Point M is the midpoint of CD. What is the value of a in the figure?

Point M Is The Midpoint Of CD. What Is The Value Of A In The Figure?

Answers

Answer 1

Answer:

a=3

Step-by-step explanation:

Given points (a, b) and (c,d), the midpoint of the points will be at

((a+c)/2, ((b+d)/2)

Therefore, given (9, 2) and (a,2a), our midpoint is at

((9+a)/2, (2+2a)/2) = (6,4)

Matching the x values to their corresponding x values and doing the same with the y values, we get

(9+a)/2 = 6

(2+2a)/2 = 4

First, we have

(9+a)/2 = 6

multiply both sides by 2 to remove the denominator

9+a = 12

subtract 9 from both sides to isolate a

a = 3

2a = 2 * a = 6

Confirming this, we have

(2+2a)/2 = 4

(2+6)/2 = 4

8/2=4

Answer 2

The value of a is 3 after using the bisection formula and the coordinate of the C is (3, 6).

What is an ordered double?

It is defined as a representation of coordinates in a two-dimensional coordinate plane. It has a list of two elements in it, such as (x, y).

[tex]\rm Area = |\dfrac{(x_1y_2-y_1x_2)+(x_2y_3-y_2x_3)....+(x_ny_1-y_nx_1)}{2}|[/tex]

It is given that:

Point M is the midpoint of CD.

The coordinate of the C is (a, 2a)

The coordinate of the M is (6, 4)

The coordinate of the C is (9, 2)

Using bisection formula:

(a + 9)/2 = 6

The arithmetic operation can be defined as the operation in which we do the addition of numbers, subtraction, multiplication, and division. I

a + 9 = 12

a = 12 - 9

a = 3

Or

(2a + 2)/2 = 4

a + 1 = 4

a = 3

Thus, the value of a is 3 after using the bisection formula and the coordinate of the C is (3, 6).

Learn more about the order double here:

brainly.com/question/10757890

#SPJ2


Related Questions

The amounts of nicotine in a certain brand of cigarette are normally distributed with a mean of 0.954 grams and a standard deviation of 0.292 grams. Find the probability of randomly selecting a cigarette with 0.37 grams of nicotine or less. Round your answer to four decima

Answers

Let X be the random variable representing the amount (in grams) of nicotine contained in a randomly chosen cigarette.

P(X ≤ 0.37) = P((X - 0.954)/0.292 ≤ (0.37 - 0.954)/0.292) = P(Z ≤ -2)

where Z follows the standard normal distribution with mean 0 and standard deviation 1. (We just transform X to Z using the rule Z = (X - mean(X))/sd(X).)

Given the required precision for this probability, you should consult a calculator or appropriate z-score table. You would find that

P(Z ≤ -2) ≈ 0.0228

You can also estimate this probabilty using the empirical or 68-95-99.7 rule, which says that approximately 95% of any normal distribution lies within 2 standard deviations of the mean. This is to say,

P(-2 ≤ Z ≤ 2) ≈ 0.95

which means

P(Z ≤ -2 or Z ≥ 2) ≈ 1 - 0.95 = 0.05

The normal distribution is symmetric, so this means

P(Z ≤ -2) ≈ 1/2 × 0.05 = 0.025

which is indeed pretty close to what we found earlier.

dilan bought a table for Rs 3600. He sells it to Kirtim at a profit of Rs 205. Kritim sells it at Rs 4968 to Aayush. Find the percentage profit of Kritim.​

Answers

Answer:

30.57%

Step-by-step explanation:

Dylan bought it for 3600.

Kirtim bought it from Dylan for 3600+205 = 3805

Aayush bought it from Kirtim for 4968.

that difference (profit for Kirtim) = 4968 - 3805 = 1163

Kirtim's initial 100% = 3805

1% = 100%/100 = 3805/100 = 38.05

now we want to know how many % in relation to his buying cost this 1163 selling profit is.

that means we need to see how often 1% fits into that amount.

%profit = profit / 1% cost = 1163 / 38.05 = 30.57%

=>

Kirtim made a profit of 30.57%.

In the equation z/6 =
36, what is the next step in the equation solving sequence?
Isolate the variable
using inverse operations.
Combine like terms.
Identify and move the coefficient and variable.
Move all numbers without a variable.

Answers

Hi there!  

»»————- ★ ————-««

I believe your answer is:  

"Isolate the variable  using inverse operations."

»»————- ★ ————-««  

Here’s why:

To solve for a variable, we would have to isolate it on one side.

To isolate it, we would use inverse operations on both sides on the equation until the variable is isolated.

There are no like terms in the given equation.

⸻⸻⸻⸻

[tex]\boxed{\text{Solving for 'z'...}}\\\\\frac{z}{6} = 36\\-------------\\\rightarrow (\frac{z}{6})6 = (36)6\\\\\rightarrow \boxed{z = 216}[/tex]

⸻⸻⸻⸻

»»————- ★ ————-««  

Hope this helps you. I apologize if it’s incorrect.  

Answer:

First option: Isolate the variable using inverse operations

Step-by-step explanation:

z/6 = 36

Since we already have the equation set up and cannot simplify any further, we must try to isolate the variable, z, by using inverse operations.

The inverse operation of division is multiplication, so to isolate z, we multiply 6 on each side:

z/6 · 6 = 36 · 6

z = 216

5x+2y-z=-5
-x+3y+4z=12
x-y-3z=-8

Answers

Answer:

4

Step-by-step explanation:

233

What is the range of possible sizes for side x? Please help!

Answers

Answer:

x is smaller than 5.6 and greater than 0

Claims from Group A follow a normal distribution with mean 10,000 and standard deviation 1,000. Claims from Group B follow a normal distribution with mean 20,000 and standard deviation 2,000. All claim amounts are independent of the other claims. Fifty claims occur in each group. Find the probability the total of the 100 claims exceeds 1,530,000.

Answers

Answer:

0.0287 = 2.87% probability the total of the 100 claims exceeds 1,530,000.

Step-by-step explanation:

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

n instances of a normal variable:

For n instances of a normal variable, the mean is [tex]n\mu[/tex] and the standard deviation is [tex]s = \sigma\sqrt{n}[/tex]

Sum of normal variables:

When two normal variables are added, the mean is the sum of the means, while the standard deviation is the square root of the sum of the variances.

Group A follow a normal distribution with mean 10,000 and standard deviation 1,000. 50 claims of group A.

This means that:

[tex]\mu_A = 10000*50 = 500000[/tex]

[tex]s_A = 1000\sqrt{50} = 7071[/tex]

Group B follow a normal distribution with mean 20,000 and standard deviation 2,000. 50 claims of group B.

This means that:

[tex]\mu_B = 20000*50 = 1000000[/tex]

[tex]s_B = 2000\sqrt{50} = 14142[/tex]

Distribution of the total of the 100 claims:

[tex]\mu = \mu_A + \mu_B = 500000 + 1000000 = 1500000[/tex]

[tex]s = \sqrt{s_A^2+s_B^2} = \sqrt{7071^2+14142^2} = 15811[/tex]

Find the probability the total of the 100 claims exceeds 1,530,000.

This is 1 subtracted by the p-value of Z when X = 1530000. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{1530000 - 1500000}{15811}[/tex]

[tex]Z = 1.9[/tex]

[tex]Z = 1.9[/tex] has a p-value of 0.9713

1 - 0.9713 = 0.0287

0.0287 = 2.87% probability the total of the 100 claims exceeds 1,530,000.

