The letter that represents the location of Puerto Rico on the map is A.
As the question noted, Puerto Rico is to the southeast of the United States. The first step therefore, would be to find the United States.
The United States is located in the center of the map and is painted orange. I have highlighted it in the attachment.
A place that is southeast of the United States would be both:
downward because it is south and,rightward because it is east.The only place matching that description is labeled A so we can conclusively say that Puerto Rico is labeled the place labeled A.
For more information on Puerto Rico check https://brainly.com/question/23481183.
Answer:
its a im puerto rican so i know it is a
Explanation:
give the guy below brain award
find the equivalent resistance of this circuit
Answer:
Req = 564 Ω
Explanation:
The equivalent resistance between R1 and R2:
1/R =1/R1 + 1/R2
1/R =1/960 + 1/640
1/R = 1/384
R = 384
Now, the equivalent resistance between R and R3:
Req = 384 + 180
Req = 564 Ω
2- A student ran 135 meters in 15 seconds. What was the student's velocity?
*
7.5 m/s
9 m/s
12 m/s
15 m/s
Answer:
9 Brainly hahaha ............huh
An ideal double slit interference experiment is performed with light of wavelength 640 nm. A bright spot is observed at the center of the resulting pattern as expected. For the 2n dark spot away from the center, it is known that light passing through the more distant slit travels the closer slit.
a) 480 nm
b) 600 nm
c) 720 nm
d) 840 nm
e) 960 nm
Answer:
960 nm
Explanation:
Given that:
wavelength = 640 nm
For the second (2nd) dark spot; the order of interference m = 1
Thus, the path length difference is expressed by the formula:
[tex]d sin \theta = (m + \dfrac{1}{2}) \lambda[/tex]
[tex]d sin \theta = (1 + \dfrac{1}{2}) 640[/tex]
[tex]d sin \theta = ( \dfrac{3}{2}) 640[/tex]
dsinθ = 960 nm
If a boy lifts a mass of 6kg to a height of 10m and travels horizontally with a constant velocity of 4.2m/s, calculate the work done? Explain your answer.
Answer:
W = 641.52 J
Explanation:
The work done here will be the sum of potential energy and the kinetic energy of the boy. Here potential energy accounts for vertical motion part while the kinetic energy accounts for the horizontal motion part:
[tex]Work\ Done = Kinetic\ Energy + Potential\ Energy\\\\W = K.E +P.E\\\\W = \frac{1}{2}mv^2+mgh\\\\[/tex]
where,
W = Work Done = ?
m = mass = 6 kg
v = speed = 4.2 m/s
g = acceleration dueto gravity = 9.81 m/s²
h = height = 10 m
Therefore,
[tex]W = \frac{1}{2}(6\ kg)(4.2\ m/s)^2+(6\ kg)(9.81\ m/s^2)(10\ m)[/tex]
W = 52.92 J + 588.6 J
W = 641.52 J
How do you know that a liquid exerts pressure?
Answer:
The pressure of water progressively increases as the depth of the water increases. The pressure increases as the depth of a point in a liquid increases. The walls of the vessel in which liquids are held are likewise subjected to pressure. The sideways pressure exerted by liquids increases as the liquid depth increases.
If you dive underwater, you notice an uncomfortable pressure on your eardrums due to the increased pressure. The human eardrum has an area of about 70 mm217 * 10-5 m22, and it can sustain a force of about 7 N without rupturing. If your body had no means of balancing the extra pressure (which, in reality, it does), what would be the maximum depth you could dive without rupturing your eardrum
Answer:
[tex]h=10m[/tex]
Explanation:
From the question we are told that:
Area [tex]a=70 x 10^{-6}[/tex]
Force [tex]F=7N[/tex]
Generally the equation for Pressure is mathematically given by
Pressure = Force/Area
[tex]P=\frac{F}{A}[/tex]
[tex]P=\frac{ 7}{(70 * 10^{-6})}[/tex]
[tex]P= 1*10^{5} Pa[/tex]
Generally the equation for Pressure is also mathematically given by
[tex]P=hpg[/tex]
Therefore
[tex]h=\frac{P}{hg}[/tex]
[tex]h=\frac{10000}{1000*9.8}[/tex]
[tex]h=10m[/tex]
Someone help me with these questions please!
Answer:
a 25 and b 25
2. 26
60n
What Are the type's of Tidal turbines?
Answer:
Types of tidal turbines
Axial turbines.
Crossflow turbines.
Flow augmented turbines.
Oscillating devices.
Venturi effect.
Tidal kite turbines.
Turbine power.
Resource assessment.
Answer:
Axial turbines
Crossflow turbines
flow augmented turbines
A projectile, fired with unknown initial velocity, lands 20sec later on side of hill, 3000m away horizontally and 450m vertically above its starting point. a) what is the vertical component of its initial velocity? b) what is the horizontal component of velocity?
