Answer:
[tex]\huge \boxed{17}[/tex]
Step-by-step explanation:
Point M is on the line segment LN.
LM = 7
MN = 10
LN = LM + MN
LN = 7 + 10 = 17
The value of the line segment LN is 17.
What is a line segment?A line segment in geometry is a section of a line that has two clearly defined endpoints and contains every point on the line that lies within its confines.
Given that point, M is the online segment LN. Given LM=7 and MN=10,
The value of the line segment will be calculated as:-
Point M is on the line segment LN.
LM = 7
MN = 10
LN = LM + MN
LN = 7 + 10 = 17
Therefore, the value of the line segment LN is 17.
To know more about line segments follow
brainly.com/question/3573606
#SPJ5
Simplify the following leave the answer in radical notation:
Please explain!!
1. Square root of (125x^2y^7)
2. Cubed root of (24x^3y8)
Answer:
1- 5xy³√5y
2- 2xy²∛3y²
Step-by-step explanation:
√125x²y^7=
√25*5x²y^6y
5xy³√5y
2) ∛24x³y^8=
∛2³*3x³y^8=
2xy²∛3y²
Find the area of the following shape.
Answer:
57 units^2
Step-by-step explanation:
First find the area of the triangle on the left
ABC
It has a base AC which is 9 units and a height of 3 units
A = 1/2 bh = 1/2 ( 9) *3 = 27/2 = 13.5
Then find the area of the triangle on the right
DE
It has a base AC which is 6 units and a height of 1 units
A = 1/2 bh = 1/2 ( 6) *1 = 3
Then find the area of the triangle on the top
It has a base AC which is 3 units and a height of 3 units
A = 1/2 bh = 1/2 ( 3) *3 = 9/2 = 4.5
Then find the area of the rectangular region
A = lw = 6*6 = 36
Add them together
13.5+3+4.5+36 =57 units^2
Answer:
Total Area = 57 sq. units
Step-by-step explanation:
will make it simple and short
Total Area = A1 + A2 + A3
A1 = (7 + 6) * 6/2 = 39 sq. units (area of a trapezoid)
A2 = 1/2 (9 * 3) = 13.5 sq. units (area of a triangle)
A3 = 1/2 (3 * 3) = 4.5 sq. units (area of a triangle)
Total Area = 39 + 13.5 + 4.5 = 57 sq. units
The phone company offers to long-distance plans the first charges a flat value of five dollars per month plus $.99 each minute used and the second charge is $10 a month plus $.79 for each minute used if X represents the number of minutes use each month which system each of equations represent the amount of money why are you spin
Answer:
The systems of equation for the amount spent are as follows
[tex]Y= 0.99x+5[/tex]
[tex]Y= 0.79x+10[/tex]
Step-by-step explanation:
In this problem we are expect to give a model or an equation that represents the amount of money spent per month given a fix subscription amount and a variable fee which is based on extra minutes spent.
let Y represent the amount of money spent in total for the month
The first case:
Subscription =$5
charges per minutes = $0.99
therefore the amount spent can be modeled as
[tex]Y= 0.99x+5[/tex]
The second case:
Subscription =$10
charges per minutes = $0.79
therefore the amount spent can be modeled as
[tex]Y= 0.79x+10[/tex]
A paper company needs to ship paper to a large printing business. The paper will be shipped in small boxes and large boxes. The volume of each small box is 9 cubic feet and the volume of each large box is 24 cubic feet. A total of 24 boxes of paper were shipped with a combined volume of 441 cubic feet. Write a system of equations that could be used to determine the number of small boxes shipped and the number of large boxes shipped. Define the variables that you use to write the system.
Answer:
9 small boxes and 15 large boxes
Step-by-step explanation:
x = small box
y = large box
x + y = 24
9x + 24y = 441
-9x - 9y = -216
15y = 225
y = 15
x + 15 = 24
x = 9
Answer:
Let x be the small boxes
Let y be the large boxes
x+y=24
9x+24y=441
Step-by-step explanation:
Help please, I would really appreciate it. :)
Answer:
9, 13, 17, 21
Step-by-step explanation:
If x=2,
y=1+4(2)
y=9
This goes on, like a pattern. If x increases by 1, y inreases by 4. So, if y=3, x=13. If x=4, y=17, and so on.
If the initial amount of iodine-131 is 537 grams , how much is left after 10 days?
Answer:
225.78 grams
Step-by-step explanation:
To solve this question, we would be using the formula
P(t) = Po × 2^t/n
Where P(t) = Remaining amount after r hours
Po = Initial amount
t = Time
In the question,
Where P(t) = Remaining amount after r hours = unknown
Po = Initial amount = 537
t = Time = 10 days
P(t) = 537 × 2^(10/)
P(t) = 225.78 grams
Therefore, the amount of iodine-131 left after 10 days = 225.78 grams
solve the following inequalitie and fin x
5/( + 2)(4 − )< 1
Answer: -1 < x < 3
Step-by-step explanation:
[tex]\dfrac{5}{(x+2)(4-x)}<1[/tex]
Step 1 The denominator cannot equal zero:
x + 2 ≠ 0 and 4 - x ≠ 0
x ≠ -2 4 ≠ x
Place these restrictive values on the number line with an OPEN dot:
<----------o-------------------o--------->
-2 4
Step 2 Find the zeros (subtract 1 from both sides and set equal to zero):
[tex]\dfrac{5}{(x+2)(4-x)}-1=0\\\\\\\dfrac{5}{(x+2)(4-x)}-\dfrac{(x+2)(4-x)}{(x+2)(4-x)}=0\\\\\\\dfrac{5-(-x^2+2x+8)}{(x+2)(4-x)}=0\\\\\\\dfrac{5+x^2-2x-8}{(x+2)(4-x)}=0\\\\\\\dfrac{x^2-2x-3}{(x+2)(4-x)}=0\\\\\\\text{Multiply both sides by (x+2)(4-x) to eliminate the denominator:}\\x^2-2x-3=0\\(x-3)(x+1)=0\\x-3=0\quad x+1=0\\x=3\quad x=-1[/tex]
Add the zeros to the number line with an OPEN dot (since it is <):
<----------o-----o----------o----o--------->
-2 -1 3 4
Step 3 Choose test points to the left, between, and to the right of the points plotted on the graph. Plug those values into (x - 3)(x + 1) to determine its sign (+ or -):
Left of -2: Test point x = -3: (-3 - 3)(-3 + 1) = Positive
Between -2 and -1: Test point x = -1.5: (-1.5 - 3)(-1.5 + 1) = Positive
Between -1 and 3: Test point x = 0: (0 - 3)(0 + 1) = Negative
Between 3 and 4: Test point x = 3.5: (3.5 - 3)(3.5 + 1) = Positive
Right of 4: Test point x = 5: (5 - 3)(5 + 1) = Positive
+ + - + +
<----------o-----o----------o----o--------->
-2 -1 3 4
Step 4 Determine the solution(s) based on the inequality symbol. Since the original inequality was LESS THAN, we want the solutions that are NEGATIVE.
Negative values only occur between -1 and 3
So the solution is: -1 < x < 3
Let f(x) = sin x; Sketch the graph of f^2
Answer: see graph
Step-by-step explanation:
Look at the Unit Circle to see the coordinates of the quadrangles.
Build a sine table for one period (0° - 360°).
x y = sin(x) y² = (sin(x))² (x, y²)
0° sin(0°) = 0 (0)² = 0 (0°, 0)
90° sin(90°) = 1 (1)² = 1 (90°, 1)
180° sin(180°) = 0 (0)² = 0 (180°, 0)
270° sin(270°) = -1 (-1)² = 1 (270°, 1)
360° sin(360°) = 0 (0)² = 0 (360°, 0)
Now plot the (x, y²) coordinates on your graph.
Please help Describe a way that you can remember the elements of the reflection matrices if you forget where the 1s, -1s, and 0s belong.
Step-by-step explanation:
Multiplying the vertex matrix with the matrix gives us a reflection matrix. The most common matrix reflections are seen as reflection in the x - axis as well as reflection in the y - axis.
It can also be reflect by 90 degree or by 180 degree.
So, one way to remember the elements is by multiplying the given matrix by a unit matrix. And on the other hand you can remember the elements remembering by what degree we are reflecting the matrix. This way makes it easier to remember the elements.
The explanation regarding the elements of the reflection is explained below:
The following information should be considered:
In the case when we Multiply the vertex matrix with the matrix so it provides the reflection matrix. The most common matrix reflections are seen as reflection in the x - axis as well as reflection in the y - axis. It can also be reflect by 90 degree or by 180 degree.Learn more: https://brainly.com/question/17961582?referrer=searchResults
Coherence
5. Simon's teacher asked him to e-mail her a copy of the outline for his essay on American
History: When drafting the e-mail, what level of diction should Simon use?
informal
formal
standard
foundational
Answer:
The correct option is;
Formal
Step-by-step explanation:
The common levels of diction are formal, informal, and popular, with formal diction being the most selective of the word choices
Formal diction is used when when communicating in a situation that is formal
Formal diction uses languages that is devoid of slang and grammatically correct
Formal language is precise, grammatically correct language that does not use slang used in communication for legal, professional, business and academic purposes.
Find the equation of a line given the point and slope below. Arrange your answer in the form y = mx + b, where b is the constant. (1, 3) m = 2
Answer:
y = 2x + 1
Step-by-step explanation:
Given a point and the slope, we can plug in these values into the equation to find the value of b:
y = mx + b
3 = 2(1) + b
3 = 2 + b
1 = b
Plug b into the equation:
y = 2x + 1
Answer:
y = 2x + 1
Step-by-step explanation:
what is the area of the shaded region?
Answer:
330.00cm²
Step-by-step explanation:
find the area of both circles and subtract the smaller one from the bigger one.
area of a circle= πr²
π wasn't given so I will use 22/7
so area of the bigger circle = 22/7 × 11²
=22/7 × 121
=380.28cm²
area of the small circle=22/7 × 4²
= 22/7 × 16
= 50.28cm²
Area of the shaded portion = 380.28 - 50.28
= 330.00cm²
Please help me!!! I need this ASAP!!!
Answer:
number ten: x=5
number two: x=5³/5
Step-by-step explanation:
number ten:
4x + 3x - 9 = 26
4x + 3x = 26+9
7x = 35
x = 5
number two:
3x + 2x - 8 = 20
3x + 2x = 20+8
5x = 28
x = 5³/5
It fractional equation should be solve in quadric equation
x+ 7/x =9
Answer:
0.86, 8.14
Step-by-step explanation:
x+ 7/x =9, where x≠0x^2+7= 9x multiply each term by x to get rid of fractionx^2 - 9x + 7= 0 solving as normal quadratic equationx= (9 ± √ (9^2 - 4*7)) / 2x= (9 ± √53) /2 x≈ 0.86x≈ 8.14Please help! offering 25 points, 5 stars, and a thanks. Ive asked this 3 times now
Answer:
17 quarters
Step-by-step explanation:
Let q = quarters
n = nickels
.25q + .05n = 5.90
we have 16 more nickels than quarters so add 16 quarters to make them equal
n = q+16
Substitute
.25q + .05( q+16) = 5.90
Distribute
.25q+.5q+.80=5.90
Combine like terms
.30q +.8 = 5.90
Subtract .8 from each side
.30q = 5.10
Divide each side by .3
.3q/.3 = 5.1/.3
q = 17
Answer:
Gisel have:
17
quarters
Step-by-step explanation:
1 nickel = 5 cents
1 quarter = 25 cents
1 dollar = 100 cents
5,90 dollars = 5,9*100 = 590 cents
then:
n = t + 16
5n + 25t = 590
n = quantity of nickels
t = quantity of quarters
5(t+16) + 25t = 590
5*t + 5*16 + 25t = 590
5t + 80 + 25t = 590
30 t = 590 - 80
30 t = 510
t = 510 / 30
t = 17
n = t + 16
n = 17 + 16
n = 33
Check:
5n + 25t = 590
5*33 + 25*17 = 590
165 + 425 = 590
How to do this question plz answer me step by step plzz plz
Answer:
4 cm
Step-by-step explanation:
Volume is given by area of cross section * height
_______________________________
For condition 1
height = 12 cm
base for area of cross section is 5*8
that is length 8 cm and width 5 cm
thus area of cross section = 5*8 = 40 cm square
volume of milk = area of cross section* height of milk = 40*12 = 480 cm cube.
