Answer:
Below
Step-by-step explanation:
Suppose that m and n are both even numbers.
So we can express them as the product of 2 and another number.
● n = 2×a
● m = 2×b
● m-n = 2b-2a
● m-n = 2(b-a)
m-n is an even number since it is divisible by 2.
■■■■■■■■■■■■■■■■■■■■■■■■■■
Suppose that both n and m are odd numbers.
● n = 2a+1
● m = 2b+1
● m-n = 2b+1-(2a+1)
● m-n = 2b+1-2a-1
● m-n = 2b-2a
● m-n = 2(b-a)
So m-n is even since it is divisible by 2.
■■■■■■■■■■■■■■■■■■■■■■■■■■
Suppose that m is odd and n is even ir vice versa
● n = 2a or n= 2a+1
● m = 2b+1 or m = 2b
● m-n = 2b+1-2a or m-n = 2b-2a-1
● m-n = 2(b-a) +1 or m-n = 2(b-a)-1
In both cases m-n isn't even.
■■■■■■■■■■■■■■■■■■■■■■■■■■
So m-n is even if and only if m and n are odd or m and are even
Answer:
Case 1
both m and n are even
Therefore m/2 and n/2 are integers
Then,
m-n
=2(m/2 - n/2)
Since m/2 and n/2 are integers
Then m/2 - n/2 will be an integer
Therefore,
m-n = 2(Z)
Where Z is an integer
Since 2 is a factor of m-n
Therefore m -n is even
Case 2
Both m and n are odd
m-n
= 2(½m - ½n)
When an odd number is divided by 2 it gives an integer and a remainder of 1
Therefore
½m = Y + ½
And
½n = Z + ½
Where Y and Z are integers
Then
m-n = 2(Y+½-Z-½)
= 2(Y-Z)
Y-Z will also be an integer
m-n= 2A
Therefore m-n is even
Case 3
One is odd and the other even
m-n = 2(m/2 - n/2)
Assume m is even and n is odd
From the discussions above
m-n = 2(Y - Z - ½)
m-n = 2(A - ½)
Hence m-n is not even because when is divided by two it doesn't give an integer.
Therefore for all integers m and n, m - n is even if, and only if, both m and n are even or both m and n are odd.
Given the function f ( x ) = 2 x + 8 , evaluate and simplify the expressions below. See special instructions on how to enter your answers.
Answer:
[tex]f(a) = 2a + 8[/tex]
[tex]f(x + h) = 2x + 2h + 8[/tex]
[tex]\frac{f(x + h) - f(x)}{h} = 2[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 2x + 8[/tex]
Required
[tex]f(a)[/tex]
[tex]f(x + h)[/tex]
[tex]\frac{f(x + h) - f(x)}{h}[/tex]
Solving for f(a)
Substitute a for x in the given parameter
[tex]f(x) = 2x + 8[/tex] becomes
[tex]f(a) = 2a + 8[/tex]
Solving for f(x+h)
Substitute x + h for x in the given parameter
[tex]f(x + h) = 2(x + h) + 8[/tex]
Open Bracket
[tex]f(x + h) = 2x + 2h + 8[/tex]
Solving for [tex]\frac{f(x + h) - f(x)}{h}[/tex]
Substitute 2x + 2h + 8 for f(x + h), 2x + 8 fof f(x)
[tex]\frac{f(x + h) - f(x)}{h}[/tex] becomes
[tex]\frac{2x + 2h + 8 - (2x + 8)}{h}[/tex]
Open Bracket
[tex]\frac{2x + 2h + 8 - 2x - 8}{h}[/tex]
Collect Like Terms
[tex]\frac{2x - 2x+ 2h + 8 - 8}{h}[/tex]
Evaluate the numerator
[tex]\frac{2h}{h}[/tex]
[tex]2[/tex]
Hence;
[tex]\frac{f(x + h) - f(x)}{h} = 2[/tex]
In a recent year, a sample of grade 8 Washington State public school students taking a mathematics assessment test had a mean score of 281 with a standard deviation of 34.4. Possible test scores could range from 0 to 500. Assume that the scores are normally distributed. Question 9 (2.5 points) If 2000 students are randomly selected, how many would you expect to have a score between 250 and 305?