Explanation:
Given:
t = 20 seconds
x = 3000 m
y = 450 m
a) To find the vertical component of the initial velocity [tex]v_{0y}[/tex], we can use the equation
[tex]y = v_{0y}t - \frac{1}{2}gt^2[/tex]
Solving for [tex]v_{0y}[/tex],
[tex]v_{0y} = \dfrac{y + \frac{1}{2}gt^2}{t}[/tex]
[tex]\:\:\:\:\:\:\:=\dfrac{(450\:\text{m}) + \frac{1}{2}(9.8\:\text{m/s}^2)(20\:\text{s})^2}{(20\:\text{s})}[/tex]
[tex]\:\:\:\:\:\:\:=120.5\:\text{m/s}[/tex]
b) We can solve for the horizontal component of the velocity [tex]v_{0x}[/tex] as
[tex]x = v_{0x}t \Rightarrow v_{0x} = \dfrac{x}{t} = \dfrac{3000\:\text{m}}{20\:\text{s}}[/tex]
or
[tex]v_{0x} = 150\:\text{m/s}[/tex]
Which one of the following physical quantities has its S.I. unit m/s?
(i) Acceleration
(ii) Velocity
(iii) Force
(iv) Density
Answer:
velocity is the answer of this question.
Answer:
Velocity is the right answer ok
Under normal circumstances: _________
a. Fetal Hb binds to oxygen more tightly than Mb binds.
b. Fetal Hb binds oxygen more tightly in the absence of 2,3-BPG.
c. Fetal Hb does not bind to oxygen.
d. Adult Hb has the lowest affinity for oxygen of the 3.
e. More than one of these statements is correct.
Answer:
Fetal Hb binds oxygen more tightly than adult Hb (not option a)
If a bus travels 50 km in 10 hours, how fast was the
bus travelling?
Answer:
5 kilometers per hour
Explanation:
Speed = distance / time
Distance: 50km
Time: 10 hours
Speed = 50/10 = 5kph
Answer:
5kmph
Explanation:
if the bus traveled 50 km in 10 hours, we have to divide 50 by 10 to see how fast it traveled per hour.
50/10 = 5
therefore, the bus was traveling 5 km per hour
hope this helps :)
A car is driving towards an intersection when the light turns red. The brakes apply a constant force of 1,398 newtons to bring the car to a complete stop in 25 meters. If the weight of the car is 4,729 newtons, how fast was the car going initially
Answer:
the initial velocity of the car is 12.04 m/s
Explanation:
Given;
force applied by the break, f = 1,398 N
distance moved by the car before stopping, d = 25 m
weight of the car, W = 4,729 N
The mass of the car is calculated as;
W = mg
m = W/g
m = (4,729) / (9.81)
m = 482.06 kg
The deceleration of the car when the force was applied;
-F = ma
a = -F/m
a = -1,398 / 482.06
a = -2.9 m/s²
The initial velocity of the car is calculated as;
v² = u² + 2ad
where;
v is the final velocity of the car at the point it stops = 0
u is the initial velocity of the car before the break was applied
0 = u² + 2(-a)d
0 = u² - 2ad
u² = 2ad
u = √2ad
u = √(2 x 2.9 x 25)
u =√(145)
u = 12.04 m/s
Therefore, the initial velocity of the car is 12.04 m/s
an aluminum atom has an atomic number of 13 and a mass number of 27,how many
a)protons
b) electrons
pls write the formula too
Element is
[tex]\boxed{\sf {}^{27}Al_{13}}[/tex]
Atomic number=13Mass number=27[tex]\\ \sf\longmapsto No\:of\:Protons=Atomic \:Number=13[/tex]
And[tex]\\ \sf\longmapsto No\:of\:Neutrons=Mass\:number-Atomic\:Number[/tex]
[tex]\\ \sf\longmapsto No\:of\:Neutrons=27-13[/tex]
[tex]\\ \sf\longmapsto No\:of\:Neutrons=14[/tex]
And
[tex]\\ \sf\longmapsto No\:of\:electrons=No\:of\:Protons=13[/tex]
explain what would happen if the cell was disconnected from the circuit ( please help me)
Most of the time, "cell" means a battery, and if it gets disconnected, all voltage and current in the circuit goes away.
I know this is a lame answer, but it kinda depends on what the cell was doing in the circuit, and what else is in the circuit besides the cell, and you haven't told us anything about these details, so that's really all we can guess.
Although your question is incomplete a general answer within the concept of your question is provided: when the cell is disconnected from the Circuit the flow of voltage across the circuit will be halted.