_______________________________________________
now milk is turned such that base of area of cross section will
15 by 8
that is length: 15 cm and width : 8 cm
thus area of cross section = 15*8 = 120 cm square
let the depth of milk be x
thus, volume of milk = area of cross section* height of milk = 120*x
= 120x cm cube
Since milk is in the same container , its volume before and after the change of alignment of container will remain same
thus
120x cm cube = 480 cm
=> x = 480/120 = 4
Thus, depth under given situation will be 4 cm.
PQRS is a parallelogram. Find the values of a and b. Solve for the value of c, if c=a+b.
Answer:
i. a = 7
ii. b = 7
iii. c = 14
Step-by-step explanation:
1. In a parallelogram, the pair of opposite sides are equal, thus;
6a + 10 = 8a -4
4 + 10 = 8a - 6a
14 = 2a
Divide both sides by 2,
a = 7
2. <SPQ + <PSR = [tex]180^{0}[/tex]
(18b - 11) + (9b + 2) = [tex]180^{0}[/tex]
18b + 9b + 2 -11 = [tex]180^{0}[/tex]
27b -9 = [tex]180^{0}[/tex]
27b = [tex]180^{0}[/tex] + [tex]9^{0}[/tex]
27b = [tex]189^{0}[/tex]
Divide both sides by 27,
b = 7
Therefore,
c = a + b
= 7 + 7
= 14
c = 14
What is the equation of the line that passes through the point (6,14) and is parallel to the line with the following equation? y=-4/3x-1
Answer:
[tex]\displaystyle \boxed{y = -1\frac{1}{3}x + 22}[/tex]
Step-by-step explanation:
Parallel Equations have SIMILAR RATE OF CHANGES [SLOPES], so keep [tex]\displaystyle -\frac{4}{3}[/tex]as is and do this:
14 = −4⁄3[6] + b
14 = −8 + b
+ 8 + 8
_________
[tex]\displaystyle 22 = b \\ \\ y = -1\frac{1}{3}x + 22[/tex]
I am joyous to assist you at any time.
Simplify 3 x times the fraction 1 over x to the power of negative 4 times x to the power of negative 3.
Answer:
3x^2
Step-by-step explanation:
Given:
(3x) * {(1/x)^-4 }* (x^-3)
=(3x) * {1 ÷ (1/x)^4} * {1/x^3}
=(3x) * {1(x/1)^4} * (1/x^3)
=(3x) * (x^4) * (1/x^3)
=(3x) (x^4) (1) / x^3
Multiply the denominators
=3x^5 / x^3
Can also be written as
=3*x*x*x*x*x / x*x*x
Divide the x
= 3*x*x / 1
=3x^2
1. Which monomial has the same degree as 6a2b8c? A 18t8 B 12p6q5 C 9a5b3c2 D 6w4x2y3z3
Answer: "B. [tex]12p^6q^5[/tex]
Step-by-step explanation:
The given monomial : [tex]6a^2b^8c[/tex]
Degree of this monomial = Sum of powers of variables=2+8+1= 11
Let's check all the options
A [tex]18t^8[/tex]
Degree = 8
B [tex]12p^6q^5[/tex]
Degree = 6+5 =11
C [tex]9a^5b^3c^2[/tex]
Degree = 5+3+2=10
D [tex]6w^4x^2y^3z^3[/tex]
Degree =4+2+3+3=12
We can see that only option B has degree 11.