Answer:
The number is [tex]N =1147[/tex] students
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 281[/tex]
The standard deviation is [tex]\sigma = 34.4[/tex]
The sample size is n = 2000
percentage of the would you expect to have a score between 250 and 305 is mathematically represented as
[tex]P(250 < X < 305 ) = P(\frac{ 250 - 281}{34.4 } < \frac{X - \mu }{\sigma } < \frac{ 305 - 281}{34.4 } )[/tex]
Generally
[tex]\frac{X - \mu }{\sigma } = Z (Standardized \ value \ of \ X )[/tex]
So
[tex]P(250 < X < 305 ) = P(-0.9012< Z<0.698 )[/tex]
[tex]P(250 < X < 305 ) = P(z_2 < 0.698 ) - P(z_1 < -0.9012)[/tex]
From the z table the value of [tex]P( z_2 < 0.698) = 0.75741[/tex]
and [tex]P(z_1 < -0.9012) = 0.18374[/tex]
[tex]P(250 < X < 305 ) = 0.75741 - 0.18374[/tex]
[tex]P(250 < X < 305 ) = 0.57[/tex]
The percentage is [tex]P(250 < X < 305 ) = 57\%[/tex]
The number of students that will get this score is
[tex]N = 2000 * 0.57[/tex]
[tex]N =1147[/tex]
Bighorn sheep are beautiful wild animals found throughout the western United States. Data for this problem are based on information taken from The Desert Bighorn, edited by Monson and Sumner 9University of Arizona Press). Let x be the age of a bighorn sheep (in years), and let y be the mortality rate (percent that die) for this age group. For example, x = 1, y = 14 means that 14% of the bighorn sheep between 1 and 2 years old died. A random sample of Arizona bighorn sheep gave the following information:
x 1 2 3 4 5
y 14 18.9 14.4 19.6 20.0
∑x=15 ; ∑y=87.3;∑x2=55; ∑y2=1569.77; ∑xy=275
(a) Draw a scatter diagram.
(b) Find the equation of the least-squares line, and plot the line on the scatter diagram of part (a).
(c) Find the correlation coefficient r. Find the coefficient of determination . What percentage of variation in y is explained by the variation in x and the least squares model?
Answer:
The answer and explanation are below
Step-by-step explanation:
i followed the data that was given in the question.
∑x=15 ; ∑y=87.3;∑x2=55; ∑y2=1569.77; ∑xy=275
a.) please refer to the attachment for the scatter diagram. Y was plotted against X.
b. The equation is given as:
Y = b₁ + b₀X
∑x=15 ; ∑y=87.3;∑x2=55; ∑y2=1569.77; ∑xy=275
b₁ = n∑xy - (∑x)(∑y)/n(∑x²) - (∑x)²
b₁ = 5 x 275 - 15 x 87.3/5 x 55 - (15²)
= 1375-1309.5/275-225
= 65.5/50
= 1.31
b₀ = 87.3/5 - 1.31(15/5)
= 87.3/5 - 1.31x3
= 13.53
the regression line is
Y = 13.53 + 1.31X
please refer to the attachment for the diagram for the regression line.
c. we are required to find r.
r = n∑XY - (∑X)(∑Y)/√n∑X²-(∑X)² × √n∑y²-(∑y)²
∑x=15 ; ∑y=87.3;∑x2=55; ∑y2=1569.77; ∑xy=275
inserting these values:
r = 5 x 275-(15)(87.3)/√275-225 x √7848.85 - 7621.29
= 65.5/106.69
= 0.6139
Coefficient of determination = r²
r = 0.6139
r² = 0.3769 = 37.69%
Therefore 37.69% variation in y is explained by variation in x and the least square model.
A researcher examines typing speed before a typing class begins, halfway through the class, and after the class is over. 4. Identify the number of levels: 5. Identify the type of design: 6. Identify the dependent variable:
Answer:
Number of levels = 2
Type of design = Repeated measure
Dependent variable = Typing Speed
Step-by-step explanation:
The number of levels in an experiment simply refers to the number of experimental conditions in which participants are subjected to. In the scenario above, the number of levels is 2. Which are ; Halfway through the class and After the class is over.
The type of designed employed is REPEATED MEASURE, this is because the participants all took part in each experimental condition.
The dependent variable is TYPING SPEED, which is the variable which is measured with respect to the independent variable. Hence the observed value depends on period that is (halfway through the class or after the class is over).
In a school, there are 25% fewer 11th graders than 10th graders, and 20% more 11th graders than 12th graders. The total number of students in 10th, 11th, and 12th grades in the school is 190. How many 10th graders are there at the school?
Answer:
There are 80 10th graders in the school
Step-by-step explanation:
Let the number of 10th graders be x
There are 25% fewer 11th graders
That mean x - 25% of x
x -0.25x = 0.75x
There are 20% more 11th graders than 12th graders
So if number of 12th graders = y, then
0.75x = y + 20/100 * y = y + 0.2y = 1.2y
Since ;
0.75x = 1.2y
then y = 0.75x/1.2 = 0.625x
So let’s add all to give 190
x + 0.75x + 0.625x = 190
2.375x = 190
x = 190/2.375
x = 80
What is the perimeter of the image attached?? (PLEASE HELP I WILL MARK BRAINLIEST)
Answer:
[tex] Perimeter = 3x + 3 [/tex]
Step-by-step explanation:
Perimeter of the given triangle in the figure is the sum of all three sides.
The expressions for the 3 sides are given as, [tex] x, (x - 3), (x + 6) [/tex].
Therefore,
[tex] Perimeter = x + (x - 3) + (x + 6) [/tex]
Simplify,
[tex] Perimeter = x + x - 3 + x + 6 [/tex]
Collect like terms
[tex] Perimeter = x + x + x - 3 + 6 [/tex]
[tex] Perimeter = 3x + 3 [/tex]
A large population has a bell-shaped distribution with a mean of 200 and a standard deviation of 40. Which one of the following intervals would contain approximately 95% of the measurements?
a. (160, 240)
b. (140, 260)
c. (120, 280)
d. (200, 320)
The intervals would contain approximately 95% of the measurements will be (120, 280). Then the correct option is C.
What is a normal distribution?The Gaussian Distribution is another name for it. The most significant continuous probability distribution is this one. Because the curve resembles a bell, it is also known as a bell curve.
In numerical documentation, these realities can be communicated as follows, where Pr(X) is the likelihood capability, Χ is a perception from an ordinarily circulated irregular variable, μ (mu) is the mean of the dispersion, and σ (sigma) is its standard deviation:
The interval for 95% will be given as,
Pr(X) = μ ± 2σ
Pr(X) = 200 ± 2(40)
Pr(X) = 200 ± 80
Pr(X) = (200 - 80, 200 + 80)
Pr(X) = (120, 280)
The intervals would contain approximately 95% of the measurements will be (120, 280). Then the correct option is C.
More about the normal distribution link is given below.
https://brainly.com/question/12421652
#SPJ5
A video rental store keeps a list of their top 15 movie rentals each week. This week the list includes 6 action, 4 comedies, 3 dramas, and 2 mysteries. The store manager removes a copy of each of the 15 movies from the shelf, then randomly selects 3 of the 15 to show on the display monitors in the store. What is the probability that she selected 2 comedies and 1 action movie?
Answer:
32/1125Step-by-step explanation:
Probability is the likelihood or chance that an event will occur.
Probability = Expected outcome of event/Total outcome.
If a video rental store keeps a list of their top 15 movie rentals each week, the total outcome is 15.
If the list for the week includes 6 action, 4 comedies, 3 dramas, and 2 mysteries and the store manager removes a copy of each of the 15 movies from the shelf, then randomly selects 3 of the 15 to show on the display monitors in the store, the probability that she selected 2 comedies and 1 action movie will be calculated as shown;
Probability of selecting 2 comedies = 4/15*4/15 = 16/225 (Note that the expected outcome in this case is 4).
Probability of selecting 1 action movie = 6/15 = 2/5
Hence, the probability that she selected 2 comedies and 1 action movie will be equivalent to 16/225*2/5 = 32/1125
Note that the rented movies will have to be returned hence reason for the replacement.
Frank and Gregory leave Centreville traveling in opposite directions on a straight road. Gregory drives 22 miles per hour faster than Frank. After 2.25 hours, they are 216 miles apart. Find Frank's speed and Gregory's speed.
Answer:
Frank speed = 37mi/hGregory speed = 59mi/hrStep-by-step explanation:
Let the speed of Frank be x and speed of Gregory be y. If Gregory drives 22 miles per hour faster than Frank, then y = 22+x. SInce they they are 216miles apart after 2.25 hours,
Speed = Distance/Time
Total time travelled by them = 2.25hours
Total distance = 216 hours
Total speed = x+y = x+22+x
Substituting this parameters into the formula given to get x we will have;
x+22+x = 216/2.25
2x+22 = 96
2x = 96-22
2x = 74
x = 74/2
x = 37
Hence the speed of Frank is 37miles per hour while that of gregory is 37+22 = 59miles/hour
a function includes the points (4, -3) and (-9,4). what fraction in lowest terms represents the output value of this function for an input of zero
Answer:
-11/13
Step-by-step explanation:
The equation of the line through these points can be written using the 2-point form of the equation of a line:
y = (y2 -y1)/(x2 -x1)(x -x1) +y1
y = (4 -(-3))/(-9-4)/(x -4) -3
y = (-7/13)x +28/13 -3
For x=0, the value of y is ...
y = 28/13 -39/13 = -11/13
The output for an input of 0 is -11/13.
in a gp the sixth term is 8 times the third term, and the sum of the seventh and eighth term is 192. determine the common ratio
Answer:
common ratio = 2
Step-by-step explanation:
T6 = ar^5
T3 = ar²
T6 = 8 x T³
ar^5 = 8 x ar²
ar^5/ar² = 8
r³ = 8
r = ³√8
r = 2
The driveway needs to be resurfaced. what is the BEST estimate of the area of the driveway?
Answer:
125π ft²
Step-by-step explanation:
1/4π(30)² - 1/4π(20)² = 125π
Write 8:18 as a fraction in simplest form.
Ratio as a Fraction:
Fraction in Simplest Form:
Answer:
[tex]\text{Ratio as a fraction - \: \boxed{\frac{8}{18}}}[/tex]
[tex]\text{Fraction in simplest form - \boxed{\frac{4}{9}}}[/tex]
Step-by-step explanation:
Part 1: Writing a ratio as a fraction
A fraction and a ratio are the same thing - just a different name. Therefore, the colon in a ratio is the same as a divisor line in a fraction. Therefore, to write a ratio as a fraction,
Replace the colon with a divisor line or the divisor line with a colon (use the first portion to transform a ratio into a fraction and the second form to transform a fraction into a ratio).Therefore, 8:18 as a fraction is 8/18.
Part 2: Fraction in simplest form
To put a fraction in simplest form, first divide the numerator by the denominator. If it contains a remainder, you cannot use this step to verify it.
8 only goes into 18 twice and leaves a 2 as a remainder, so this method does not work.
Instead, if both numbers are even, divide by 2.
8/2 = 4
18/2 = 9
Check to see if the new numerator and denominator can reduce any further.
4/9 = 4/9
The fraction in simplest form is 4/9.
Pulse rates of women are normally distributed with a mean of 77.5 beats per minute and a standard deviation of 11.6 beats per minute.
1. What are the values of the mean and standard deviation after converting all pulse rates of women to z scores using z = (x - mu )?
2. What are the units of the corresponding z scores?
A. The z scores are measured with units of "beats per minute".
B. The z scores are measured with units of "minutes per beat".
C. The z scores are measured with units of "beats."
D. The z scores are numbers without units of measurement.
Answer:
D. The z scores are numbers without units of measurement.
Step-by-step explanation:
Z-scores are without units, or are pure numbers.
Apply the distributive property to factor out the greatest common factor. 18d+12 =18d+12=18, d, plus, 12, equals
Answer:
[tex]\huge\boxed{6 ( 3d + 2 )}[/tex]
Step-by-step explanation:
18d + 12
The greatest common factor is 6, So we need to factor out 6
=> 6 ( 3d + 2 ) [Distributive property has been applied and this is the simplest form]
Answer:
6(3d+2)
Step-by-step explanation:
6 is the gcd of the two terms.
A number is chosen at random from 1 to 10. Find
the probability of selecting 4 or a factor of 6.
Step by step.
Answer:
1/2
Step-by-step explanation:
The possible outcomes are
1,2,3,4,5,6,7,8,9,10
Factors of 6 are 1,2,3,6
or a 4
1,2,3,4,6 are the outcomes we want
There are 5 "good" outcomes
P( 4 or a factor of 6) = "good" outcomes/ total
= 5/10
=1/2
Answer:
[tex]\boxed{\frac{1}{2} }[/tex]
Step-by-step explanation:
There are total 10 outcomes.
[tex]1,2,3,4,5,6,7,8,9,10[/tex]
The probability of selecting 4 is 1 outcome out of total 10 outcomes.
Factors of 6 are [tex]1,2,3,6[/tex].
These are 4 outcomes out of total 10 outcomes.
The probability of selecting 4 or a factor of 6 is:
[tex]\displaystyle \frac{1}{10} +\frac{4}{10} =\frac{5}{10} =\frac{1}{2}[/tex]
Beer shelf life is a problem for brewers and distributors because when beer is stored at room temperature, its flavor deteriorates. When the average furfuryl ether content reaches 6 μg per liter, a typical consumer begins to taste an unpleasant chemical flavor. At α = .05, would the following sample of 12 randomly chosen bottles stored for a month convince you that the mean furfuryl ether content exceeds the taste threshhold? 8.92 6.99 5.54 5.73 6.38 5.51 6.45 7.50 8.48 5.56 6.90 6.46
Answer:
As the calculated value of t =2.1698 is greater than t (0.05,11) = 1.796 reject H0 . It means chosen bottles stored for a month convince you that the mean furfuryl ether content exceeds the taste threshhold.
Step-by-step explanation:
We formulate our null and alternative hypotheses as
H0 u≤ 6 ug Ha : u > 6 ug
The significance level ∝ = 0.05
The test statistic used is
t = X` - u / s/ √n
which if H0 is true, has the students' t test with n-1 = 11 degrees of freedom.
The critical region t > t (0.05,11) = 1.796
We compute the t value from the data
Xi Xi²
8.92 79.5664
6.99 48.8601
5.54 30.6916
5.73 32.8329
6.38 40.7044
5.51 30.3601
6.45 41.6025
7.50 56.25
8.48 71.9104
5.56 30.9136
6.90 47.61
6.46 41.7316
80.42 553.0336
Now x` = ∑x/ n = 80.42/12 = 6.70
S²= 1/n-1 ( ∑(xi- x`)²= 1/11 ( 553.034 - (80.42)²/12)
= 1/11 (553.034-538.948) = 1.2805
s= 1.1316
Putting the values in the test statistics
t = X` - u / s/ √n = 6.70- 6 / 1.1316 / √12
= 2.1698
The critical region t > t (0.05,11) = 1.796
As the calculated value of t =2.1698 is greater than t (0.05,11) = 1.796 reject H0 . It means chosen bottles stored for a month convince you that the mean furfuryl ether content exceeds the taste threshhold.
(x-2) is a factor of x^2-3x^2+kx+14. The value of k is?
Answer:
k = 5
Step-by-step explanation:
I will assume that your polynomial is
x^2 - 3x^2 + kx + 14
If x - a is a factor of this polynomial, then a is a root.
Use synthetic division to divide (x - 2) into x^2 - 3x^2 + kx + 14:
2 / 1 -3 k 14
2 -2 2k - 4
-------------------------------------
1 -1 (k - 2) 2k - 10
If 2 is a root (if x - 2 is a factor), then the remainder must be zero.