A cell/battery is often used as a voltage source in electrical circuits, since the cell is a power source, when the cell is connected to a circuit the cell discharges some of its voltage to the components of the circuit ( such as capacitors ) to keep the circuit functional. so when the cell is disconnected from the circuit the flow of voltage is halted
Hence we can conclude that without a voltage source ( cell ) in a circuit there will be no flow of voltage across the components of the circuit.
learn more : https://brainly.com/question/16598952
Two objects are identical and small enough that their sizes can be ignored relative to the distance between them, which is 0.189 m. In a vacuum, each object carries a different charge, and they attract each other with a force of 1.39 N. The objects are brought into contact, so the net charge is shared equally, and then they are returned to their initial positions. Now it is found that the objects repel one another with a force whose magnitude is equal to that of the initial attractive force. What is the initial charge on each object, part (a) being the one with the greater (and positive) value and part (b) being the other value?
Answer:
The charges are + 74.3 μC and - 74.3 μC
Explanation:
Let the charges be q and q'.
Since the charges initially attract each other with a force of 1.39 N, the force of attraction is given by
F = kqq'/r² where k = 9 × 10⁹ Nm²/C² and r = distance between the charges = 0.189 m
When the charges are brought together, they share their charge equally and have a net charge of (q + q')/2 each.
They now repel each other.
So, the magnitude of the force of repulsion is given by
F' = k[(q + q')/2][(q + q')/2]/r²
F' = k[(q + q')²/4r²
Since the magnitude of the force of attraction and repulsion are the same, we have that
F = F'
kqq'/r² = k[(q + q')²/4r²
qq' = (q + q')²/4
(q + q')² = 4qq'
q² + 2qq' + q'² = 4qq'
q² + 2qq' - 4qq' + q'² = 0
q² - 2qq' + q'² = 0
(q - q')² = 0
q - q' = 0
q = q'
Substituting q = q' into F, we have
F = kqq'/r²
F = kq²/r²
making q subject of the formula, we have
q² = Fr²/k
q = √(Fr²/k)
q = r√(F/k)
Substituting the values of the variables into the equation, we have
q = 0.189 m√(1.39 N/9 × 10⁹ Nm²/C²)
q = 0.189 m√(0.15444 × 10⁻⁹ Nm²/C²)
q = 0.189 m(0.3923 × 10⁻³ C/m)
q = 0.0743 × 10⁻³ C
q = 74.3 × 10⁻³ × 10⁻³ C
q = 74.3 × 10⁻⁶ C
q = 74.3 μC
Since q and q' initially attract, it implies that they initially had opposite charges.
So, q = 74.3 μC and q' = -74.3 μC
So, the charges are + 74.3 μC and - 74.3 μC
Where does a body have more weight the poor at the eqator of the earth.
Answer:
Explanation:
Your body weighs more at the pole for two important reasons. Both have to do to the spin of the earth on its axis.
Because of its spin the earth is thicker around the equator than it is through the poles. This means that when you stand on the equator, you are farther away from the center of earth than you would be at the poles. As gravity decreases with the inverse of the square of distance, gravity will be weaker at the equator.
As you are also spinning with the earth, you will have a required centripetal acceleration and force to keep you attached to the ground, This force decreases the effect of gravity so again, you would weigh less at the equator.
Assume the speed of sound is 343 m/s. You are sitting 150 m away from home plate at a baseball game. How much time in seconds elapses between the batter hitting a home run and the moment you actually hear the batter hitting the ball
Answer:
t = 0.437 s
Explanation:
Sound is a wave so its speed is constant
v = x / t
t = x / v
indicates that the distance is x = 150 m
t = 150/343
t = 0.437 s
this is the time it takes to hear the hit
To see the blow it is almost instantaneous since the speed of light is much greater c = 3 10⁸ m / s
Parallel Wires: Two long, parallel wires carry currents of different magnitudes. If the current in one of the wires is doubled and the current in the other wire is halved, what happens to the magnitude of the magnetic force that each wire exerts on the other?
Answer:
Explanation:
Given force between 2 currents carrying
wires = F₀
Magnetic force between the2 wires =F₀= (μ₀/4π) x ( 2 (μ₀/4π) x ( 2I₁I₂ / μ) x L
where I₁=Current in wire 1
I₂= Current in wire 2
L= Length of the wire
when one current is doubled and the other is halved
I₁= 2 I₁
I₂= I₂/2
F₀ = (μ₀/4π) x ( 2× (2I₁) (I₂/2) / μ) x L
can you guys pls also solve for average speed.