So, the monomial has the same degree as [tex]6a^2b^8c[/tex] is "B. [tex]12p^6q^5[/tex] "
Boomer, the dog, eats 3\2 of dog food each week. How many grams of dog food will Boomer eat in 4weeks?'
Answer:
6 grams
Step-by-step explanation:
(3/2)*4 = 12/2 = 6
Answer:
[tex]\boxed{\sf 6 \ grams \ of \ food}[/tex]
Step-by-step explanation:
1 week = [tex]\frac{3}{2} g\ of \ the \ food[/tex]
Multiplying both sides by 4
4 weeks = [tex]\frac{3}{2} * 4[/tex]
4 weeks = 3 * 2 g of the food
4 weeks = 6 g of food
high reward low risk claim ur prize and help with math
the two lines are parallel, the angle they make should be equal and one angle is common so the triangles are similar by AAA.
Now the ratio of sides are [tex] \frac{20+8}{20}=\frac{x+18}{x}[/tex]
use divideno, [tex]\frac8{20}=\frac{18}x[/tex]
and then inverse the whole equation to get [tex]x=20\times\frac{18}{8} \implies x= 45[/tex]
Answer:
[tex]\Large \boxed{\mathrm{B) \ 45}}[/tex]
Step-by-step explanation:
We can solve the problem using ratios.
[tex]\displaystyle \frac{x}{20} =\frac{x+18}{20+8}[/tex]
Cross multiply.
[tex]20(x+18)=x(20+8)[/tex]
Expand brackets.
[tex]20x+360=28x[/tex]
Subtract 20x from both sides.
[tex]360=8x[/tex]
Divide both sides by 8.
[tex]45=x[/tex]
Triangle A″B″C″ is formed by a reflection over y = −3 and dilation by a scale factor of 2 from the origin. Which equation shows the correct relationship between ΔABC and ΔA″B″C″? coordinate plane with triangle ABC at A negative 3 comma 3, B 1 comma negative 3, and C negative 3 comma negative 3
Answer:
Option (3)
Step-by-step explanation:
This question is not complete; here is the complete question.
Triangle A″B″C″ is formed by a reflection over y = −3 and dilation by a scale factor of 2 from the origin. Which equation shows the correct relationship between ΔABC and ΔA″B″C″?
Coordinates of the vertices of the triangle ABC are,
A(-3, 3), B(1, -3) and C(-3, -3)
When triangle ABC is reflected over y = -3
Coordinates of the image triangle A'B'C' will be.
A(-3, 3) → A'(-3, -9)
B(1, -3) → B'(1, -3)
C(-3, -3) → C'(-3, -3)
Further ΔA'B'C' is dilated by a scale factor of 2 about the origin then the new vertices of image triangle A"B"C" will be,
Rule for the dilation will be,
(x, y) → (kx, ky) [where 'k' is the scale factor]
A'(-3, -9) → A"(-6, -18)
B'(1, -3) → B"(2, -6)
C'(-3, -3) → C"(-6, -6)
Length of AB = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
= [tex]\sqrt{(-3-1)^2+(3+3)^2}[/tex]
= [tex]\sqrt{52}[/tex]
= [tex]2\sqrt{13}[/tex]
Length of A"B" = [tex]\sqrt{(-6-2)^2+(-18+6)^2}[/tex]
= [tex]\sqrt{64+144}[/tex]
= [tex]\sqrt{208}[/tex]
= [tex]4\sqrt{13}[/tex]
Therefore, [tex]\frac{\text{AB}}{\text{A"B"}}=\frac{2\sqrt{13}}{4\sqrt{13}}[/tex]
[tex]\frac{\text{AB}}{\text{A"B"}}=\frac{\sqrt{13}}{2\sqrt{13}}[/tex]
[tex]AB(2\sqrt{13})=A"B"(\sqrt{13})[/tex]
Option (3) is the answer.
x-6/2=2x/7 solve the equation
Answer:
x-6/2=2x/7
7x-42=4x
7x-4x=42
3x= 42
X = 42/3
the cylindrical part of an architectural column has a height of 305 cm and a diameter of 30 cm find the volume of the cylindrical part of the column.use 3.14 for pi and round youre answer to the nearest cubic centimete if needed.