Setting 2k - 10 = to zero, we get k = 5.
The value of k is 5 and the polynomial is x^2 - 3x^2 + 5x + 14
Smoking by Race for Males Aged 18-24
Smoker Nonsmoker Row Total
(S) (N)
White(W) 290 560 850
Black(B) 30 120 150
Column Total 320 680 1,000
Calculate the probabilities given below (Round your answers to 4 decimal places.):
i. P(S) 0.3200
ii. P(W) 0.8500
iii. P(S | W) 0.2720
iv. P(S | B) 0.0300
v. P(S and W) 0.9062
vi. P(N and B) 0.1765
Answer:
(i) 0.32 (ii) 0.85
(iii) 0.3412 (iv) 0.20
(v) 0.29 (vi) 0.12
Step-by-step explanation:
The data provided is as follows:
Race Smoker (S) Nonsmoker (N) Row Total
White(W) 290 560 850
Black(B) 30 120 150
Column Total 320 680 1,000
(i)
Compute the value of P (S) as follows:
[tex]P(S)=\frac{n(S)}{N}=\frac{320}{1000}=0.32[/tex]
P (S) = 0.32.
(ii)
Compute the value of P (W) as follows:
[tex]P(W)=\frac{n(W)}{T}=\frac{850}{1000}=0.85[/tex]
P (W) = 0.85.
(iii)
Compute the value of P (S|W) as follows:
[tex]P(S|W)=\frac{n(S\cap W)}{n(W)}=\frac{290}{850}=0.3412[/tex]
P (S|W) = 0.3412.
(iv)
Compute the value of P (S|B) as follows:
[tex]P(S|B)=\frac{n(S\cap B)}{n(B)}=\frac{30}{150}=0.20[/tex]
P (S|W) = 0.20.
(v)
Compute the value of P (S∩W) as follows:
[tex]P(S\cap W)=\frac{n(S\cap W)}{T}=\frac{290}{1000}=0.29[/tex]
P (S∩W) = 0.29.
(vi)
Compute the value of P (N∩B) as follows:
[tex]P(N\cap B)=\frac{n(N\cap B)}{T}=\frac{120}{1000}=0.12[/tex]
P (S∩W) = 0.12.
what number should replace the question mark
Answer: The missing number is 5.
Step-by-step explanation:
In the table we can only have numbers between 1 and 9,
The pattern that i see is:
We have sets of 3 numbers.
"the bottom number is equal to the difference between the two first numers, if the difference is negative, change the sign, if the difference is zero, there goes a 9 (the next number to zero)"
Goin from right to left we have:
9 - 6 = 3
6 - 2 = 4
4 - 9 = - 5 (is negative, so we actually use -(-5) = 5)
4 - 4 = 0 (we can not use zero, so we use the next number, 9)
3 - 3 = 0 (same as above)
? - 1 = 4
? = 4 + 1 = 5
The missing number is 5.
A company has 8 mechanics and 6 electricians. If an employee is selected at random, what is the probability that they are an electrician
Answer:
[tex]Probability = \frac{3}{7}[/tex]
Step-by-step explanation:
Given
Electrician = 6
Mechanic = 8
Required
Determine the probability of selecting an electrician
First, we need the total number of employees;
[tex]Total = n(Electrician) + n(Mechanic)[/tex]
[tex]Total = 6 + 8[/tex]
[tex]Total = 14[/tex]
Next, is to determine the required probability using the following formula;
[tex]Probability = \frac{n(Electrician)}{Total}[/tex]
[tex]Probability = \frac{6}{14}[/tex]
Divide numerator and denominator by 2
[tex]Probability = \frac{3}{7}[/tex]
Hence, the probability of selecting an electrician is 3/7
find the value of each variable and the measure of each angle
Answer:
Left angle = 60°
Top angle = 120°
Right angle = 60°
Step-by-step explanation:
Use what you know about angle relationships to set up equations you can solve for each variable.
The top top angle, for example, added to one of the other angles must equal 180° because they are supplementary.
You have two variables, so you need at least two equations (I made three but only used two).
The work is in my attachment, comment of you have questions.
A plane took off at a point that is 42 meters from the control tower. The flight path takes the plane over the control tower that is 98 meters high. After traveling 83 meters, which statement is most accurate?
A. The plane needs to be about 15 meters higher to clear the tower.
B. The plane clears the tower with about 27 meters to spare.
C. The plane clears the tower with about 15 meters to spare.
D. The plane needs to be about 27 meters higher to clear the tower.
Answer:
D. The plane needs to be about 27 meters higher to clear the tower.
Step-by-step explanation:
In this scenario a triangle is being formed. The base the plane's takeoff point to the tower base which is 42 meters (x).
The hypothenus is the distance travelled by the plane which is 83 meters (h)
The height of the tower is 98 Meters
We want to calculate the height of our triangle (y) so we can guage if the plane scaled the tower.
According to Pythagorean theorem
(x^2) + (y^2) = h^2
y = √ (h^2) - (x^2)
y = √ (83^2) - (42^2)
y= √(6889 - 1764)
y= 71.59 Meters
The height from the plane's position to the top of the tower will be
Height difference = 98 - 71.59 = 26.41 Meters
So the plane should go about 27 Meters higher to clear the tower
which expression is equivalent to x^-5/3
Answer:
B
Step-by-step explanation:
Since the power is negative, you automatically know it has to be a or b, because the only way it would be negative is if it was brought from the denominator to the numerator.
The answer is B, because the numerator of the power, is what is inside the square root, while the denominator is what is outside the square root.
* The American Diabetes Association estimates that 8.3% of people in the
United States have diabetes. Suppose that a medical lab has developed
a simple diagnostic test for diabetes that is 98% accurate for people who
have the disease and 95% accurate for people who do not have it. The
medical lab gives the test to a randomly selected person. What is the
probability that the diagnosis is correct? Explain each step.
Answer:
The probability that the diagnosis is correct is 0.95249.
Step-by-step explanation:
We are given that the American Diabetes Association estimates that 8.3% of people in the United States have diabetes.
Suppose that a medical lab has developed a simple diagnostic test for diabetes that is 98% accurate for people who have the disease and 95% accurate for people who do not have it.
Let the probability that people in the United States have diabetes = P(D) = 0.083.
So, the probability that people in the United States do not have diabetes = P(D') = 1 - P(D) = 1 - 0.083 = 0.917
Also, let A = event that the diagnostic test is accurate
So, the probability that a simple diagnostic test for diabetes is accurate for people who have the disease = P(A/D) = 0.98
And the probability that a simple diagnostic test for diabetes is accurate for people who do not have the disease = P(A/D') = 0.95
Now, the probability that the diagnosis is correct is given by;
Probability = P(D) [tex]\times[/tex] P(A/D) + P(D') [tex]\times[/tex] P(A/D')
= (0.083 [tex]\times[/tex] 0.98) + (0.917 [tex]\times[/tex]0.95)
= 0.08134 + 0.87115
= 0.95249
Hence, the probability that the diagnosis is correct is 0.95249.