Answer:
d_t = 3.05km
v_a = 4.3km/h
Explanation:
42mins*(2/3) = 28mins
42mins-28mins = 14mins
d = v*t
d_1 = (4km/h)*(1h/60mins)*(28mins)
d_1 = 1.87km
d_2 = (5km/h)*(1h/60mins)*(14mins)
d_2 = 1.17km
d_t = d_1+d_2
d_t = 1.87km+1.17km
d_t = 3.05km
v_a = (v_1+v_2)/2
v_a = [(2*4km/h)+5km/h)]/3
v_a = 4.3km/h
How much amount of water can be decomposed
through electrolysis by passing 2 F charge?
Answer:
So, with 2 Faraday of electricity, we can decompose (2/4 × 2) = 1 mole of water. So 18 grams of water is decomposed.
In Young's double slit experiment, 402 nm light gives a fourth-order bright fringe at a certain location on a flat screen. What is the longest wavelength of visible light that would produce a dark fringe at the same location? Assume that the range of visible wavelengths extends from 380 to 750 nm.
Answer:
λ₂ = 357.3 nm
Explanation:
The expression for double-slit interference is
d sin θ = m λ constructive interference
d sin θ = (m + ½) λ destructive interference.
The initial data corresponds to a constructive interference, they indicate that we are in the fourth order (m = 4), let's look for the separation of the slits
d sin θ = m λ₁
now ask for destructive interference for m = 4
d sin θ = (m + ½) λ₂
we match these two expressions
m λ₁ = (m + ½) λ₂
λ₂ = ( m / m + ½) λλ₁
let's calculate
λ₂ =[tex]\frac{4}{(4.000 +0.5) \ 401}[/tex]
λ₂ = 357.3 nm
a 0.0780 kg lemming runs off a 5.36 m high cliff at 4.84 m/s. what is its kinetic energy when it's 2.00 m above the ground
Answer:
KE_2 = 3.48J
Explanation:
Conservation of Energy
E_1 = E_2
PE_1+KE_1 = PE_2+KE_2
m*g*h+(1/2)m*v² = m*g*h+(1/2)m*v²
(0.0780kg)*(9.81m/s²)*(5.36m)+(.5)*(0.0780kg)*(4.84m/s)² = (0.0780kg)*(9.81m/s²)*(2m)+KE_2
4.10J+0.914J = 1.53J + KE_2
5.01J = 1.53J + KE_2
KE_2 = 3.48J
what is the dimensional formula of young modulas
Answer:
The dimensional formula of Young's modulus is [ML^-1T^-2]
Answer:
G.oogle : The dimensional formula for Young’s modulus is:
A. [ML−1T−2]A. [ML−1T−2]
B. [M0LT−2]B. [M0LT−2]
C. [MLT−2]C. [MLT−2]
D. [ML2T−2]
the specific heat capacity of a substance is 500J/kg/oC. Find the heat required to rise the temperature of 10 quintial of the substance by 3 degree celcius
[tex]\boxed{\sf Q=mc\Delta T}[/tex]
[tex]\\ \sf\longmapsto Q=1000(5000)(3)[/tex]
[tex]\\ \sf\longmapsto Q=15000000J[/tex]
[tex]\\ \sf\longmapsto Q=1.5\times 10^7J[/tex]
Express 6revolutions to radians
Answer:
About 37.70 radians.
Explanation:
1 revolution = 2[tex]\pi[/tex] radians
∴ 6 revolutions = (6)(2[tex]\pi[/tex] radians)
6 revolutions = 37.6991 or ≈ 37.70 radians
When the lightbulbs were used as the resistors, you observed only a flash of light, as opposed to a continuous glow. Explain why that behavior is expected. After all, the light bulb is directly connected to the power supply.
Solution :
Whenever the lightbulbs are used as resistors, we throw the switch to the left. This allows the current to flow through the circuit which causes the bulb to glow and also the capacitor gets charged. When the capacitor gets fully charged, the electric field becomes constant between its two plates. Now there is no displacement current induced in the plates of the capacitor. The capacitor works as an open switch and the bulb gets switched off.
And thus the bulb flashes for the moment as opposed to continuous glow.
state the laws of reflection
Answer:
Explanation:
The law of reflection says that the reflected angle (measured from a vertical line to the surface called the normal) is equal to the reflected angle measured from the same normal line.
All other properties of reflection flow from this one statement.
I need help with this please!!!!
Answer:
1.84 hours
I hope it's helps you
1 Poin Question 4 A 85-kg man stands in an elevator that has a downward acceleration of 2 m/s2. The force exerted by him on the floor is about: (Assume g = 9.8 m/s2) А ON B 663 N C) 833 N D) 1003 N
Answer:
D) 1003 N
Explanation:
Given the following data;
Mass of man = 85 kg
Acceleration of elevator = 2 m/s²
Acceleration due to gravity, g = 9.8 m/s²
To find the force exerted by the man on the floor;
Force = mg + ma