Answer: SORRY NEED AN ACCOUNT ON - 10
Step-by-step explanation:
To resolve the proposed issue, an explanation is needed in which the subject is addressed
Identify the domain of the function shown in the graph.
A. -5
B. x> 0
C. 0
D. x is all real numbers.
Determine la razón de la siguiente progresión geométrica: 81,27,9,3,1,....
Answer:
BẠN BỊ ĐIÊN À
Step-by-step explanation:
CÚT
The number of typing errors made by a typist has a Poisson distribution with an average of three errors per page. If more than three errors appear on a given page, the typist must retype the whole page. What is the probability that a randomly selected page does not need to be retyped
Answer:
0.6472 = 64.72% probability that a randomly selected page does not need to be retyped.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
Poisson distribution with an average of three errors per page
This means that [tex]\mu = 3[/tex]
What is the probability that a randomly selected page does not need to be retyped?
Probability of at most 3 errors, so:
[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]
In which
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]
[tex]P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494[/tex]
[tex]P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240[/tex]
[tex]P(X = 3) = \frac{e^{-3}*3^{3}}{(3)!} = 0.2240[/tex]
Then
[tex]P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0498 + 0.1494 + 0.2240 + 0.2240 = 0.6472[/tex]
0.6472 = 64.72% probability that a randomly selected page does not need to be retyped.
a+b=60000
[tex]\frac{a}{b}=\frac{4}{1}[/tex]
a=?
b=?
Answer: a = 25.67
Step-by-step explanation:
What is the percent increase from 250 to 900?
1. Write the percent change formula for an increase.
Percent Increase =
Amount of Increase
Original Amount
2. Substitute the known quantities for the amount of the increase and the original amount.
Percent Increase =
900 − 250
250
3. Subtract.
Percent Increase =
650
250
Answer:
260% is the correct answer
Step-by-step explanation:
i hope i helped
please help, it’s urgent !!!
D
A
B
C
for more explanation please don't hesitate to just respond
Log6^(4x-5)=Log6^(2x+1)
Answer:
[tex]x = 3[/tex]
Step-by-step explanation:
Given
[tex]\log6^{(4x-5)} =\log6^{(2x+1)}[/tex]
Required
Solve for x
We have:
[tex]\log6^{(4x-5)} =\log6^{(2x+1)}[/tex]
Remove log6 from both sides
[tex](4x-5) = (2x+1)[/tex]
Collect like terms
[tex]4x - 2x = 5 + 1[/tex]
[tex]2x = 6[/tex]
Divide by 2
[tex]x = 3[/tex]
according to the fundemental theorem of algebra, how many roots exist for the polynomial function? f(x) = (x^3-3x+1)^2
Answer:
6
Step-by-step explanation:
First, we can expand the function to get its expanded form and to figure out what degree it is. For a polynomial function with one variable, the degree is the largest exponent value (once fully expanded/simplified) of the entire function that is connected to a variable. For example, x²+1 has a degree of 2, as 2 is the largest exponent value connected to a variable. Similarly, x³+2^5 has a degree of 2 as 5 is not an exponent value connected to a variable.
Expanding, we get
(x³-3x+1)² = (x³-3x+1)(x³-3x+1)
= x^6 - 3x^4 +x³ - 3x^4 +9x²-3x + x³-3x+1
= x^6 - 6x^4 + 2x³ +9x²-6x + 1
In this function, the largest exponential value connected to the variable, x, is 6. Therefore, this is to the 6th degree. The fundamental theorem of algebra states that a polynomial of degree n has n roots, and as this is of degree 6, this has 6 roots
What is the endpoint of a line segment if the midpoint M( – 3, 4) and the other endpoint is E(7, – 2)?
Answers
(– 13, 10)
(10, – 13)
(– 1, 2)
(2, – 1)
9514 1404 393
Answer:
(-13, 10)
Step-by-step explanation:
If M is the midpoint of segment DE, then ...
D = 2M -E
D = 2(-3, 4) -(7, -2) = (2(-3)-7, 2(4)+2) = (-13, 10)
The other end point is (-13, 10).
Help please!!!!!A student needs to select 3 books from 3 different mathematics, 3 different physics and 1 history book. what is the probability that one of them is mathematics and the other 2 are either physics or history books ? A. 3/15 B.9/25 C. 15/35 D. 18/35
===========================================
Explanation:
There are 3 ways to select the single math book and 4*3/2 = 12/2 = 6 ways to pick the two other books that are either physics or history (order doesn't matter). This is effectively because we have 3+1 = 4 books that are either physics or history, and we're using the nCr combination formula.
Overall, there are 3*6 = 18 ways to select the three books such that one is math, and the other two are either physics or history.
-------------------
There are 3+3+1 = 7 books total. Since we're selecting 3 of them, we use the nCr formula again and you should get 35.
