/explanatory variable, to see if a relationship exists between by way of influence of the independent variable on the dependent variable.
Ryan spent 1/3 of his monthly salary for rent and 1/7 of his monthly salary for his utility bill. If $759 was left, what was his monthly salary?
Step-by-step explanation:
Given Information :Ryan spent 1/3 of his monthly salary for rent and 1/7 of his monthly salary for his utility bill. Remaining money = $759To calculate :His monthly salary.Calculation :Let us assume his monthly salary as x. According to the question,
➝ Money spent on rent + Money spent for utility bill + Remaining money = His salary
[tex]\longrightarrow\sf {\dfrac{1}{3}x + \dfrac{1}{7}x + 759 = x} \\ [/tex]
[tex]\longrightarrow\sf {\dfrac{7x + 3x + 15939}{21}= x} \\ [/tex]
[tex]\longrightarrow\sf {\dfrac{10x+ 15939}{21}= x} \\ [/tex]
[tex]\longrightarrow\sf {10x+ 15939= 21x} \\ [/tex]
[tex]\longrightarrow\sf {15939= 21x - 10x} \\ [/tex]
[tex]\longrightarrow\sf {15939= 11x} \\ [/tex]
[tex]\longrightarrow\sf {\cancel{\dfrac{15939}{11}}= x} \\ [/tex]
[tex]\longrightarrow\underline{\boxed{\bf {1449= x}}} \\ [/tex]
Therefore, his monthly income is $1449.
Solve the inequality and write the solution set using both set-builder notation and interval notation. -3a-15≤-2a+6
Answer:
[tex]\{a[/tex] ∈ [tex]R\ -21 \le a \le \infty \}[/tex] --- set builder
[tex][-21,\infty)[/tex] --- interval notation
Step-by-step explanation:
Given
[tex]-3a - 15 \le -2a + 6[/tex]
Required
Solve
Collect like terms
[tex]-3a + 2a \le 15 + 6[/tex]
[tex]-a \le 21[/tex]
Divide by -1
[tex]a \ge - 21[/tex]
Rewrite as:
[tex]-21 \le a[/tex]
Using set builder
[tex]\{a[/tex] ∈ [tex]R\ -21 \le a \le \infty \}[/tex]
Using interval notation, we have:
[tex][-21,\infty)[/tex]
What is the solution to the following inequality X/-2 > 5
Answer:
x < -10
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightEquality Properties
Multiplication Property of Equality Division Property of Equality Addition Property of Equality Subtraction Property of EqualityStep-by-step explanation:
Step 1: Define
Identify
x/-2 > 5
Step 2: Solve for x
[Multiplication Property of Equality] Multiply -2 on both sides: x < -10[tex]\large {\mathsf {\red{\underbrace {\overbrace{\blue{ {\pink}{Answєr}}}}}}} \: [/tex]
x > - 10
[tex] \large \mathtt \green{Step-by-step \: explanation : }[/tex]
[tex] \small \sf \frac{x}{ - 2} > 5 \\ [/tex]
Solve for x
[tex] \small \sf \frac{x}{ - 2} > 5 \\ [/tex]
common denominator is 2
[tex]\small \sf ➪ \frac{2x}{ - 2} >2 \times 5 \\ [/tex]
[tex]\small \sf ➪ \frac{ \cancel{2}x}{ - \cancel{ 2}} >2 \times 5 \\ [/tex]
➪ - x > 2 × 5
➪ - x > 10
multiply by - 1
➪ - x × - 1 > 10 × - 1
x > - 10
a student estimates the length of a room to be 20 feet. The actual length is 20.25 feet. What is the percent error?
Answer:
Percent error=1.23%
Step-by-step explanation:
We are given that
Estimate length of room=20 feet
Actual length of room=20.25 feet
We have to find the percent error.
To find the percent error we will find the difference between the estimate length and actual length of room.
Difference=Actual length of room-Estimate length of room
Difference=20.25-20
Difference=0.25 feet
Now,
Percent error=[tex]\frac{Difference}{actual\;length}\times 100[/tex]
Percent error=[tex]\frac{0.25}{20.25}\times 100[/tex]
Percent error=1.23%
convert 6.28km into metres
Answer:
8275382+9162672(7263382) 615-41+8162(71818)
Answer:
6280m
Step-by-step explanation:
6.28×1000m
=6280m
Find the value for x
Answer:
[tex]180 - 2x + 180 - 4x + x = 180 \\ 360 - 5x = 180 \\ 180 = 5x \\ x = 36[/tex]
URGENT!!! Picture included
How many orders are possible to view 6 videos from a stack of 8 videos?
