Answer:
38.6 cm
Step-by-step explanation:
add all of the sides up to get your perimeter
Let S be a sample of size 31 from a normally distributed population Omega . It is given that the average of the data in S is 120 and the standard deviation is 18. Construct a 90% confidence interval [a, b] for the population mean based on the data in the sample.
Answer:
48 NO seña hfjxsmisns sisbxbd
Step-by-step explanation:
nzhejsbxbddndbhwksdyanvxydjd4mnnneknwnennnnnnMột đài khí tượng thủy văn muốn xem xét khả năng dự báo thời tiết của mình. Từ số liệu thống kê chỉ ra rằng: xác suất dự báo có nắng trong ngày không mưa là 0,95; có nắng trong ngày mưa là 0,8; xác suất một ngày sẽ không mưa là 0,6. a. Tính xác suất dự báo ngày sẽ có nắng. b. Biết đã có dự báo là ngày có nắng, tính xác suất để ngày đó là ngày không mưa.
Answer:
ask in English then I can help u
(d) (8x2 + 7y2 – z2 + 2yz + 3xz – 5xy) * (2x – 3y) vertical method
Answer:
(8x²+7y²–z²+2yz+3xz–5xy) × ( 2x–3y)
= (16x³+14xy²–2z²x+4yzx+6x²z–10x²y –24yx²–21y³+3z²y–6y²z–9xzy+15xy²)
=( 16x³+29xy²–2z²x–5xyz+6x²z–34x²y–21y³+3z²y–6y²z)
[tex] = 16 {x}^{3} - 21 {y}^{3} - 2 {z}^{2}x + 3 {z}^{2} y - 5xyz - 6 {y}^{2} z + 6 {x}^{2} z - 34 {x}^{2} y+ 29x {y}^{2} [/tex]
I hope I helped you^_^
The mass varies directly as the Kinetic energy (K) and inversely as the square of the velocity (V). if the kinetic energy is 80 Joules and the velocity is 4 meters per second, then the mass is 10 kilograms. Express the mass as a function of kinetic energy and velocity.
Answer:
m = [tex]\frac{2K}{v^2}[/tex]
Step-by-step explanation:
Given mass (m ) varies directly as K and inversely as v² then the equation relating them is
m = [tex]\frac{kK}{v^2}[/tex] ← k is the constant of variation
To find k use the condition m = 10 when K = 80 and v = 4 , then
10 = [tex]\frac{80k}{4^2}[/tex] = [tex]\frac{80k}{16}[/tex] ( multiply both sides by 16 to clear the fraction )
160 = 80k ( divide both sides by 80 )
2 = k
m = [tex]\frac{2K}{v^2}[/tex] ← equation of variation
The expression of mass as a function of kinetic energy and velocity is m = 2K/V².
What is an expression?Expressions are defined as mathematical statements that have a minimum of two terms containing variables or numbers.
We have been given that the mass varies directly as the Kinetic energy (K) and inversely as the square of the velocity (V).
m ∝ K/V²
m = cK/V²
Here c is the constant of variation,
If the kinetic energy is 80 Joules and the velocity is 4 meters per second, then the mass is 10 kilograms.
We have to determine the value of c
Here m = 10 , K = 80 and V = 4 , then
Substitute the values in m = cK/V²
10 = c(80)/4²
10 = c(80)/16
10 = 5c
c = 10/5
c = 2
Substitute the value of c = 2 in the equation of variation,
⇒ m = 2K/V²
Hence, the expression of mass as a function of kinetic energy and velocity is m = 2K/V².
Learn more about the expressions here:
brainly.com/question/13947055
#SPJ2
Dylan has a coworker who is always showing up late and then not finishing his work on time. It's frustrating the other members of the team. What can he do that might help the situation? a) Complain about the coworker to other team members O b) Ask his coworker if he understands his job responsibilities c) Tell his boss that the coworker is slacking off O d) Complete his coworker's work for him
the cost of 1 kg tomato is RS . 75.Find the cost of 14 kg
Answer:
Cost of 1kg tomato=rs.75
Cost of 14kg tomato=(75×14)
rs.1050
Help on 3,5,7,9,11,13.15,17, please thank you
Answer:
3. 6a+60
5. 25+5w
7. 90-10t
11. 4.5-12c
13. f-2
15. 12z+1.5
Step-by-step explanation:
3.
6(a+10)
Multiply 6 by both factors in the parentheses, in this case, a and 10.
6*a = 6a
6*10 = 60
6(a+10) = 6a + 60
I only put the step- by- step explanation for #3, but you should be able to figure the rest out with that.