Or you could note how (7*6*5)/(3*2*1) = 210/6 = 35
This says there are 35 ways to select any three books where we can tell the difference between any subject (ie we can tell the difference between the math books for instance).
-------------------
We found there are 18 ways to get what we want out of 35 ways to do the three selections. Therefore, the answer as a fraction is 18/35
How many tens are in 6 hundreds
Answer:
60
Step-by-step explanation:
10 x 6 = 60
Hope this helped! :)
use the figure to find y
Answer:
y = 3
Step-by-step explanation:
6sin(30) = 3
A bank records deposits as positive numbers and withdrawals as negative numbers.
Mike withdrew $60 from his bank account 3 times.
what is the change in mikes account balance after all 3 withdrawals?
Verify that the indicated family of functions is a solution of the given differential equation. Assume an appropriate interval I of definition for each solution.
d^2y/ dx^2 − 6 dy/dx + 9y = 0; y = c1e3x + c2xe3x When y = c1e3x + c2xe3x,
y'' - 6y' + 9y = 0
If y = C₁ exp(3x) + C₂ x exp(3x), then
y' = 3C₁ exp(3x) + C₂ (exp(3x) + 3x exp(3x))
y'' = 9C₁ exp(3x) + C₂ (6 exp(3x) + 9x exp(3x))
Substituting these into the DE gives
(9C₁ exp(3x) + C₂ (6 exp(3x) + 9x exp(3x)))
… … … - 6 (3C₁ exp(3x) + C₂ (exp(3x) + 3x exp(3x)))
… … … + 9 (C₁ exp(3x) + C₂ x exp(3x))
= 9C₁ exp(3x) + 6C₂ exp(3x) + 9C₂ x exp(3x))
… … … - 18C₁ exp(3x) - 6C₂ (exp(3x) - 18x exp(3x))
… … … + 9C₁ exp(3x) + 9C₂ x exp(3x)
= 0
so the provided solution does satisfy the DE.
Select the correct answer.
Each statement describes a transformation of the graph of y=x. Which statement correctly describes the graph of y= x - 13?
OA. It is the graph of y= x translated 13 units to the right.
OB. It is the graph of y=xwhere the slope is decreased by 13.
It is the graph of y= x translated 13 units to the left.
OD. It is the graph of y= x translated 13 units up.
ОС.
minus sign ironically makes it go to the right
because the function crosses the y axis at -13
It is the graph of y = x translated 13 units down is the statement describes a transformation of the graph of y=x.
What is Graph?Graph is a mathematical representation of a network and it describes the relationship between lines and points.
The equation y = x - 13 represents a transformation of the graph of y = x. To find the type of transformation, we have to compare the two equations and look for changes.
In the equation y = x - 13, we subtract 13 from the value of x.
This means that the graph of y = x is shifted 13 units downwards,
since every point on the graph has 13 subtracted from its y-coordinate.
Hence, It is the graph of y = x translated 13 units down is the statement describes a transformation of the graph of y=x.
To learn more on Graph click:
https://brainly.com/question/17267403
#SPJ7
The function ƒ(x) = (x − 1)^2 + 5 is not one-to-one. Find a portion of the domain where the function is one-to-one and find an inverse function.
The restricted domain for ƒ is ?
Answer:
f(x)=(x-1)^2+5 with domain x>1 and range y>5 has inverse g(x)=sqrt(x-5)+1 with domain x>5 and range y>1.
Step-by-step explanation:
The function is a parabola when graphed. It is in vertex form f(x)=a(x-h)^2+k where (h,k) is vertex and a tells us if it's reflected or not or if it's stretched. The thing we need to notice is the vertex because if we cut the graph with a vertical line here the curve will be one to one. So the vertex is (1,5). Let's restrict the domain so x >1.
* if x>1, then x-1>0.
* Also since the parabola opens up, then y>5.
So let's solve y=(x-1)^2+5 for x.
Subtract 5 on both sides:
y-5=(x-1)^2
Take square root of both sides:
Plus/minus sqrt(y-5)=x-1
We want x-1>0:
Sqrt(y-5)=x-1
Add 1 on both sides:
Sqrt(y-5)+1=x
Swap x and y:
Sqrt(x-5)+1=y
x>5
y>1
The elevation E, in meters, above sea level at which the boiling point of a certain liquid ist degrees Celsius is given by the function shown below. At what elevation is the boling point 99.5*7 100°?
E() - 1200(100-1) • 580(100 - 1)
At what elevation is the boiling point 99.5?
E (90.5*)=. meters
At what elevation is the boiling point 100"?
E(100*)-meters
Answer:
Given E(t)=1100(100-t)+580(100-t)^2
Put t = 99.5, we get
E(99.5)=1100(100-99.5)+580(100-99.5)^2
E(99.5)=1100(0.5)+580(0.5)^2
E(99.5)=1100(0.5)+580(0.25)
E(99.5)=550+145
E(99.5)=695m
Step-by-step explanation:
It can be concluded that -
E(99.5) = 695
E(100) = 0
What is expression?In mathematics, an expression or mathematical expression is a finite combination of symbols that is well-formed according to rules that depend on the context.
Mathematical symbols can designate numbers (constants), variables, operations, functions, brackets, punctuation, and grouping to help determine order of operations and other aspects of logical syntax.
Given is the function as follows -
E(t) = 1100(100 - t) + 580(100 - t)²
The given function is -
E(t) = 1100(100 - t) + 580(100 - t)²
At → E(99.5)
E(99.5) = 1100(100 - t) + 580(100 - t)²
E(99.5) = 1100(100 - 99.5) + 580(100 - 99.5)²
E(99.5) = 1100(0.5) + 580(0.5)²
E(99.5) = 550 + 145
E(99.5) = 695
At → E(100)
E(100) = 1100(100 - t) + 580(100 - t)²
E(100) = 1100(100 - 100) + 580(100 - 100)²
E(100) = 0
Therefore, it can be concluded that -
E(99.5) = 695
E(100) = 0
To solve more questions on expressions, visit the link below -
brainly.com/question/1041084
#SPJ2
Please help!!! Find the domain of the function y = 2 cot(5∕8x).
A) All real numbers except odd integer multiples of 8π∕5
B) All real numbers except 0 and integer multiples of 8π∕5
C) All real numbers except 0 and integer multiples of 4π∕5
D) All real numbers except odd integer multiples of 4π∕5
Answer:
B) All real numbers except 0 and integer multiples of 8π∕5
Step-by-step explanation:
Cotangent function:
The cotangent function is given by:
[tex]y = \cot{ax} = \frac{\cos{ax}}{\sin{ax}}[/tex]
Domain:
All real values except those at which:
[tex]\sin{ax} = 0[/tex]
The sine is 0 for 0 and all integer multiples of [tex]\frac{1}{a}[/tex]
In this question:
[tex]a = \frac{5}{8}[/tex], so the values outside the domain are 0 and the integer multiples of [tex]\frac{8}{5}[/tex]. Then the correct answer is given by option b.
Which of the following statements are correct? Select ALL that apply!
Select one or more:
O a. -1.430 = -1.43
O b. 2.36 < 2.362
O c.-1.142 < -1.241
O d.-2.33 > -2.29
O e. 2.575 < 2.59
O f. -2.25 -2.46
Please help me out really need it
Answer:
[tex]{ \tt{hypotenuse = { \boxed{5}}}} \\ { \tt{opposite = { \boxed{3}}}} \\ { \tt{adjacent = { \boxed{4}}}} \\ \\ { \tt{ \sin \angle R = \frac{{ \boxed{3}}}{{ \boxed{5}}} }} \\ \\ { \tt{ \cos \angle R = \frac{{ \boxed{4}}}{{ \boxed{5}}} }} \\ \\ { \tt{ \tan \angle R = \frac{ \boxed{3}}{{ \boxed{4}}} }}[/tex]
graph a circle with General form.x^2 +y^2+8x-12y+24=0
Answer:
jhshejwjabsgsgshshsnsjs
Answer:
Step-by-step explanation:
Put the equation into center-radius form.
x² + y² + 8x - 12y + 24 = 0
x² + y² + 8x - 12y = -24
(x²+8x) + (y²-12y) = -24
(x²+8x+4²) + (y²-12y+6²) = 4²+6²-24
(x+4)² + (y-6)² = 28
Center: (-4,6)
radius: √28
Two workers finished a job in 12 days. How long would it take each worker to do the job by himself if one of the workers needs 10 more days to finish the job than the other worker
Two workers finished a job in 7.5 days.
How long would it take each worker to do the job by himself if one of the workers needs 8 more days to finish the job than the other worker?
let t = time required by one worker to complete the job alone
then
(t+8) = time required by the other worker (shirker)
let the completed job = 1
A typical shared work equation
7.5%2Ft + 7.5%2F%28%28t%2B8%29%29 = 1
multiply by t(t+8), cancel the denominators, and you have
7.5(t+8) + 7.5t = t(t+8)
7.5t + 60 + 7.5t = t^2 + 8t
15t + 60 = t^2 + 8t
form a quadratic equation on the right
0 = t^2 + 8t - 15t - 60
t^2 - 7t - 60 = 0
Factor easily to
(t-12) (t+5) = 0
the positive solution is all we want here
t = 12 days, the first guy working alone
then
the shirker would struggle thru the job in 20 days.