Answer:
28
Step-by-step explanation:
We know that ,
n C r = n! / ( n - r)! r! 8! / ( 8 - 6)! 6!8! / 2! × 6! 7 × 8 / 2 × 1 28Which ordered pair makes both inequalities true?
AN
3
NO
y> -2x + 3
Ysx-2
ist -3 -2 -1
Answer:
(3, 0)
Step-by-step explanation:
Given the inequality y > -2x + 3 and y ≤ x - 2
The graph of the inequalities are plotted using the geogebra graphing online calculator.
The portion of the graph that is shaded with dark blue, represents the portion that supports the equation.
All the ordered pair points given in the question are also labelled in the graph.
From the graph we can see that only point (3, 0) falls in the area that supports the equation. Hence (3, 0) makes both inequalities true.
Please tell me the answer I have no idea how to do this
Answer:
60 degrees
Step-by-step explanation:
So we see there's a 90 degree angle and a 150 degree larger angle including it.
So to find out the part that the 150 degree large angle that's not a part of the 90 angle we would do: 150 - 90, and we get 60.
So the bottom right angle is 60 degrees.
Now since we have a straight line from the left to right horizontally, we know that one side has to equal 180 degrees. On the side which the x is on, we already have 2 angles: 90 and 30. 90 + 30 = 120.
Since a straight line equals 180, x + 120 has to equal 180.
So now we do simple algebra.
x + 120 = 180
x = 180 - 120
x = 60
So x is equal to 60 degrees.
Find the numerical value of each expression. (Round your answers to five decimal places.) (a) sinh(ln(5)) (b) sinh(5)
sinh(ln(4)) = (exp(ln(4)) - exp(-ln(4)))/2 = (4 - 1/4)/2 = 15/8 = 1.875
sinh(4) = (exp(4) - exp(-4))/2 ≈ 27.28992
Value of the expression in which each variable was swapped out with a number from its corresponding domain sinh (l5)
How do you determine an expression's numerical value?sinh (5)
=sinh(1.6094) =2.39990 rad
=sinh(1.6094) =2.3
By doing the following, you may determine the numerical value of an algebraic expression: Replace each variable with the specified number. Then, enter your score in your team's table.
Analyze expressions that are linear.Multi-variable expressions should be evaluated.Analyze expressions that are not linear.Value of the expression in which each variable was swapped out with a number from its corresponding domain. In the case of a number with only one digit, referring to the numerical value associated with a digit by its "value" is a convenient shorthand.
To learn more about Value of the expression refer to:
https://brainly.com/question/13961297
#SPJ2
he parent function f(x) = x3 is represented by graph A. Graph A is transformed to get graph B and graph C. Write the functions represented by graph B and graph C.
Graph B represents the function g(x) =
.
Graph C represents the function h(x) =
.
In a recent study of incomes in Wake county in North Carolina, it was found that the distribution of family incomes is skewed to the right (i.e., it has a long right tail). What can we say about the relationship between mean and median.
Answer:
The mean is to the right of the median
Step-by-step explanation:
Given
Skewed right distribution
Required
Relationship between the mean and the median
The question would be better answered if there are options available. Since there are none, I will provide a general answer/explanation.
For a distribution that is right skewed, the mean is always on the right side of the median.
11 Emilio makes metal fences.
He is making a fence using this design.
1.44 m
DO NOT WRITE IN THIS AREA
1.8 m
.
The fence will need
3 horizontal metal pieces of length 1.8m
2 tall metal pieces of length 1.44 m
5 medium metal pieces
6 short metal pieces as shown on the diagram.
The heights of the tall, medium and short metal pieces are in the ratio 9:8:7
.
How many metres of metal in total does Emilio need to make the fence?
Answer:
Step-by-step explanation: 7 3 13 31
3 × 1.8 long pieces Calculate the ratios
2 × 1.44 9 tall vertical piece 1.44 / 9 = x / 9 x = 1.44
5 × ___ 8 medium vertical pieces 1.44 / 9 = x / 8 x = 1.28
6 × ___ 7 short vertical pieces 1.44 / 9 = x / 7 x = 1.12
3 × 1.8 long pieces
2 × 1.44 9 tall vertical piece 1.44 / 9 = x / 9 x = 1.44
5 × 1.28 8 medium vertical pieces 1.44 / 9 = x / 8 x = 1.28
6 × 1.12 7 short vertical pieces 1.44 / 9 = x / 7 x = 1.12
3 × 1.8 long pieces = 5.4 m
2 × 1.44 9 tall vertical piece = 2.88 m
5 × 1.28 8 medium vertical pieces = 6.4 m
6 × 1.12 7 short vertical pieces = 6.72 m
Total = 21.4 m
I need help with this x/4 - 3x/8 = 5
Answer:
x=−40
Step-by-step explanation:
Step 1: Simplify both sides of the equation.
x4−3x8=5
14x+−38x=5
(14x+−38x)=5(Combine Like Terms)
−18x=5
−18x=5
Step 2: Multiply both sides by 8/(-1).