A particle is moving such that its height h at time t is given by h(t) = 2 + 8t - 3t^2 + 1/5t^3. The average velocity of the particle on the period [0,3] is
[tex]\\ \Large\sf\longmapsto h(t)[/tex]
[tex]\\ \Large\sf\longmapsto 2+8t-3t^2+\dfrac{1}{5}t^3[/tex]
[tex]\\ \Large\sf\longmapsto 2+8(3)-3(3)^2+\dfrac{1}{5}(3)^3[/tex]
[tex]\\ \Large\sf\longmapsto 2+24-3(9)+\dfrac{27}{5}[/tex]
[tex]\\ \Large\sf\longmapsto 26-27+5.4[/tex]
[tex]\\ \Large\sf\longmapsto -2+5.4[/tex]
[tex]\\ \Large\sf\longmapsto h(t)=3.4m[/tex]
Which expression is equivalent to (4x^(3)y^(5))(3x^(5)y)^(2)
Answer:
[tex](4x^3y^5)(3x^5y)^2 = 36*x^{13}y^7[/tex]
Step-by-step explanation:
Given
[tex](4x^3y^5)(3x^5y)^2[/tex]
Required
The equivalent expression
We have:
[tex](4x^3y^5)(3x^5y)^2[/tex]
Expand
[tex](4x^3y^5)(3x^5y)^2 = 4x^3y^5*9x^{10}y^2[/tex]
Further expand
[tex](4x^3y^5)(3x^5y)^2 = 4*9*x^3*x^{10}y^5*y^2[/tex]
Apply laws of indices
[tex](4x^3y^5)(3x^5y)^2 = 36*x^{13}y^7[/tex]
Which of the relations given by the following sets of ordered pairs is a function?
o {(5,2), ( - 4, 2), (3,6), (0,4), (- 1, 2)}
o {(5, 4), (5, 6), (5,8), (5, 10), (5, 12)}
{(-3, - 2), ( - 2, – 1), (0, - 1), (0, 1), (1, 2)}
{(7,3), ( – 6,8), ( – 3,5), (0, – 3), (7, 11)}
9514 1404 393
Answer:
(a) {(5, 2), (-4, 2), (3, 6), (0, 4), (-1, 2)}
Step-by-step explanation:
The only relation with no repeated x-values is the first one. The first relation is a function.
find the missing length indicated
Answer:
192
Step-by-step explanation:
geometric mean theorem :
with p and q being the segments of the Hypotenuse, then
h = x = sqrt(p×q)
p = 144
q = 400-144 = 256
h = x = sqrt(144×256) = 12×16 = 192
A construction crane lifts a bucket of sand originally weighing 145 lbs at a constant rate. Sand is lost from the bucket at a constant rate of .5lbs/ft. How much work is done in lifting the sand 80ft?
Answer: [tex]10,000\ lb.ft[/tex]
Step-by-step explanation:
Given
Initial weight of the bucket is [tex]145\ lb[/tex]
It is lifted at constant rate and rate of sand escaping is [tex]0.5\ lb/ft[/tex]
At any height weight of the sand is [tex]w(h)=145-0.5h[/tex]
Work done is given by the product of applied force and displacement or the area under weight-displacement graph
from the figure area is given by
[tex]\Rightarrow W=\int_{0}^{80}\left ( 145-0.5h \right )dh\\\\\Rightarrow W=\left | 145h-\dfrac{0.5h^2}{2} \right |_0^{80}\\\\\Rightarrow W=\left [ 145\times 80-\dfrac{0.5(80))^2}{2} \right ]-0\\\\\Rightarrow W=11,600-1600\\\\\Rightarrow W=10,000\ lb.ft[/tex]
a recent survey shows that 66% of college students have a cat and 37% have a HBO subscription. Assuming these two events are independent, what is the probability that a randomly selected student has neither a cat nor HBO
Answer:
[tex]P(C'\ and\ H') =0. 2178[/tex]
Step-by-step explanation:
Let
[tex]C \to[/tex] Student with cat
[tex]H \to[/tex] Student has HBO sub
[tex]P(C) = 66\% \\ P(H) = 37\%[/tex]
Required
[tex]P(C'\ and\ H')[/tex]
This is calculated as:
[tex]P(C'\ and\ H') = P(C') * P(H')[/tex]
Using complement rules, we have:
[tex]P(C'\ and\ H') = [1 - P(C)] * [1 - P(H)][/tex]
So, we have:
[tex]P(C'\ and\ H') = [1 - 66\%] * [1 - 37\%][/tex]
[tex]P(C'\ and\ H') = [33\%] * [66\%][/tex]
[tex]P(C'\ and\ H') =0. 2178[/tex]
The final price of the textbook for an English literature course is 13.5% more than the listed price when tax and shipping costs are included. If the listed price is $147, what is the final price of the textbook?