Dan's car depreciates at a rate of 6% per year. By what percentage has Dan's car depreciated after 4 years? Give your answer to the nearest percent​

Answers

Answer:

it's easy you need to do 6%×4 it's 24%

is “x = -3” a function

Answers

Answer:

No

Step-by-step explanation:

x = -3 is a vertical line at x= -3

Tow points on the line are

(-3,1) and (-3,2)

This means one x value goes to 2 different y values so it is not a function

Answer: No

Step-by-step explanation: The line x = -3 is a vertical or straight up and down line that is parallel to the y-axis. On the vertical line x = -3, when x = -3, y can be 0, 1, 2, -5, or any other number, there are in infinite number of possibilities.

The technical definition of a function is written as "a relation in which each element in the domain is paired with one and only one element in the range."

Write the quadratic function in the form g(x) = a (x-h)^2 +k.
Then, give the vertex of its graph.
g(x) = 2x^2 + 8x + 10

Answers

9514 1404 393

Answer:

  g(x) = 2(x +2)² +2

  vertex: (-2, 2)

Step-by-step explanation:

It is often easier to write the vertex form if the leading coefficient is factored from the variable terms:

  g(x) = 2(x² +4x) +10

Then the square of half the x-coefficient is added inside parentheses, and an equivalent amount is subtracted outside.

  g(x) = 2(x² +4x +4) +10 -2(4)

  g(x) = 2(x +2)² +2

Comparing to the vertex form, we see the parameters are ...

  a = 2, h = -2, k = 2

The vertex is (h, k) = (-2, 2).

b) What is the 4 times of the sum of 3and9?

Answers

Answer:

108

Step-by-step explanation:

sum is a fancy word for add so 3+9=27 and 27*4=108

I’m confuse about the question I don’t know you mean in equation but 4(x+3)= 9

Quick can someone plot these in a scatter plot
(9.2,2.33)
(19.5,3.77)
(15.5,3.92)
(0.7,1.11)
(21.9,3.69)
(0.7,1.11)
(16.7,3.5)
(0.7,1.11)
(18,4)
(18,3.17)

Answers

The scatterplot is below.

I used GeoGebra to make the scatterplot. Though you could use other tools such as Excel or Desmos, or lots of other choices.

Side note: I'm not sure why, but you repeated the point (0.7,1.11) three times.

Which of the following pairs of functions are inverses of each other?
O A. f(x) = 2x–9 and g(x) = *7 9
B. f(x)=$+4 and g(x) = 3x-4
C. f(x)=5+*fx and g(x) = 5 - 43
O D. f(x) = 3-6 and g(x) = x26

Answers

Answer:

I  think its B

Step-by-step explanation:

The pairs of functions which are inverses of each other is A. f(x) = 2x - 9 and g(x) = (x + 9)/2.

What is Inverse Function?

Inverse functions are functions which can be reversed in to another function.

Then the function is said to be the inverse of the second function.

If two functions f(x) and g(x) are inverses of each other, then f(g(x) = x and g(f(x)) = x.

A. f(x) = 2x - 9 and g(x) = (x + 9)/2

f(g(x)) = f((x + 9)/2) = 2 [(x + 9)/2] - 9 = x + 9 - 9 = x

g(f(x)) = g(2x - 9) = (2x - 9 + 9) / 2 = 2x / 2 = x

So, the functions are inverses of each other.

B. f(x) = (x/3) + 4 and g(x) = 3x - 4

f(g(x)) = f(3x - 4) = [(3x - 4)/3] + 4 ≠ x

So not inverses of each other.

C. f(x) = 5 + ∛x and g(x) = 5 - x³

f(g(x)) = f(5 - x³) = 5 + ∛(5 - x³) ≠ x

So not inverses of each other.

D. f(x) = (2/x) - 6 and g(x) = (x + 6)/2

f(g(x)) = f((x + 6)/2) = [2 / ((x + 6)/2)] - 6 ≠ x

So not inverses of each other.

Hence the correct option is A.

Learn more about Inverse functions here :

https://brainly.com/question/2541698

#SPJ7

The starting salaries of individuals with an MBA degree are normally distributed with a mean of $40,000 and a standard deviation of $5,000. What percentage of MBA's will have starting salaries of $34,000 to $46,000

Answers

Answer:

The correct answer is "76.98%".

Step-by-step explanation:

According to the question,

⇒ [tex]P(34000<x<46000) = P[\frac{34000-40000}{5000} <\frac{x- \mu}{\sigma} <\frac{46000-40000}{5000} ][/tex]

                                       [tex]=P(-1.2<z<1.2)[/tex]

                                       [tex]=P(z<1.2)-P(z<-1.2)[/tex]

                                       [tex]=0.8849-0.1151[/tex]

                                       [tex]=0.7698[/tex]

or,

                                       [tex]=76.98[/tex]%

Given the exponential function g(x)= 1∕2(2)^x, evaluate ƒ(1), ƒ(3), and ƒ(6).
A) ƒ(1) = 1, ƒ(3) = 4, ƒ(6) = 32
B) ƒ(1) = 2, ƒ(3) = 9, ƒ(6) = 64
C) ƒ(1) = 1, ƒ(3) = 2, ƒ(6) = 8
D) ƒ(1) = 4, ƒ(3) = 16, ƒ(6) = 128

Answers

Answer:

A) ƒ(1) = 1, ƒ(3) = 4, ƒ(6) = 32

Step-by-step explanation:

f(x)= 1∕2(2)^x,

Let x = 1

f(1)= 1∕2(2)^1 = 1/2 ( 2) = 1

Let x = 3

f(3)= 1∕2(2)^3 = 1/2 ( 8) = 4

Let x = 1

f(6)= 1∕2(2)^6 = 1/2 ( 64) = 32

Answer:

A) ƒ(1) = 1, ƒ(3) = 4, ƒ(6) = 32

Step-by-step explanation: I took the test

What is the axis of symmetry of the
parabola graphed below?

O x=4
Oy=2
Oy=4
Ox=2
Other:

Answers

Answer:

A

Step-by-step explanation:

i think so..sorry if im wrong

X=2 is the axis of symmetry.

The product of 86 and the depth of the river

Answers

Answer:

Step-by-step explanation:

Are you trying to find a variable expression? the product of 86 means multiplication so 86*n or 86n. Other than that I dont understand the question.

Coordinate plane with quadrilaterals EFGH and E prime F prime G prime H prime at E 0 comma 1, F 1 comma 1, G 2 comma 0, H 0 comma 0, E prime negative 1 comma 2, F prime 1 comma 2, G prime 3 comma 0, and H prime negative 1 comma 0. F and H are connected by a segment, and F prime and H prime are also connected by a segment. Quadrilateral EFGH was dilated by a scale factor of 2 from the center (1, 0) to create E'F'G'H'. Which characteristic of dilations compares segment F'H' to segment FH

Answers

Answer:

[tex]|F'H'| = 2 * |FH|[/tex]

Step-by-step explanation:

Given

[tex]E = (0,1)[/tex]             [tex]E' = (-1,2)[/tex]

[tex]F = (1,1)[/tex]             [tex]F' = (1,2)[/tex]

[tex]G = (2,0)[/tex]             [tex]G' =(3,0)[/tex]

[tex]H = (0,0)[/tex]            [tex]H' = (-1,0)[/tex]

[tex](x,y) = (1,0)[/tex] -- center

[tex]k = 2[/tex] --- scale factor

See comment for proper format of question

Required

Compare FH to F'H'

From the question, we understand that the scale of dilation from EFGH to E'F'G'H is 2;

Irrespective of the center of dilation, the distance between corresponding segment will maintain the scale of dilation.

i.e.

[tex]|F'H'| = k * |FH|[/tex]

[tex]|F'H'| = 2 * |FH|[/tex]

To prove this;

Calculate distance of segments FH and F'H' using:

[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]

Given that:

[tex]F = (1,1)[/tex]             [tex]F' = (1,2)[/tex]

[tex]H = (0,0)[/tex]            [tex]H' = (-1,0)[/tex]

We have:

[tex]FH = \sqrt{(1- 0)^2 + (1- 0)^2}[/tex]

[tex]FH = \sqrt{(1)^2 + (1)^2}[/tex]

[tex]FH = \sqrt{1 + 1}[/tex]

[tex]FH = \sqrt{2}[/tex]

Similarly;

[tex]F'H' = \sqrt{(1 --1)^2 + (2 -0)^2}[/tex]

[tex]F'H' = \sqrt{(2)^2 + (2)^2}[/tex]

Distribute

[tex]F'H' = \sqrt{(2)^2(1 +1)}[/tex]

[tex]F'H' = \sqrt{(2)^2*2}[/tex]

Split

[tex]F'H' = \sqrt{(2)^2} *\sqrt{2}[/tex]

[tex]F'H' = 2 *\sqrt{2}[/tex]

[tex]F'H' = 2\sqrt{2}[/tex]

Recall that:

[tex]|F'H'| = 2 * |FH|[/tex]

So, we have:

[tex]2\sqrt 2 = 2 * \sqrt 2[/tex]

[tex]2\sqrt 2 = 2\sqrt 2[/tex] --- true

Hence, the dilation relationship between FH and F'H' is::

[tex]|F'H'| = 2 * |FH|[/tex]

Answer:NOTT !!  A segment in the image has the same length as its corresponding segment in the pre-image.

Step-by-step explanation:

A student writes
1 1/2 pages of a report in 1/2
an hour. What is her unit rate in pages per hour?

Answers

Answer:

3 pages per hour

Step-by-step explanation:

Take the number of pages and divide by the time

1 1/2 ÷ 1/2

Write the mixed number as an improper fraction

3/2÷1/2

Copy dot flip

3/2 * 2/1

3

9514 1404 393

Answer:

  3 pages per hour

Step-by-step explanation:

To find the number of pages per hour, divide pages by hours.

  (1.5 pages)/(0.5 hours) = 3 pages/hour

find the area of the circle whose equation is x2+y2=6x-8y​

Answers

Answer:

Given that the equation of a circle is :

[tex] \green{ \boxed{\boxed{\begin{array}{cc} {x}^{2} + {y}^{2} = 6x - 8y \\ = > {x}^{2} + {y}^{2} - 6x + 8y = 0 \\ = > {x}^{2} + {y}^{2} + 2 \times ( - 3) \times x + 2 \times 4 \times y = 0 \\ \\ \sf \: standard \: equation \: o f \: circle \: is : \\ {x}^{2} + {x}^{2} + 2gx + 2fy + c = 0 \\ \\ \sf \: by \: comparing \\ \\ g = - 3 \\ f = 4 \\ c = 0 \\ \\ \sf \: radius \: \: r = \sqrt{ {g}^{2} + {f}^{2} - c } \\ = \sqrt{ {( - 3)}^{2} + {4}^{2} - 0 } \\ = \sqrt{9 + 16} \\ = \sqrt{25} \\ = 5 \: unit \\ \\ \bf \: area \: = \pi {r}^{2} \\ = \pi \times {5}^{2} \\ =\pink{ 25\pi \: { unit }^{2} }\end{array}}}}[/tex]

Which formula can be used to describe the sequence?

Answers

Answer:

B could be used to show the formula to describe the sentence

Write y=2/3x+7 in standard form using intergers

Answers

Answer:

a.

Step-by-step explanation:

y = 2/3 x + 7

3 * y = 3 * (2/3 x + 7)

3y = 2x + 21

2x - 3y = -21

-2x + 3y = 21

Answer: a.

sin x - cos x - 1/√2 = 0
Find the value of x ​

Answers

Answer:

Step-by-step explanation:

Given that fx=2x2-4x+1, then f(-1)is.​

Answers

Answer:

[tex]f(-1)=7[/tex]

Step-by-step explanation:

I am going to assume your question meant the equation

[tex]f(x)=2x^{2} -4x+1[/tex]

So [tex]f(-1)[/tex] can be found by substituting all the x terms in the equation with -1

[tex]f(-1)=2(-1)^{2} -4(-1)+1[/tex]

And simplifying for our answer

[tex]f(-1)=2(1)+4+1[/tex]

[tex]f(-1) = 2+4+1[/tex]

[tex]f(-1)=7[/tex]

find the area of this unusual shape

Answers

Answer:

38 ft²

Step-by-step explanation:

The shape consists of a rectangle and two triangles.

Area of the shape = area of rectangle + area of the two triangles

✔️Area if the rectangle = L × W

L = 8 + 2 = 10 ft

W = 3 ft

Area of rectangle = 10 × 3 = 30 ft²

✔️Area of the large triangle = ½ × bh

b = 4 ft

h = 3 ft

Area of large triangle = ½ × 4 × 3 = 6 ft²

✔️Area of the small triangle = ½ × bh

b = 2 ft

h = 2 ft

Area of large triangle = ½ × 2 × 2 = 2 ft²

✅Area of the shape = 30 + 6 + 2 = 38 ft²

A. If x:y= 3:5, find = 4x + 5 : 6y -3​

Answers

Answer:

17 : 27

Step-by-step explanation:

x=3

y=5

4(3)+5 : 6(5)-3

= 12+5 : 30-3

= 17 : 27

Suppose a classmate got 12+ 2x as
the answer for Example D instead of
2x + 12. Did your classmate give a
correct answer? Explain.

Answers

Answer:

Yes

Step-by-step explanation:

Using the commutative property (a + b = b + a), we can easily calculate that 12 + 2x is equal to 2x + 12.

What is the solution of the inequality shown below?
-3+a<-7

Answers

Answer:

[tex]{ \tt{ - 3 + a < - 7}} \\ { \tt{a < - 4}}[/tex]

if the volume of a cube is 2197cm3, find the height of the cube​

Answers

Since it’s a cube all sides are equal

The edge roughness of slit paper products increases as knife blades wear. Only 2% of products slit with new blades have rough edges, 3% of products slit with blades of average sharpness exhibit roughness, and 4% of products slit with worn blades exhibit roughness. If 25% of the blades in the manufacturing are new, 60% are of average sharpness, and 15% are worn, what is the proportion of products that exhibit edge roughness

Answers

Answer:

The proportion of products that exhibit edge roughness is 0.029 = 2.9%.

Step-by-step explanation:

Proportion of products that exhibit edge roughness:

2% of 25%(new blades).

3% of 60%(average sharpness).

4% of 15%(worn). So

[tex]p = 0.02*0.25 + 0.03*0.6 + 0.04*0.15 = 0.029[/tex]

The proportion of products that exhibit edge roughness is 0.029 = 2.9%.

5) If the local professional basketball team, the Sneakers, wins today's game, they have a 2/3 chance of winning their next game. If they lose this game, they have a 1/2 chance of winning their next game.

A) Make a Markov Chain for this problem; give the matrix of transition probabilities and draw the transition diagram.
B) If there is a 50-50 chance of the Sneakers winning today's game, what are the chances that they win their next game?
C) If they won today, what are the chances of winning the game after the next?

Answers

Answer:

If they win today's game, the probability to win the next game = 2/3  

Therefore the probability that they lose the next game when they win today's game = 1-(2/3) =1/3.

If they lose today's game, the probability to win the next game = 1/2

so, the probability to lose is 1/2.

a)        [tex]\begin{bmatrix} \frac{2}{3}&\frac{1}{2} & \\\\ \frac{1}{3}&\frac{1}{2} & \end{bmatrix}[/tex]

b)       [tex]p=\begin{bmatrix} \frac{1}{2}\\\\ \frac{1}{2} \end{bmatrix}[/tex]

         [tex]p^{'} =\begin{bmatrix} \frac{7}{12}\\\\ \frac{5}{12} \end{bmatrix}[/tex]

c) Let them win today's game

[tex]p=\begin{bmatrix} 1\\ 0 \end{bmatrix}\\\\\\p^{'} =\begin{bmatrix} \frac{2}{3}\\\\\frac{1}{3} \end{bmatrix}[/tex]

[tex]p^{''}= \left[\begin{array}{c}\frac{11}{18} \\\\\frac{7}{18} \end{array}\right][/tex]

The chances that they win their next game are 58.33%, while if they won today, the chances of winning the game after the next are 38.88%.

Probabilities

Given that if the local professional basketball team, the Sneakers, wins today's game, they have a 2/3 chance of winning their next game, while if they lose this game, they have a 1/2 chance of winning their next game, to determine, if there is a 50-50 chance of the Sneakers winning today's game, what are the chances that they win their next game, and determine, if they won today, what are the chances of winning the game after the next, you must perform the following calculations:

(2/3 + 1/2) / 2 = X1,666 / 2 = X0.58333 = X

((2/3 + 1/2 / 2) x 2/3 = X0.58333 x 0.666 = X0.3888 = X

Therefore, the chances that they win their next game are 58.33%, while if they won today, the chances of winning the game after the next are 38.88%.

Learn more about probabilities in https://brainly.com/question/10182808

Other Questions
A gas tank is known to have a thickness of 0.5 inches and an internal pressure of 2.2 ksi. Assuming that the maximum allowable shear stress in the tank wall is 12 ksi, determine the necessary outer diameter for the tank. Assume that the tank is made of a cold drawn steel whose elastic modulus is 35000 ksi and whose Poisson ratio is 0.292. If y What is a possible consequence of abusing intravenous drugs such as heroin.A.Lung cancer B. HIV transmission C. Improved appetiteD. Alcohol poisoning Describe What You See in the PlacardWhich cause/s of New Imperialism does the Placard represent?Explain Why You Chose the Cause/s? On Monday morning at 8:00 a.m. the temperature is 14 o C. Over thenext 6 hours the temperature rises 6 o C. Between 2:00 p.m. on Mondayand 8:00 a.m. on Tuesday the temperature drops 9 o C. Over the next 6hours the temperature rises only 4 o C. What is the temperature at 2:00p.m. on Tuesday? How many atoms are in 9.35 moles of lithium? Perform the indicated operation. Be sure the answer is reduced.4x/2x+y + 2y/2x+y421 C.Find an equation equivalent to r = 1 + 2 sine in rectangular coordinates.a. V2 + y2 x= x + y2 + 2yx2 + y2 = 1Vx2 + y2 + 2yb. x2 + y2 = 1x+y + 2xd. Vo? + y2 = x2 + y2 + 2x ways of manifesting or expressing violence Solve for mWUV if mTUV= 100 and mTUW = 60. what is meant by peace? write in a sentence. Identify the first 4 terms in the geometric sequence given by the explicit formula (n) = 4 2(n 1). Which labels are correct for the regions marked? a. X: Slower in gases than liquids Y: Faster in solids than gases Z: Velocity depends on medium b. X: Faster in gases than liquids Y: Slowest in solids Z: Faster in liquids than gases c. X: Slower in solids than liquids Y: Velocity depends on medium Z: Faster in liquids than gases d. X: Velocity depends on medium Y: Fastest in gases Z: Slower in liquids than solids PLS HELP QUESTION ATTACHED a water tank is filled with water up to 3.5 m height caluclate the pressure given by the tanks at its bottom write the function of eustachian tube? please help me with b and c. What is the energy of an electromagnetic wave that has a frequency of4.0 x 109 Hz? Use the equation E = hf, where h = 6.626 x 10-34 Js. juans pencil box measures 6 cm long. if the length of the diagonal is 10 cm what is the width of the pencil box Only the per capita income cannot reflect the true state of economic development .Why? justify it. Show Workings.Question is in attached image.