Answer:7 + 17 = 24÷2 (since there are 2 workers) =12. Also, ½(7) + ½17 = 3.5 + 8.5 = 12. So, we know that the faster worker will take 7 days and the slower worker will take 17 days. Hope this helps! jul15
Step-by-step explanation:
can someone help me with this question
9514 1404 393
Answer:
local minima: at x=-1, x=3local minimum values: -2 and -1 (respectively)Step-by-step explanation:
A local minimum is where the curve stops going down and starts going up. It is the bottom of any U-shaped spot. Here, those are identified with dots at the coordinates (-1, -2) and (3, -1).
(a) the x-values at which f has a local minimum are -1 and 3.
(b) the local minimum values of f are -2 and -1 at those x-values.
X = The set of months in a year?
there are 12 set of months in a year
10% of 360 is how much more than 5% of 360
10% of 360 is 18 more than 5% of 360.
What is the percentage?The percentage is defined as ratio expressed as a fraction of 100.
What are Arithmetic operations?
Arithmetic operations can also be specified by the subtract, divide, and multiply built-in functions.
Given data as :
10% of 360
5% of 360
Firstly, we have to determine 10% of 360,
⇒ 10% of 360
⇒ (10/100)360
⇒ (0.10)360
So, 10% of 360 is 36.
⇒ 5% of 360
⇒ (5/100)360
⇒ (0.05)360
So, 5% of 360 is 18.
Since 10% of 360 is more than 5% of 360
So, substract 18 from 36, and
⇒ 36 - 18
⇒ 18
Hence, 10% of 360 is 18 more than 5% of 360.
Learn more about percentage here :
brainly.com/question/24159063
#SPJ2
Hi, help with question 18 please. thanks
Answer:
See Below.
Step-by-step explanation:
We are given the equation:
[tex]\displaystyle y^2 = 1 + \sin x[/tex]
And we want to prove that:
[tex]\displaystyle 2y\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right) ^2 + y^2 = 1[/tex]
Find the first derivative by taking the derivative of both sides with respect to x:
[tex]\displaystyle 2y \frac{dy}{dx} = \cos x[/tex]
Divide both sides by 2y:
[tex]\displaystyle \frac{dy}{dx} = \frac{\cos x}{2y}[/tex]Find the second derivative using the quotient rule:
[tex]\displaystyle \begin{aligned} \frac{d^2y}{dx^2} &= \frac{(\cos x)'(2y) - (\cos x)(2y)'}{(2y)^2}\\ \\ &= \frac{-2y\sin x-2\cos x \dfrac{dy}{dx}}{4y^2} \\ \\ &= -\frac{y\sin x + \cos x\left(\dfrac{\cos x}{2y}\right)}{2y^2} \\ \\ &= -\frac{2y^2\sin x+\cos ^2 x}{4y^3}\end{aligned}[/tex]
Substitute:
[tex]\displaystyle 2y\left(-\frac{2y^2\sin x+\cos ^2 x}{4y^3}\right) + 2\left(\frac{\cos x}{2y}\right)^2 +y^2 = 1[/tex]
Simplify:
[tex]\displaystyle \frac{-2y^2\sin x-\cos ^2x}{2y^2} + \frac{\cos ^2 x}{2y^2} + y^2 = 1[/tex]
Combine fractions:
[tex]\displaystyle \frac{\left(-2y^2\sin x -\cos^2 x\right)+\left(\cos ^2 x\right)}{2y^2} + y^2 = 1[/tex]
Simplify:
[tex]\displaystyle \frac{-2y^2\sin x }{2y^2} + y^2 = 1[/tex]
Cancel:
[tex]\displaystyle -\sin x + y^2 = 1[/tex]
Substitute:
[tex]-\sin x + \left( 1 + \sin x\right) =1[/tex]
Simplify. Hence:
[tex]1\stackrel{\checkmark}{=}1[/tex]
Q.E.D.
The lengths of the three sides of a triangle are 3, 15, and 16. Classify it as acute, obtuse, or right.
Answer:
Obtuse Scalene Triangle
Step-by-step explanation:
Sum of the squares of the smaller 2 sides < longest side squared = Obtuse Scalene Triangle
he ride a bike for 15 miles oer hour how many miles did he ride
I need the answer to this
Answer:
[tex]A)\:x<12[/tex]
[tex]5(x+5)<85\\5x+25<85\\5x<85-25\\5x<60\\x<12[/tex]
OAmalOHopeO
Answer:
x < 12.................................
Simplify to the extent possible
(logx16)(log2x)
Answer:
[tex]{ \tt{ = ( log_{x}16)( log_{2}x) }}[/tex]
Change base x to base 2:
[tex]{ \tt{ = (\frac{ log_{2}16}{ log_{2}x } )( log_{2}x)}} \\ \\ { \tt{ = log_{2}(16) }} \\ = { \tt{ log_{2}(2) }} {}^{4} \\ = { \tt{4 log_{2}(2) }} \\ = { \tt{4}}[/tex]