(Round to the nearest dollar.)
Answer:
The final price of the textbook rounded to the nearest dollar is $167
Step-by-step explanation:
To solve this problem, we need to find out what 13.5% of $147 equals.
13.5% = 0.135
0.135 x $147 = $19.845
$147 + 19.845 = 166.845
Round to the nearest dollar to get $167
1. Find the volume of the shipping box using the two methods and show your work plzzzzzzzz i neeeeeeeeeeeeeed help
Step-by-step explanation:
Measure the width, length and height of the shipping box in inches. Multiply the width, length and height of the box to calculate its volume in cubic inches. For example, if the box is 20 inches wide, 24 inches long and 16 inches high, then the volume is (20)(24)(16) = 7,680 cubic
Answer:
The volume of the shipping box would be 36 9/16
Step-by-step explanation:
One method to find the volume of the shipping box would be (l)(w)(h)
one we plug in our dimensions the equation would become 3 1/4 x 3 x 3 3/4
To simplify this we would first
Multiply
3 1/4 x 3 x 3 3/4 = 39/4 x 3 3/4
The bolded parts are the pieces we are working on
3 1/4 as an improper fraction is 13/4
13/4 x 3 = 13 x 3/4 = 39/4
- The second step would be to
Convert the mixed number to an improper fraction.
3 3/4 = ( 3 × 4 ) / 4 + 3/4 = 12 + 3 / 4 = 15/4
Now we have to Multiply
39/4 x 15/4 = 39 x 15 / 4 x 4 = 585/16
Lastly, we have to simplify
585/16 = 36 9/16
Find the x- and y-intercept of the line
X+4y=36
Based on a random sample of 50, a 95% confidence interval for the population proportion was computed. Holding everything else constant, which of the following will reduce the length of the confidence interval by half? (CHECK ALL THAT APPLY): A. Quadruple the sample size. B. Change the confidence level to 68%. C. Double the sample size. D. Change the confidence level to 99.7%. E. Decrease the sample proportion by half.
The length of the confidence interval is the margin of error, which is the ratio of the standard deviation and the square root of sample size. Hence, to reduce the length of confidence interval by half, Quadruple the sample size.
Recall :
Margin of Error = σ/√nEvaluating an hypothetical scenario :
Let standard deviation, σ = 2
Sample size = 50
Margin of Error = 2/√50 = 0.554
Using Quadruple of the sample size : (50 × 4) = 200 samples
Margin of Error = 2/√200 = 0.277(0.227 ÷ 0.554) = 0.5
Therefore, increasing the sample size, reduces the margin of error. Hence, using quadruple the sample size, will reduce the margin of error by half.
Learn more : https://brainly.com/question/13403969
If (x^2−1)/(x+1) = 3x + 5, then x + 3 =
(A) -3
(B) -2
(C) 0
(D) 2
(E) 4
Use the point-slope form from the previous question and fill-in the following table of values.
The point-slope equation went through the following 2 points: (0, -1) and (1, 2)
(0, -1)
(1, 2)
(2, )
(3, )
Answer:
Step-by-step explanation:
Slope of line through (0,-1) and (1,2) = (-1 - 2)/(0 - 1) = 3
Point-slope equation for line of slope 3 that passes through (0,-1):
y+1 = 3(x-0)
When x = 2:
y+1 = 3(2-0)
y = 3·2 - 1 = 5
When x = 3:
y+1 = 3(3-0)
y = 3·3-1 = 8
Domain and range of g(x)= 5x-3/2x+1
Solve for domain and range?
The principle
P=6000 A=6810 T=3 years
Answer:
incomplete question
Step-by-step explanation:
that is what is wrong with your question
Answer:
r = 4.3%
Step-by-step explanation:
6810= 6000(x)^3
6810/6000= (x)^3
x = 1.043114431
r = 043114431
Write the expression as a single trigonometric function.
cos 5x cos 6x- sin 5x sin 6x
Answer:
[tex]\cos(11x)[/tex]
Step-by-step explanation:
Given
[tex]\cos 5x\ \cos 6x- \sin\ 5x \sin 6x[/tex]
Required
Express as a single function
In trigonometry, we have:
[tex]\cos(A + B) = \cos A\cos B - \sin A \sin B[/tex]
By comparison, we have
[tex]\cos(5x + 6x) = \cos 5x\cos 6x - \sin 5x \sin 6x[/tex]
[tex]\cos(11x) = \cos 5x\cos 6x - \sin 5x \sin 6x[/tex]
help with math it would help with summer school
Answer:
[tex]A). \ \ \frac{(72\pi + 9\pi )}{4} \ in^2[/tex]
Step-by-step explanation:
Given;
radius of the circle, r = 9 inches
the part of the circle cut out = one-forth of the complete circle
the angle of the sector cut out θ= ¹/₄ x 360 = 90⁰
Area of the complete circle = πr² = π x 9² = 81π in²
Area of the sector cut out = [tex]= \frac{\theta }{360} \pi r^2 = \frac{90}{360} \pi (9^2) = \frac{1}{4} \times 81\pi = \frac{81 \pi}{4} = \frac{(72\pi + 9\pi)}{4} \ in^2[/tex]
Therefore, the only correct option is A. [tex]\frac{(72\pi + 9\pi )}{4} \ in^2[/tex]
Erica’s family is moving away from California. They decided to have a moving sale and sell each item for 70% off the price they originally paid for it. The sofa had an original price of $799, and the love seat had an original price of $549. What is the total cost of both items after the discount?
Find the sale price by multiplying the original price by 70% then add the two prices together to get the total.
799 x 0.70 = 559.30
549 x 0.70 = 384.30
Total: 559.30 + 384.30 = $943.60
The fuel efficiency of a vehicle is 28 miles per gallon and gasoline cost 2.25 per gallon. What is the cost per mile to drive the vehicle?
Answer:
$.08 per mile
Step-by-step explanation:
$2.25 gallon
------------ * ---------------
gallon 28 miles
$2.25
-------------
28 miles
$.080357143 per mile
Rounding to the nearest cent
$.08 per mile
A $22,000 loan was taken out. If $24,805 is due at the end of the loan after being compounded daily at 2.5%, how many
years was the loan for? (Round to the nearest tenth of a year)
Provide your answer below
9514 1404 393
Answer:
4.8 years
Step-by-step explanation:
Solving the compound interest formula for the number of years gives ...
t = log(A/P)/(n·log(1 +r/n))
where principal P invested at rate r compounded n times per year produces value A after t years.
t = log(24805/22000)/(365·log(1 +0.025/365)) ≈ 4.800
The loan was for 4.8 years.
what is the tan invers of 3i/-1-i
z = 3i / (-1 - i )
z = 3i / (-1 - i ) × (-1 + i ) / (-1 + i )
z = (3i × (-1 + i )) / ((-1)² - i ²)
z = (-3i + 3i ²) / ((-1)² - i ²)
z = (-3 - 3i ) / (1 - (-1))
z = (-3 - 3i ) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(z) and Im(z) are negative. But arctan only returns angles between -π/2 and π/2. So we have
arg(z) = arctan((-3/2)/(-3/2)) - π
arg(z) = arctan(1) - π
arg(z) = π/4 - π
arg(z) = -3π/4
where I'm taking arg(z) to have a range of -π < arg(z) ≤ π.
Convert 2546 in base 10 to base 5
Answer:
40141
Step-by-step explanation:
Please help!!!!
CE is tangent to this circle, CD is a radius and ECB=48 what is BAC
Answer:
48degrees
Step-by-step explanation:
From the circle geometry shown, traingle BDC is an isosceles triangle which shows means that their base angels are the same. Hence;
<B = <C
<CBD + <BCD + <D = 180
<BCD + <BCD + <D =180
2<BCD + <BDC = 180
Get <BCD;
<BCD+ <ECB = 90
<BCD + 48 = 90
<BCD = 90 - 48
<BCD = 42degrees
Get <BDC
2<BCD + <BDC = 180
2(42)+ <BDC = 180
84 + <BDC = 180
<BDC = 180 - 84
<BDC = 96
Since angle at the centre is twice that at the circumference, then;
<BAC = 1/2(<BDC )
<BAC = 96/2
<BAC = 48degrees
Find the area of a triangle with legs that are: 12 m, 15 m, and 9 m.
Answer:
108 meters squared or m^2
Step-by-step explanation:
* means multiply
15 is probably hypotenuse because its the longest
12 and 9 are probably base and height
area = base * height
area = 12 * 9
area = 108
Answer:
54m^2
Step-by-step explanation: