Explanation:
[tex]which \: language \: is \: this[/tex]
[tex]pls \: write \: in \: english[/tex]
[tex]then \: only \: i \: can \: answer \: u[/tex]
[tex]otherwise \: sry[/tex]
c) You wish to put a 1000-kg satellite into a circular orbit 300 km above the earth's surface. (a)
What speed, period, and radial acceleration will it have? (b) How much work must be done to the
satellite to put it in orbit? (c) How much additional work would have to be done to make the
Answer:
Scalar
Explanation:
No direction
A parallel-plate capacitor is connected to a battery of electric potential difference V. If the plate separation is decreased, do the following quantities increase, decrease, or remain the same: (a) the capacitor’s capacitance, (b) the potential difference across the capacitor, (c) the charge on the capacitor, (d) the energy stored by the capacitor, (e) the magnitude of the electric field between the plates, and (f ) the energy density of that electric field?
Answer:
a) increases.
b) remains the same.
c) increases.
d) increases.
e) increases.
f) increases.
Explanation:
a)
Since the capacitance of a parallel-plate depends only on geometric constants and the dielectric between the plates, we can use the following expression to asess the value of the capacitance:[tex]C = \epsilon_{0}*\frac{A}{d} (1)[/tex]
where ε₀ = permitivitty of free space
A = area of one of the plates
d= plate separation
As we can see, if the plate separation is decreased, the value of the capacitance must increase.b)
Per definition the capacitance explains the relationship between the charge on one of the conductors, and the potential difference between them, as follows:[tex]C = \frac{Q}{V} (2)[/tex]
Assuming that the capacitor remains connected to the battery when the plate separation is decreased, since the voltage can't change (as it must hold the same voltage than previously since it's directly connected to the battery) the potential difference between plates must remain the same.c)
From B, we know that V in (2) must remain constant. Since we know from (1) that C must increase, this means from (2) that Q must increase too.d)
The energy stored in the electric field between the plates can be expressed as follows in terms of the capacitance C and the potential difference V:[tex]U = \frac{1}{2}* C*V^{2} (3)[/tex]
From (1) in a) and from b) we know that the capacitance C must increase whilst V must remain the same, so U in (3) must increase also.e)
In the capacitor the magnitude of the Electric field between the plates is constant, and is related to the potential difference between them by the following linear relationship:[tex]V = E*d (4)[/tex]
Since we know that V must remain the same, if the distance d decreases, the electris field E must increase in the same ratio in order to keep the equation balanced.f)
The energy density of the electric field is defined as the energy stored between plates by unit volume, as follows:[tex]u = \frac{U}{v} = \frac{\frac{1}{2}* C*V^{2}}{A*d} =\frac{1}{2}* \epsilon_{0}*\frac{A*V^{2} }{A*d*d} = \frac{1}{2} *\epsilon_{0}*E^{2} (5)[/tex]
Since it's proportional to the square of the electric field, and we know from e) that the magnitude of the electric field must increase, u must increase too.ou charge a piece of aluminum foil (mass = 4.99 g) by touching it to a charged rod. The charged rod gives the aluminum foil a charge of 13 µC. Your professor brings a charged plate over and tells you to put the aluminum foil on top of the plate. To your surprise the aluminum foil hovers motionless in the air above it! Calculate the value of the electric field from the charged plate (assume it is a uniform field and the aluminum foil is a point charge).
Answer:
The appropriate answer is "3761.69 N/C".
Explanation:
Given that:
Mass,
m = 4.99 g
or,
= [tex]4.99\times 10^{-3} \ kg[/tex]
Charge,
q = 13 µC
or,
= [tex]13\times 10^{-6} \ C[/tex]
As we know,
⇒ [tex]F=mg=Eq[/tex]
then,
⇒ [tex]E=\frac{mg}{q}[/tex]
By putting the values, we get
[tex]=\frac{4.99\times 10^{-3}\times 9.8}{13\times 10^{-6}}[/tex]
[tex]=3761.69 \ N/C[/tex]
If you are driving a car with a velocity of -25 m/s and you have an acceleration of -2 m/s^2, are you speeding up or slowing down? Why?
Answer:
Hmmm...
This is a bit tricky
Ok...
Negative Velocity means you're Moving in the Opposite direction....
Negative Acceleration (deceleration) means you're slowing down.
Deceleration would mean slowing down if you were Moving with a Positive velocity.
But In this case...
You're Moving with negative velocity and Negative acceleration...
This simply means that the acceleration and velocity vector are in the same direction....
Its means that...
"YOU'RE SPEEDING UP"
Just that you're doing it in the opposite direction.
Hope this helps.
help asap PLEASE I will give u max everything all that
steps if possible
Explanation:
2. [tex]R_T = R_1 + R_2 + R_3 = 625\:Ω + 330\:Ω + 1500\:Ω[/tex]
[tex]\:\:\:\:\:\:\:= 2455\:Ω = 2.455\:kΩ[/tex]
3. Resistors in series only need to be added together so
[tex]R_T = 8(140\:Ω) = 1120\:Ω = 1.12\:kΩ[/tex]
Consider a simple pendulum that consists of a massless 2.00-meter length of rope attached to a 5.00-kg mass at one end. What is the period of oscillation for this simple pendulum
Answer:
2.8 seconds
Explanation: Given that a simple pendulum that consists of a massless 2.00-meter length of rope attached to a 5.00-kg mass at one end. What is the period of oscillation for this simple pendulum
The parameters given are :
Length = 2 m
Mass = 5kg
Using the formula below
T = 2 pi × sqrt ( L / g )
Substitute all the parameters into the formula.
T = 2 × 3.143 × sqrt ( 2 / 9.8 )
T = 2 × 3.143 × 0.4517
T = 2.838 s
Therefore, the period of oscillation for this simple pendulum is 2.8 s approximately.
plz answer the question
Answer:
Ray A = Incidence ray
Ray B = Reflected ray
Explanation:
From the law of reflection,
Normal: This is the line that makes an angle of 90° with the reflecting surface.
Ray A is the incidence ray: This is the ray that srikes the surface of a reflecting surface. The angle formed between the normal and the incidence ray is called the incidence angle
Ray B is the reflected ray: This is the ray leaves the surface of a reflecting surface. The angle formed between the reflected ray and the normal is called reflected angle
One way families influence healthy technology use is when siblings explain the use of media to each other. Which of these outfits would you expect if this guideline was followed?
Answer:
The answer would be C.
Explanation:
This is what I would expect when you show someone else how to do something then is also known as teaching.
Please Mark as Brainliest
Hope this Helps
If the temperature of the conductor is increased, the electrons’ speeds decrease
Answer:
HOPE IT HELPS YOU!!!
Explanation:
Mark FadedGirl25 as brainliest
LC-circuit of the radio receiver consists of variable capacitor (Cmin= 1 pF, Cmax=10 pF) and inductor
with inductance 1 µH. Determine the wavelength range of this radio receiver.
Answer:
the radio can tune wavelengths between 1.88 and 5.97 m
Explanation:
The signal that can be received is the one that is in resonance as the impedance of the LC circuit.
X = X_c - X_L
X = 1 / wC - w L
at the point of resonance the two impedance are equal so their sum is zero
X_c = X_L
1 / wC = w L
w² = 1 / CL
w = [tex]\sqrt{\frac{1}{CL} }[/tex]
let's look for the extreme values
C = 1 10⁻¹² F
w = [tex]\sqrt{\frac{1}{ 1 \ 10^{-12} \ 1 \ 10^{-6}} }[/tex]
w = [tex]\sqrt{1 \ 10^{18}}[/tex]
w = 10⁹ rad / s
C = 10 10⁻¹² F
w = [tex]\sqrt{\frac{1}{10 \ 10^{-12} \ 1 \ 10^{-6}} }[/tex]Ra 1/10 10-12 1 10-6
w = [tex]\sqrt{0.1 \ 10^{18}}[/tex]Ra 0.1 1018
w = 0.316 10⁹ rad / s
Now the angular velocity and the frequency are related
w = 2π f
f = w / 2π
the light velocity is
c = λ f
λ = c / f
we substitute
λ = c 2π/w
we calculate the two values
C = 1 pF
λ₁ = 3 10⁸ 2π / 10⁹
λ₁= 18.849 10⁻¹ m
λ₁ = 1.88 m
C = 10 pF
λ₂ = 3 10⁸ 2π / 0.316 10⁹
λ₂ = 59.65 10⁻¹ m
λ₂ = 5.97 m
so the radio can tune wavelengths between 1.88 and 5.97 m
why material selection is important to design and manufacturing?
Answer:
. You want your product to be as strong and as long lasting as possible. There are also the safety implications to consider. You see, dangerous failures arising from poor material selection are still an all too common occurrence in many industries. yep that the answer have a Great day
Explanation:
(◕ᴗ◕✿)
Copy the diagram. add a voltmeter to show how you would measure the voltage of the cell
Answer: the answer is 23voltage
Explanation: because the voltage and time put together is 23
steps btw if possible
asap pls I will give u everyting
Answer:
(4) 50 ohms (5) 11.76 ohms
Explanation:
In the parallel combination, the equivalent resistance is given by :
[tex]\dfrac{1}{R}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+....[/tex]
4. When three 150 ohms resistors are connected in parallel, the equivalent is given by :
[tex]\dfrac{1}{R}=\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}\\\\R=50\ \Omega[/tex]
5. Three resistors of 20 ohms, 40 ohms and 100 ohms are connected in parallel, So,
[tex]\dfrac{1}{R}=\dfrac{1}{20}+\dfrac{1}{40}+\dfrac{1}{100}\\\\=11.76\ \Omega[/tex]
Hence, this is the required solution.
A large dump truck can move 1,170 tons/h of gravel from one point to another on a work site. What is this rate in lb/s
Answer:
The rate of the dump truck is 650 [tex]\frac{lb}{s}[/tex]
Explanation:
A large dump truck can move 1,170 tons/h of gravel from one point to another on a work site.
To convert the units from tons/h to lb/s, you should know that:
1 ton= 2000 lb1 h= 3600 s (1 h= 60 minutes and 1 minute= 60 seconds)To carry out the unit conversion you must perform the following steps:
[tex]1170 \frac{ton}{h}*\frac{2000 lb}{1 ton} *\frac{1 h}{3600 s}[/tex]
Solving:
[tex]1170 \frac{ton}{h}*=650 \frac{lb}{s}[/tex]
So, the rate of the dump truck is 650 [tex]\frac{lb}{s}[/tex]
Two children stretch a jump rope between them and send wave pulses back and forth on it. The rope is 3.3 m long, its mass is 0.52 kg, and the force exerted on it by the children is 47 N. (a) What is the linear mass density of the rope (in kg/m)
Answer:
The linear mass density of rope is 0.16 kg/m.
Explanation:
mass, m = 0.52 kg
force, F = 47 N
length, L = 3.3 m
(a) The linear mass density of the rope is defined as the mass of the rope per unit length.
Linear mass density = m/L = 0.52/3.3 = 0.16 kg/m
A rock is pulled back in a slingshot as shown in the diagram below. The elastic on the slingshot is displaced 0.2 meters from its initial position. The rock is pulled back with a force of 10 newtons.
When the rock is released, what is its kinetic energy?
Answer:
id
Explanation:
i don't know
The rock takes 8.16s to return to its release point. Given that the elastic band provides a speed of 40m/s to the rock in 10 cm stretch.
What will be the speed of the rock?Initial speed of the rock, u = 40m/s
Final position of the rock s = 0m taking the release point as reference. The rock takes 8.16s to return to its release point. Given that the elastic band provides a speed of 40m/s to the rock in 10 cm stretch.
Nuclear energy is a useful source of power but has disadvantages. The disadvantage of nuclear energy is it produces dangerous waste.
Initial speed of the rock, u = 40m/s
Final position of the rock s = 0m taking the release point as reference
From the second equation of motion:
solving above we get:
t = 0s or t = 8.16s, t =0 seconds is neglected since it represents the initial position which is the same as the final position at t = 8.16s
So, the rock takes 8.16 seconds to return to the release point.
Therefore, The rock takes 8.16s to return to its release point. Given that the elastic band provides a speed of 40m/s to the rock in 10 cm stretch.
Learn more about speed of rock on:
brainly.com/question/11049671
#SPJ2
A 0.0780 kg lemming runs off a
5.36 m high cliff at 4.84 m/s. What
is its kinetic energy (KE) when it
is 2.00 m above the ground?
Answer:
0.913
Explanation:
k.e=1/2mv square
k.e=1/2×0.078g×23.4256m/s square
k.e=0.913J
The kinetic energy when the lemming is 2.00 m above the ground is approximately 2.56 J (Joules).
