Answer:
24 premium tickets were sold.
Step-by-step explanation:
Let :
Deluxe ticket = x
Regular tickets = x + 78
Premium tickets = y
x + (x + 78) + y = 208
4x + 2(x+78) + 10y = 714
2x + y = 208 - 78
4x + 2x + 156 + 10y = 714
2x + y = 130 - - - - - (1)
6x + 10y = 558 - - - - (2)
Now we can solve the simultaneous equation using elimination method :
From (1)
y = 130 - 2x
Put y = 130 - 2x in (2)
6x + 10(130 - 2x) = 558
6x + 1300 - 20x = 558
- 14x = 558 - 1300
-14x = - 742
x = 742 / 14
x = 53
Put x = 53 in y = 130 - 2x
y = 130 - 2(53)
y = 130 - 106
y = 24
WILL MARK BRAINLIEST PLEASE SHOW WORK!
Step-by-step explanation:
4. the area of semi circle R =
3²/5² × 75π = 9/25 × 75π = 27π cm²
5. the ratio of their areas = 1²:7² = 1:49
There are five cities in a network. The cost of building a road directly between i and j is the entry ai,j in the matrix below. An infinite entry indicates that there is a mountain in the way and the road cannot be built. Determine the least cost of making all the cities reachable from each other.
0 3 5 11 9
3 0 3 9 8
5 3 0 [infinity] 10
11 9 [infinity] 0 7
9 9 10 7 0
Solution :
Given :
There are five cities in a network and the cost of [tex]\text{building}[/tex] a road directly between [tex]i[/tex] and [tex]j[/tex] is the entry [tex]a_{i,j}[/tex]
[tex]a_{i,j}[/tex] refers to the matrix.
Road cannot be built because there is a mountain.
The given matrix :
[tex]\begin{bmatrix}0 & 3 & 5 & 11 & 9\\ 3 & 0 & 3 & 9 & 8\\ 5 & 3 & 0 & \infty & 10\\ 11 & 9 & \infty & 0 & 7\\ 9 & 8 & 10 & 7 & 0\end{bmatrix}[/tex]
The matrix on the left above corresponds to the weighted graph on the right.
Using the [tex]\text{Kruskal's algorithm}[/tex] we can select the cheapest edge that is not creating a cycle.
Starting with 2 edges of weight 3 and the edge of weight 5 is forbidden but the edge is 7 is available.
The edge of the weight 8 completes a minimum spanning tree and total weight 21.
If the edge of weight 8 had weight 10 then either of the edges of weight 9 could be chosen the complete the tree and in this case there could be 2 spanning trees with minimum value.
If 25 burgers feed 15 kids how many burgers would feed 55 kids
Answer:
1375
Step-by-step explanation:
Rearrange to make P the subject, :)..
Answer: [tex]P = \frac{25}{E^2}-Q\\\\[/tex]
Work Shown:
[tex]E = 5\left(\sqrt{\frac{1}{P+Q}}\right)\\\\5\left(\sqrt{\frac{1}{P+Q}}\right) = E\\\\\sqrt{\frac{1}{P+Q}} = \frac{E}{5}\\\\\frac{1}{P+Q} = \left(\frac{E}{5}\right)^2\\\\\frac{1}{P+Q} = \frac{E^2}{25}\\\\P+Q = \frac{25}{E^2}\\\\P = \frac{25}{E^2}-Q\\\\[/tex]
verify sin2θ/1+cos2θ =tanθ
Answer:
LHS.= Sin 2x /( 1 + cos2x )
We have , sin 2x = 2 sinx•cosx
And. cos2x = 2cos^2 x - 1
i.e . 1+ cosx 2x = 2cos^2x
Putting the above results in the LHSwe get,
Sin2x/ ( 1+ cos2x ) =2 sinx•cosx/2cos^2x
=sinx / cosx
= Tanx
.•. sin2x/(1 + cos2x)= tanx
Step-by-step explanation:
The curve y=2x^3+ax^2+bx-30 has a stationary point when x=3. The curve passes through the point (4,2).
(A) Find the value of a and the value of b.
#secondderivative #stationarypoints
A stationary point at x = 3 means the derivative dy/dx = 0 at that point. Differentiating, we have
dy/dx = 6x ² + 2ax + b
and so when x = 3,
0 = 54 + 6a + b
or
6a + b = -54 … … … [eq1]
The curve passes through the point (4, 2), which is to say y = 2 when x = 4. So we also have
2 = 128 + 16a + 4b - 30
or
16a + 4b = -96
4a + b = -24 … … … [eq2]
Eliminate b by subtracting [eq2] from [eq1] and solve for a, then for b :
(6a + b) - (4a + b) = -54 - (-24)
2a = -30
a = -15 ===> b = 96
The triangle below is equilateral. Find the length of side
x in simplest radical form with a rational denominator.
===========================================================
Explanation:
Any equilateral triangle has all three angles of 60 degrees each. Splitting the triangle in half like this produces two identical copies of 30-60-90 triangles.
Any 30-60-90 triangle will have its hypotenuse twice as long compared to the short leg. The short leg here is 5 (it's opposite the smallest angle), so that doubles to 2*5 = 10 which is the value of x.
Note: the other side of this right triangle is 5*sqrt(3).
Answer:
x=10
Step-by-step explanation:
∵ Δ IS Equilateral.
∴ sides are equal.
perpendicular from vertex bisects it.
x=2×5=10
Calvin and Jamel each havr cats as pets. Calvin buys cat food in cylindrical can that are 6 centimeters in diameter and 12 centimeters high. Jamel buys cat food in cylindrical can that 12 centimeters in diameter and 6 centimeters high. What is the ratio of the volume of one of Calvin's cans of to the volume of one of Jamel's cans?
Answer:
see below
Step-by-step explanation:
CALVIN
v=[tex]\pi[/tex]× r ² × h
v=3.14 × 3² × 12
v=3.14×9 × 12
v=3.14 × 108
v = 339.12
JAMEL
v=[tex]\pi[/tex] × r ²×h
v=3.14× 6 ² × 6
v=3.14 × 36×6
v=3.14×216
v=678.24
drag the tiles to the correct boxes to comlete the pairs.
not all tiles will be used.
match each quadratic equation with its solution set.
Answer:
first tile: X²-55=9
second tile:2x²-32=0
third tile:4x²-100=0
fourth tile:x²-140=-19
Step-by-step explanation:
apply difference of two squares to all i.e (a+b)(a-b)=(a²-b²)=0
x²-55-9=0
x²-64=0
x-8,x+8=0
x=8,x=-8
2x²-32=0
divide through by two
x²-16=0
x=4,x=-4
4x²-100=0
divide through by 4
x²-25=0
x=5 or -5
x²-140=-19
x²-140+19=0
x²-121=0
x=11 or -11
Farah is x years old. Ibtisam is 3 years younger than Farah. Muna is twice as old as Ibtisam. Write and expression in terms of x, for
(a) Ibtisam's age,
(b) The sum of their three ages, giving your answer in its simplest form.
Answer:
Farah: x
Ibtisam: x-3
Muna: 2(x-3) or 2x-6
Sum of all their ages: 4x-6
Step-by-step explanation:
Farah is x, so we don't need an expression for that.
Ibtisam is 3 years younger than Farah, which means that we need to subtract 3 from Farah, and that would be Ibtisam's age. x-3.
Muna is 2 TIMES Ibtisam's age, so we need to multiply whatever expression taht was used for Ibtisam by 2. Put brackets around the equation with 2 outside: 2(x-3). Solve and you get 4x-6
Now, you have all their ages in expression form, now you need to simplify by adding:
x+x+2x-6
We cannot simplify -6, so we put that aside. Add all the x's and you get 4x, insert the minus 6 at the end:
4x-6
Hope this helps!