(8−1)*(−18x)=(8−1)*(5)
x=−40
Answer:
x=−40
Hello!
x/4 - 3x/8 = 5
2x - 3x = 40
-x = 40
x = -40
Good luck! :)
19. Students at a certain school can enroll in one elective course: painting, theater, choir, or band. This two-way frequency
table gives the number of male and female students enrolled in each class.
Male Female Total
Painting 17 16 33
Theater 15
18
33
Choir 21 25 46
Band 28
25
53
Total 81
84
165
Determine the conditional relative frequency that a student in the sample is enrolled in painting given that the student is
female.
O A. 19.0%
O B. 48.5%
O C. 9.7%
O D. 19.8%
Answer:
19.0%
Step-by-step explanation:
The probability that a student in the sample data is enrolled in painting Given that the student is female is a conditional probability and can be defined as :
Let,
F = Female ; P = painting
P(Painting Given female) = P(P|F) = (PnF) / F
From the table :
(PnF) = 16
F = 84
Hence,
P(P|F) = 16 / 84 = 0.19047 = 0.19047 * 100%
P(P|F) = 19.0%
divide 18/7 by 8/26. Pls give the correct ans
Answer:
8.35714285714
Step-by-step explanation:
Hope it help you
Please help me out with these questions :
Answer:
Step-by-step explanation:
1. 3/7 x = 12
3x = 84
x = 28
2. 3x+ 6 = 39
3x = 33
x = 11
3. 1/3 x - 3/4 x = 15
9x - 4x = 180
x = 36
4. 1/4 x = x -21
3/4 x = 21
3x = 84
x=28
5. 86-36 = 50
50/2
25
help please i don't know how to do this
Suppose you choose a marble from a bag containing 3 red marbles, 5 white marbles, and 4 blue
marbles. You return the first marble to the bag and then choose again. Find P (red and blue).
Answer:
P(red and blue) = 1/12
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
Probability of independent events:
If two events, A and B, are independent, the probability of both happening is the multiplication of the probabilities of each event happening, that is:
[tex]P(A \cap B) = P(A)P(B)[/tex]
P (red and blue).
Probability of choosing a red marble, then a blue marble. The marbles are replaced, so the trials are independent.
Probability of a red marble:
3 out of 3 + 5 + 4 = 12. So
[tex]P(A) = \frac{3}{12} = \frac{1}{4}[/tex]
Probability of a blue marble:
4 out of 12, so:
[tex]P(B) = \frac{4}{12} = \frac{1}{3}[/tex]
P (red and blue).
[tex]P(A \cap B) = P(A)P(B) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{4*3} = \frac{1}{12}[/tex]
So
P(red and blue) = 1/12
Which of the following is a true statement?
Answer:
The last choice: 68/5 - 22/5 = 9 1/5
Step-by-step explanation:
Solve each problem:
9 3/7 = 10 3/7
The fractions are the same so look at the whole numbers.
Does 9 equal 10? No, it doesn't so this is a false statement.
332/4 = 1/83
Simplify 332/4:
332/4 = 83/1
83 does not equal 1/83 so this is a false statement.
37/5 = 5 2/5
Convert the improper fraction into a mixed number:
7 2/5 = 5 2/5
These numbers do not equal each other so this is a false.
68/5 - 22/5 = 9 1/5
Subtract the numerators on the left side of the equation:
46/5 = 9 1/5
Convert the improper fraction into a mixed number:
9 1/5 = 9 1/5
These numbers equal each other so this is a true statement!
This set of ordered pairs defines a function.
{(-49,7), (-56,8), (-63,9), (-70,10)}
Which table represents the inverse of the function defined by the ordered pairs?
Answer:
option c
Step-by-step explanation:
becoz for inverse the number that is negative changes into positive like wise for the positive number it changes into negative , just opposites
Please help! Variables!!
Answer:
-x^4, and (2√x)/x
Step-by-step explanation:
4. [tex]- \sqrt{ x^{8} } = - \sqrt{x^{4} *x^{4} } = -x^{4}[/tex]
x^8 = x*x*x*x*x*x*x*x = (x*x*x*x)(x*x*x*x) = (x^4)(x^4)
5.
[tex]\sqrt{\frac{4}{x} } = \frac{\sqrt{4} }{\sqrt{x} } = \frac{2}{\sqrt{x} } \\\\\\\frac{2}{\sqrt{x} } * \frac{\sqrt{x} }{\sqrt{x} } = \frac{2\sqrt{x} }{x}[/tex]