To calculate the kinetic energy (KE) of the lemming when it is 2.00 m above the ground, we need to consider the change in its potential energy (PE) as it falls.
The potential energy at a height h is given by:
PE = m g h
Where:
m is the mass of the lemming (0.0780 kg)
g is the acceleration due to gravity (9.8 m/s²)
h is the height above the ground
Given:
Height of the cliff (h) = 5.36 m
Velocity of the lemming (v) = 4.84 m/s
Height above the ground (h') = 2.00 m
The lemming will lose potential energy as it falls from the cliff, which is converted into kinetic energy. Therefore, the kinetic energy when it is 2.00 m above the ground is equal to the difference between its total initial kinetic energy and the potential energy at that height.
Initial potential energy at the top of the cliff:
PE_initial = m g h
Potential energy when it is 2.00 m above the ground:
PE_final = m * g * h'
The change in potential energy is given by:
ΔPE = PE_final - PE_initial
The kinetic energy (KE) when it is 2.00 m above the ground:
KE = ΔPE = -ΔPE (due to energy conservation)
Let's calculate the potential energy at the top of the cliff and when it is 2.00 m above the ground:
PE_initial = m ×g × h
= 0.0780 kg × 9.8 m/s² × 5.36 m
PE_initial ≈ 4.09 J
PE_final = m ×g × h'
= 0.0780 kg ×9.8 m/s² ×2.00 m
PE_final ≈ 1.53 J
The change in potential energy (ΔPE) is:
ΔPE = PE_final - PE_initial = 1.53 J - 4.09 J
ΔPE ≈ -2.56 J
Since the change in potential energy is equal to the kinetic energy, the kinetic energy when the lemming is 2.00 m above the ground is approximately 2.56 J (Joules).
To know more about kinetic energy
https://brainly.com/question/999862
#SPJ2
1000 grams of water is heated from 0 degree to 200 degree . The specific heat of water is 4186 j/kg.°C. Estimate the change in entropy of the water.
Answer:2
Explanation:
The heat capacity of sodium metal is 1500 JK-1, if the mass of the sodium metal is 75 kg, the specific
heat capacity would be
Explanation:
the answer is in the image above
which of the following is a correct statement. a. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are constant. b. In dc steady state conditions, the voltages across the capacitors are zero and the currents through the capacitance are constant. The current through the inductors are constant and the voltage across the inductances are zero. c. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are zero and the voltage across the inductances are constant. d. WIn dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.
Answer:
d. In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.
Explanation:
The current through a capacitor is given by i = CdV/dt where C = capacitance of capacitor and V = voltage across capacitor. At steady state dV/dt = 0 and V = constant. So, i = CdV/dt = C × 0 = 0.
So, in dc steady state, the voltage across a capacitor is constant and the current zero.
The voltage across an inductor is given by V = Ldi/dt where L = inductance of inductor and i = current through inductor. At steady state di/dt = 0 and V = constant. So, V = Ldi/dt = L × 0 = 0.
So, in dc steady state, the voltage across an inductor is zero and the current constant.
So, In dc steady state conditions, the voltages across the capacitors are constant and the currents through the capacitance are zero. The current through the inductors are constant and the voltage across the inductances are zero.
The answer is d.
A cement block accidentally falls from rest from the ledge of a 53.4-m-high building. When the block is 19.4 m above the ground, a man, 2.00 m tall, looks up and notices that the block is directly above him. How much time, at most, does the man have to get out of the way
Answer:
The time required by the man to get out of the way is 0.6 s.
Explanation:
height of building, H = 53.4 m
height of block, h = 19.4 m
height of man, h' = 2 m
Let the velocity of the block at 19.4 m is v.
use third equation of motion
[tex]v^2 = u^2 + 2 gh\\\\v^2 = 0 + 2 \times 9.8 \times (53.4 - 19.4)\\\\v = 25.8 m/s[/tex]
Now let the time is t.
Use second equation of motion
[tex]h = u t + 0.5 gt^2\\\\19.4 - 2 = 25.8 t + 4.9 t^2\\\\4.9 t^2 + 25.8 t - 17.4= 0 \\\\t = \frac{-25.8\pm\sqrt{665.64 + 341.04}}{9.8}\\\\t = \frac{-25.8\pm31.7}{9.8}\\\\t = 0.6 s, - 5.9 s[/tex]
Time cannot be negative so time t = 0.6 s.
12. What type of lens is pictures below?
Oconverging lens
diverging lens
This is convex lens .
hence It's a converging lens .
The picture shown is a type of converging lens. The correct option is A.
What is a converging lens?A converging lens, also known as a convex lens, is a type of optical lens that is thicker in the middle than at the edges. It is shaped like a curved-outward disc and is commonly used in optical systems such as cameras, telescopes, and microscopes. When light passes through a converging lens, it bends inward and converges at a focal point located on the other side of the lens.
This focal point is determined by the curvature of the lens and its refractive index, which affects how much the light is bent. The distance between the lens and the focal point is called the focal length, and it determines the magnification and the image size produced by the lens. Converging lenses are used in many applications that require focusing and magnifying light, such as correcting vision problems and creating images in photography and microscopy.
Therefore, The correct answer is converging lens.
To learn more about the lens equation click:
https://brainly.com/question/11971432
#SPJ2
turn this scentence to repirted speach.
i ate icecream
She said that..........
Answer:
dhfhffuththt9tr8tujtngigjtjrjrjrurur
nariz (am
miria amy
0 = 0 +260 + (0)
U= 29 mb
6= ut +1 (04)
Car I was sitting at rest when it nous hit from
the rear by car 2 of identical mass. Both cant had
their heaks on and they stidled together Guy
in the original directioned of motion. If the stopping
force is notx (Combined weight of the cars), die
u=0 to find the approximate speed of car a just
before the collision took place on
Answer:
33 mph
Explanation:
My best guess
Wind is caused by ___. the earth's tilt the Coriolis effect temperature differences humidity
I am guessing wind is caused by climate change in the atmosphere
Explanation:
wind is cause by climate change in the atmosphere that depends weather is is breezy really cold or rain and cold
Answer:
caused by the uneven heating of the Earth by the sun and the own rotation.
An investigator collects a sample of a radioactive isotope with an activity of 490,000 Bq.48 hours later, the activity is 110,000 Bq. Part A For the steps and strategies involved in solving a similar problem, you may view a Video Tutor Solution What is the half-life of the sample?
Answer:
The correct answer is "22.27 hours".
Explanation:
Given that:
Radioactive isotope activity,
= 490,000 Bq
Activity,
= 110,000 Bq
Time,
= 48 hours
As we know,
⇒ [tex]A = A_0 e^{- \lambda t}[/tex]
or,
⇒ [tex]\frac{A}{A_0}=e^{-\lambda t}[/tex]
By taking "ln", we get
⇒ [tex]ln \frac{A}{A_0}=- \lambda t[/tex]
By substituting the values, we get
⇒ [tex]-ln \frac{110000}{490000} = -48 \lambda[/tex]
⇒ [tex]-1.4939=-48 \lambda[/tex]
[tex]\lambda = 0.031122[/tex]
As,
⇒ [tex]\lambda = \frac{ln_2}{\frac{T}{2} }[/tex]
then,
⇒ [tex]\frac{ln_2}{T_ \frac{1}{2} } =0.031122[/tex]
⇒ [tex]T_\frac{1}{2}=\frac{ln_2}{0.031122}[/tex]
[tex]=22.27 \ hours[/tex]
what change occurs to the mass of an object when a unbalanced
Answer:
The mass decreases
Explanation:
Just smart
Which one will it be
Answer: D
The force decreases inversely proportional to 1/r(squared)
Explanation:
I looked it up im sure this is correct
Answer:
option d
Explanation:
Two objects are attracted to each other by a gravitational force F. ... As the distance r from the center of the planet increases, what happens to the force of gravity on the rocket? The force decreases inversely proportional to 1/r(squared) A spacecraft is orbiting Earth with an orbital radius r.
the force of gravity is represented as
F = GM1M2/r²
now the mass of warth and rocket is considered to be constant and G is a universal constant so it can be said
F is inverse to r²
therefore as the value of r increases that is distance between earth and rocket increases the force decreases
(Follows inverse square law)
can some one tell the answers
Give the missing ammeter reading a and b. suggest why more current flow through some bulbs than through others Grade 10 question and Answer
Answer:
becaude of electricity