Answer:
215483 cm³
Step-by-step explanation:
Formula for volume of a cylinder = πr² · h
radius = 1/2diameter
1. Set up the equation
(3.14)(15²)(305)
2. Solve
215482.5
rounded to the nearest cubic centimeter = 215483 cm³
Answer:
215483 cm³
Step-by-step explanation:
credit goes to person up top
If Y varies directly as x
write down the equation
connecting y and x. If y = 10
when x=5, find the value
of y when x= 16
Answer:
32
Step-by-step explanation:
If y is 2 times as much as x, then 1 = 2
5 x 3 = 15 + 1 = 16
10 x 3 = 30 + 2 = 32, or 16 x 2 = 32
Please tell me if I'm wrong.
A student decided to research primate psychology for their science project. They measured how long it took gorillas to adapt to their new habitat when moved from one zoo to another. They measured how long it took the new gorilla to interact regularly (more than 3 times per day) with the gorillas that already live there. Seven different cases were examined and the data collected. What can be said about the data?
The question is not complete, so i have attached it.
Answer:
Option A - The data may not be reliable because there is an outlier.
Step-by-step explanation:
Looking at the question attached and the number of the gorrila vis - a - vis the time to interact, we can see that majority of the time to interact falls between 2.5 and 3.4.
However, we have a time of 8.3 days which is for gorrila 3.
This 8.3 is far higher than the range of the other values. Thus, we have an outlier because an outlier is a value is much more smaller or larger than most of the other values in a set of given data.
Thus, the data may not be reliable because there is an outlier.
given the mapping f:x-7x-2, determine f(2)
Answer:
Value of F(2) = 12
Step-by-step explanation:
Given:
F(x) = 7x - 2
Find:
Value of F(2)
Computation:
F(x) = 7x - 2
putting x = 2
f(2) = 7(2) -2
f(2) = 14 - 2
f(2) = 12
So, Value of F(2) = 12
The common difference of an ap is -2 find its sum of first term is hundred and last term is minus 10
Answer:
The sum of the arithmetic progression is 2520
Step-by-step explanation:
The sum, Sₙ, of an arithmetic progression, AP, is given as follows;
[tex]S_{n}=\dfrac{n}{2}\cdot \left (2\cdot a+\left (n-1 \right )\cdot d \right )[/tex]
Where;
n = The nth term of the progression
a = The first term = 100
d = The common difference = -2
Given that the last term = -10, we have;
-10 = 100 + (n - 1) ×(-2)
n = (-10 - 100)/(-2) + 1 = 56
Therefore, the sum of the 56 terms of the arithmetic progression is [tex]S_{56}=\dfrac{56}{2}\cdot \left (2\cdot 100+\left (56-1 \right )\cdot (-2) \right )[/tex]
Which gives;
[tex]S_{56}={28}\cdot \left (200-\left 110 \right ) = 2520[/tex]
Complete the recursive formula of the arithmetic sequence -15, -11, -7, -3,...−15,−11,−7,−3,...minus, 15, comma, minus, 11, comma, minus, 7, comma, minus, 3, comma, point, point, point.
Answer:
c(1) = -15
c(n) = c(n - 1) + 4
Step-by-step explanation:
Given arithmetic sequence is,
-15, -11, -7, -3...........
Common difference between each successive and previous term is,
d = -11 - (-15)
= -11 + 15
= 4
Since recursive formula of the arithmetic sequence is represented by,
a₁ = First term of the sequence
a(n) = a(n - 1) + d
where a(n) is the nth term and a(n-1) is the previous term of the nth term.
Form the given sequence,
c₁ = -15
c(n) = c(n - 1) + 4