Find a set of parametric equations for y= 5x + 11, given the parameter t= 2 – x
Answer:
[tex]x = 2-t[/tex] and [tex]y = -5\cdot t +21[/tex]
Step-by-step explanation:
Given that [tex]y = 5\cdot x + 11[/tex] and [tex]t = 2-x[/tex], the parametric equations are obtained by algebraic means:
1) [tex]t = 2-x[/tex] Given
2) [tex]y = 5\cdot x +11[/tex] Given
3) [tex]y = 5\cdot (x\cdot 1)+11[/tex] Associative and modulative properties
4) [tex]y = 5\cdot \left[(-1)^{-1} \cdot (-1)\right]\cdot x +11[/tex] Existence of multiplicative inverse/Commutative property
5) [tex]y = [5\cdot (-1)^{-1}]\cdot [(-1)\cdot x]+11[/tex] Associative property
6) [tex]y = -5\cdot (-x)+11[/tex] [tex]\frac{a}{-b} = -\frac{a}{b}[/tex] / [tex](-1)\cdot a = -a[/tex]
7) [tex]y = -5\cdot (-x+0)+11[/tex] Modulative property
8) [tex]y = -5\cdot [-x + 2 + (-2)]+11[/tex] Existence of additive inverse
9) [tex]y = -5 \cdot [(2-x)+(-2)]+11[/tex] Associative and commutative properties
10) [tex]y = (-5)\cdot (2-x) + (-5)\cdot (-2) +11[/tex] Distributive property
11) [tex]y = (-5)\cdot (2-x) +21[/tex] [tex](-a)\cdot (-b) = a\cdot b[/tex]
12) [tex]y = (-5)\cdot t +21[/tex] By 1)
13) [tex]y = -5\cdot t +21[/tex] [tex](-a)\cdot b = -a \cdot b[/tex]/Result
14) [tex]t+x = (2-x)+x[/tex] Compatibility with addition
15) [tex]t +(-t) +x = (2-x)+x +(-t)[/tex] Compatibility with addition
16) [tex][t+(-t)]+x= 2 + [x+(-x)]+(-t)[/tex] Associative property
17) [tex]0+x = (2 + 0) +(-t)[/tex] Associative property
18) [tex]x = 2-t[/tex] Associative and commutative properties/Definition of subtraction/Result
In consequence, the right answer is [tex]x = 2-t[/tex] and [tex]y = -5\cdot t +21[/tex].
Suppose the radius of a circle is 5 units. What is its circumference?
Answer:
C≈31.42
Step-by-step explanation:
C=2πr
C=2xπx5
C≈31.42
pls mark as brainliest
How many adults must be randomly selected to estimate the mean FICO (credit rating) score of working adults in a country? We want % confidence that the sample mean is within points of the population mean, and the population standard deviation is .
Answer: hello below is the complete question
How many adults must be randomly selected to estimate the mean FICO (credit rating) score of working adults in a country? We want 90% confidence that the sample mean is within 4 points of the population mean, and the population standard deviation is 66. Round up to the nearest whole number
answer : 737 adults
Step-by-step explanation:
confidence interval = 90% = 0.9
( E ) = 4
standard deviation = 66
first we have to calculate the value of a
a = 1 - confidence interval
= 1 - 0.9 = 0.10 hence a / 2 = 0.05
next find the value of Z a/2 from table
Z[tex]_{0.05}[/tex] = 1.645
The number of Adults selected can be determined using this relation
N = [tex](Z_{a/2} * (s/E))^2[/tex]
= [tex](Z_{0.05} * ( 66/4))^2[/tex]
= 737
What is the radius of the circle whose center is the
origin and that passes through the point (5,12)?
Answer:
13 units
Step-by-step explanation:
Use the equation of a circle, (x - h)² + ( y - k )² = r², where (h, k) is the center and r is the radius.
Plug in the values and solve for r:
(5 - 0)² + (12 - 0)² = r²
25 + 144 = r²
169 = r²
13 = r
if 2500 amounted to 3500 in 4 years at simple interest. Find the rate at which interest was charged
Answer:
35%
Step-by-step explanation:
[tex]Principal = 2500\\\\Simple\:Interest = 3500\\\\Time = 4 \:years\\\\Rate = ?\\\\Rate = \frac{100 \times Simple \: Interest }{Principal \times Time}\\\\Rate = \frac{100 \times 3500}{2500 \times 4} \\\\Rate = \frac{350000}{10000}\\\\ Rate = 35 \%[/tex]
[tex]S.I = \frac{PRT}{100}\\\\ 100S.I = PRT\\\\\frac{100S.I}{PT} = \frac{PRT}{PT} \\\\\frac{100S.I}{PT} = R[/tex]
Answer:
35%
Step-by-step explanation:
I REALLY HOPE I HELPED
HOPE I HELPED
PLS MARK BRAINLIEST
DESPERATELY TRYING TO LEVEL UP
✌ -ZYLYNN JADE ARDENNE
JUST A RANDOM GIRL WANTING TO HELP PEOPLE!
PEACE!