--Applepi101
Answer:
a) X -3
b) 4x - 9
Step-by-step explanation:
a) Farah's age is X so Ibtisam will be X - 3 old since he is 3years younger than Farah
b) Farah is X years old
Ibtisam is X - 3 years old
Muna is 2(X -3) since she is 2 times older than Ibtisam.
the sum of Thier ages will be
X + X -3 + 2(x-3)
= 2x - 3 + 2x - 6
= 4x - 9
On Fridays, Jerry stops at Steak & Taco Shack before he goes home. This week
his order was 1 steak sandwich, 2 orders of cheese fries, and 2 taco salads. He was
charged $11.50 before tax. One week ago, his order was 2 steak sandwiches, 3
orders of cheese fries, and 1 taco salad, and he was charged $15.25. Two weeks ago
he ordered 1 steak sandwich, 4 orders of cheese fries, and 1 taco salad, and was
charged $13. How much is 1 steak sandwich? How much is 1 cheese fries? How
much is 1 taco salad?
Answer:
Steak sandwich = x = 4
Cheese fries = y = 1.75
Taco salad = z = 2
Step-by-step explanation:
Let :
Steak sandwich = x
Cheese fries = y
Taco salad = z
This week:
x + 2y + 2z = 11.50 - - - - (1)
Last week :
2x + 3y + z = 15.25 - - - (2)
Two weeks ago :
x + 4y + z = 13 - - - - - (3)
Taking (1) and (2)
x + 2y + 2z = 11.50 ___(1)
2x + 3y + z = 15.25 ___(2)
Multiply (1) by 2 and (2) by 1 and subtract
2x + 4y + 4z = 23
2x + 3y + z = 15.25
_______________
y + 3z = 7.75 - - - - (4)
Taking (2) and (3)
2x + 3y + z = 15.25 - - (2)
x + 4y + z = 13 - - - - - (3)
Multiply (2) by 1 and (3) by 2 and subtract
2x + 3y + z = 15.25
2x + 8y + 2z = 26
______________
-5y - z = - 10.75 - - - - - (5)
Lets solve (4) and (5)
y + 3z = 7.75 - - - - (4) - - - multiply by 5
-5y - z = - 10.75 - - - - - (5) - - - multiply by 1
Then add the result :
5y + 15z = 38.75
-5y - z = - 10.75
____________
14z = 28
z = 28 / 14
z = 2
To find y ; put z = 2 in (4)
y + 3z = 7.75
y + 3(2) = 7.75
y + 6 = 7.75
y = 7.75 - 6
y = 1.75
From equation 3 ;
x + 4y + z = 13 - - - - - (3)
x + 4(1.75) + 2 = 13
x + 7 + 2 = 13
x + 9 = 13
x = 13 - 9
x = 4
Hence,
Steak sandwich = x = 4
Cheese fries = y = 1.75
Taco salad = z = 2
For this problem, carry at least four digits after the decimal in your calculations. Answers may vary slightly due to rounding. A random sample of 5240 permanent dwellings on an entire reservation showed that 1613 were traditional hogans.
(a) Let p be the proportion of all permanent dwellings on the entire reservation that are traditional hogans. Find a point estimate for p. (Round your answer to four decimal places.)
(b) Find a 99% confidence interval for p. (Round your answer to three decimal places.) What is the lower limit? What is the upper limit?
Answer:
Step-by-step explanation:
point est. 0.307824427
99% 2.58
Confidence Interval - "P" values
(0.2914 , 0.3243 )
The blueprints of a house have a scale factor of 30. If one side of the house measures 4 inches on the blueprint, how long is the actual side length (in feet)?
A. 7.5 feet
B.10 feet
C. 90 feet
D. 120 feet
If the scale factor is 30, then all you have to do is multiply each measurement by the scale factor. In this case, 4 · 30 = 120.
What is tan 30°?
60
2
1
90°
30"
V3
O A.
B. 1
O c. 2
O D. 7/ 룸
O E
1 / 3
Eg
O E
Answer:
Hello,
What is tan 30°?
[tex]tan(30^o)=\dfrac {\sqrt{3} }{3}[/tex]
Step-by-step explanation:
[tex]sin(30^o)=\dfrac{1}{2} \\\\cos(30^o)=\dfrac{\sqrt{3} }{2} \\\\\\tan(30^o)=\dfrac{sin(30^o)}{cos(30^o)} \\tan(30^o)=\dfrac{\dfrac{1}{2} } { \dfrac{\sqrt{3} }{2} }\\\\ =\dfrac {1*2}{2*\sqrt{3} }\\\\ =\dfrac {\sqrt{3} }{3}[/tex]
The value of tan 30° is 1/√3
What is tangent of an angle?The tangent of an angle is the ratio of the length of the opposite side to the length of the adjacent side.
In other words, it is the ratio of sine and cosine function of an acute angle such that the value of cosine function should not equal to zero.
Tan 30° = sin 30° / cos 30°
We know that, sin 30° = 1/2
cos 30° = √3/2
Therefore,
Tan 30° = 1/2 ÷ √3/2
Tan 30° = 1/2 x 2/√3
Tan 30° = 1/√3
Hence, the value of tan 30° is 1/√3
Learn more about tangent of an angle, click;
https://brainly.com/question/10053881
#SPJ7
Correct
Suppose it takes John 27 minutes to run 3 miles. How long would it take him to run 4 kilometers? Round your answer to the nearest minute,
lil Keypad
Answer
Keyboard Shortcuts
min
Submit Answer
© 2021 Hawkes Learning
O
Type here to search
Answer:
Step-by-step explanation:
4km
[tex]\frac{3 }{27} \frac{miles}{minutes}[/tex] * [tex]\frac{60}{1} \frac{min}{hour}[/tex] * [tex]\frac{1}{.6213} \frac{km}{mile}[/tex]
4km ÷ 10.73 km/hr = .37 hr = 22.3 minutes
Simplify: y^-3
a) 3/y
b) - 1/y^3
c) -3y
d) 1/y^3
Answer:
1/y^3
Step-by-step explanation:
We know that a^-b = 1/a^b
y ^-3 = 1/y^3
(a+b)2= c+d
answer
answer
Answer:
a+b=c+d/2
i cant understand what answer you want
Geometry something about chords but I don’t understand this whatsoever
Answer:
x = 5
Step-by-step explanation:
A radius is the distance from the center of a circle to the circumference (out edge) of a circle. Within the same circle, all radii are congruent. As per the given image, the radius of the circle is (5). As per its definition, the chord (a line in a circle that spans from one end of the circle to the other) with a measure of (x) is also another radius. Since all radii in a circle are congruent, (x) must also equal (5).
What information is NOT necessary to find the area of a circle?
a.
pi
c.
diameter
b.
radius
d.
height
Answer:
D. Height
General Formulas and Concepts:
Geometry
Area of a Circle: A = πr²
r is radiusStep-by-step explanation:
In order to find the area of a circle, we must follow the formula. Out of all the options given, height is not incorporated into the formula.
It wouldn't make sense to use height anyways since it would be 3-dimenional and we're talking 2-dimensional.
∴ our answer is D.
the diameter of a circle is 8 cm what is its area?
A = πr^2 and d = 2r.
So r = 8/2 = 4 cm.
Now use the first formula
A = π(4 cm)^2 = 50.265 cm^2
PLEASE I HAVE AN HOUR Why might you use the distributive property to simplify 3(30-2)
The point A(−8,−4) is reflected over the origin and its image is point B. What are the coordinates of point b?
9514 1404 393
Answer:
B(8, 4)
Step-by-step explanation:
Reflection across the origin negates both coordinate values.
(x, y) ⇒ (-x, -y) . . . . . reflection across the origin
A(-8, -4) ⇒ B(8, 4)
Large soda bottles are on sale three for six dollars. Sasha has eighteen dollars to spend on soda. How
many large bottles of soda can she buy?
Answer:
Sasha can buy 6 bottles of soda.
Step-by-step explanation:
6x2=18
3x2=6
Find the axis of symmetry of the graph of
y = x2 + 2x + 2
A- x= 1
B- y=1
C- x= -1
D- y=-1
Answer:
x = -1
Step-by-step explanation:
The graph's turning point is at ( -1 , 1 ), therefore the line of symmetry is at x = -1.
Answer: x = -1
Step-by-step explanation:
The formula to find the axis of symmetry in a function y = ax² + bx + c is:
[tex]x=\frac{-b}{2a}[/tex]
For y = x² + 2x + 2, where:
a = 1b = 2c = 2The axis of symmetry would be:
[tex]x=\frac{-b}{2a} =\frac{-2}{2(1)} =\frac{-2}{2} =-1[/tex]
PLEASE HELP VENN DIAGRAM!
Look at attached for the diagram!!!
In his diagram BH represents the students that have brown hair and W represents the students that are wearing a watch.
Is having brown hair independent of wearing a watch?
Please show some work if possible
Answer:
Yes.
Step-by-step explanation:
Since there is an overlap, that does mean some people with brown hair do wear watches, but not all of them do. Hence it's independent.
Find the solutions of x^2+30 = 0
please give detailed steps!
Answer:
x= i√30
Step-by-step explanation:
I'm going to go into this under the assumption that you've covered imaginary numbers based on the question. If I'm wrong then sorry about that.
Okay, so first you want to subtract 30 from both sides
x^2=-30
Then you take the square root of each side.
√(x^2)=√-30
x=√-30
Since it's impossible to square a number to get a negative number, you'll end up with an imaginary number. You have to rewrite x=√-30 to get rid of the negative sign under the radical. Rewriting this will also indicate that it's an imaginary number.
Final answer: x = i√30
Can someone help me with this?
9514 1404 393
Answer:
CNBD -- using the given statement regarding perpendicularityΔLAW ≅ ΔWKL by ASA -- using the markings on the figureStep-by-step explanation:
The given information tells us there is one congruent side in the two right triangles. That is not sufficient to claim congruence of the triangles.
CNBD
__
The figure shows one congruent angle in addition to one congruent side, so the figures can be shown to be congruent using the ASA theorem.
ΔLAW ≅ ΔWKL
_____
Additional comment
We don't know which answer is expected. You should discuss this question with your teacher, since it appears to be missing the statement that
∠ALW ≅ ∠KWL
28. A boy decided to cut 10 pieces of wood from a length of wood so tha the first piece was 5cm the second 10cm, the third 15cm, the fourth 20cm and so on until he had cut TO pieces, each one 5cm longer than the one he had cut before. What length of the wood did he use? (a) 50cm (b) 55cm (c) 70cm (d) 200cm (e) 275cm
Step-by-step explanation:
he use 50cm length of the wood
Trucks in a delivery fleet travel a mean of 120 miles per day with a standard deviation of 23 miles per day. The mileage per day is distributed normally. Find the probability that a truck drives less than 159 miles in a day. Round your answer to four decimal places.
Answer:
the probability that a truck drives less than 159 miles in a day = 0.9374
Step-by-step explanation:
Given;
mean of the truck's speed, (m) = 120 miles per day
standard deviation, d = 23 miles per day
If the mileage per day is normally distributed, we use the following conceptual method to determine the probability of less than 159 miles per day;
1 standard deviation above the mean = m + d, = 120 + 23 = 143
2 standard deviation above the mean = m + 2d, = 120 + 46 = 166
159 is below 2 standard deviation above the mean but greater than 1 standard deviation above the mean.
For normal districution, 1 standard deviation above the mean = 84 percentile
Also, 2 standard deviation above the mean = 98 percentile
143 --------> 84%
159 ---------> x
166 --------- 98%
[tex]\frac{159-143}{166-143} = \frac{x-84}{98-84} \\\\\frac{16}{23} = \frac{x-84}{14} \\\\23(x-84) = 224\\\\x-84 = 9.7391\\\\x = 93.7391\ \%[/tex]
Therefore, the probability that a truck drives less than 159 miles in a day = 0.9374
equation of a line with slope -1 and y intercept 0,-2
Answer:
y = - x - 2
Step-by-step explanation:
y=mx+b
m refers to slope
b refers to y intercept
y = (-1)x + (-2)
y = - x - 2
Answer:
y=-1x-2
Step-by-step explanation:
plug in the slop and y intercept to the equation y=mx+b