Answer:
ω = 3.1 rad/s
θ = 36° from vertical
Explanation:
I will ASSUME that the bob and string is acting as a pendulum.
Please understand that the string will break when the bob is at the lowest point of the swing where the vectors of gravity and centripetal acceleration align. It will NOT break at the angle of maximum inclination measured from vertical. This angle is only a component of the maximum potential energy that gets converted to maximum kinetic energy at the lowest point of the swing.
At the bottom of the swing, the string must support the weight of the bob plus supply the required centripetal acceleration.
F = mg + mω²R
F/m = g + ω²R
F/m - g = ω²R
ω = √((F/m - g)/R)
ω = √((3/0.220 - 9.8)/0.40)
ω = 3.09691...
ω = 3.1 rad/s
Potential energy will convert to kinetic energy
mgh = ½mv²
h = v²/2g
R - Rcosθ = v²/2g
R(1 - cosθ) = v²/2g
1 - cosθ = v²/2gR
cosθ = 1 - v²/2gR
cosθ = 1 - (Rω)²/2gR
cosθ = 1 - Rω²/2g
cosθ = 1 - 0.40(3.1²)/(2(9.8))
cosθ = 0.804267
θ = 36.46045...
θ = 36°
A mountain climber encounters a crevasse in an ice field. The opposite side of the crevasse is a height h lower, and is separated horizontally by a distance w. To cross the crevasse, the climber gets a running start and jumps in the horizontal direction. If the height of the crevasse increases but the width remains the same, then,
Select one:
O a. the minimum speed needed to cross the crevasse stays the same.
O b. the minimum speed needed to cross the crevasse will depend on the mass of the mountain climber.
O c. the minimum speed needed to cross the crevasse decreases.
O d. the minimum speed needed to cross the crevasse increases.
O e. the minimum speed needed to cross the crevasse will depend on the weight of the mountain climber.
 what is the difference between repelling and attracting
Answer:
Attracting means pulling toward you and repelling means pushing away
Explanation:
Answer: Repelling is when something will not connect with another object. The force will cause a repel between the two objects. Attracting is when something is attracted or being pulled to another object.
Explanation: Hope this helps!
Which scientist is credited with having the greatest contribution to early microscopy and was the first to observe and describe single-celled organisms?
Answer:
Antonie van Leeuwenhoek
Explanation:
What on earth is equal to 9.8m/s/s
Answer:
Acceleration due to gravity
Vesta is a minor planet (asteroid) that takes 3.63 years to orbit the Sun.
Calculate the average sun -Vesta distance
Using Kepler's third law, the average sun -Vesta distance is 2.36 AU.
According to Kepler's laws, the square of the period of revolution of planets are proportional to the cube of their average distances from the sun. Hence, we can write; [tex]T^{2} =r^{3}[/tex]
Where;
T = period of the planet
r = average distance of the planet
When;
T = 3.63 years
r = [tex]\sqrt[3]{T^2}[/tex]
r = [tex]\sqrt[3]{(3.63)^2}[/tex]
r = 2.36 AU
Learn more:https://brainly.com/question/14281129
Option B.
Consider a setup in which two springs are attached to a mass in parallel.
Convince yourself that in this setup, the compression of each spring must be the same. Using
this fact, derive the effective spring constant for springs in parallel
This is asking, "ll1 replace the two springs by a single imaginary spring, what would its spring
constant be such that the force stays the same?" Your answer should only depend on k, and k
Answer:
it would be...
Explanation: