Answer:
1. It would take the car to get from Tucson to Phoenix 12 hours.
2. for the car to go around the equator it would take 637 hours if it is still travelling at 10km/hr.
hope this helps
Step-by-step explanation:
1. 120 km divided by 10 = 12 hours
!2,19,26 what comes nxt
Answer:
12 , 19 , 26 , 33
Explaination:Here, n+7
12+7=19
19+7=26
So,
26+7=33
Hope you understand ❣
Step-by-step explanation:
12 , 19 , 26 , ?
Given
___________
a1= 12
a2= 19
a3 = 26
d= ?
a4 = ?
––——————
we can solve this by using formula from Ap .
But for this we have to find d
As we know that
common difference(d) = a2-a1 = 19 -12
= 7
so difference after every no is 7 so
a4 = a3 + d
= 26 +7
= 33
So 33 is ur answer mate
Hope it helps
Solve for y: 1/3y+4=16
Hey there! I'm happy to help!
We want to isolate y on one side of the equation to see what it equals. To do this, we use inverse operations to cancel out numbers on the y side and find the correct value.
1/3y+4=16
We subtract 4 from both sides, canceling out the +4 on the right but keeping the same y-value by doing the same to the other side.
1/3y=12
We divide both sides by 1/3 (which is multiplying both sides by 3) which will cancel out the 1/3 and tell us what y is equal to.
y=36
Now you know how to solve basic equations! Have a wonderful day! :D
Can somebody explain how these would be done? The selected answer is incorrect, and I was told "Nice try...express the product by first multiplying the coefficients...then adding your "like term" angles...for instance, cos (2pi/5) + cos (-pi/2) = cos (2pi/5 + -pi/2)...then use the calculator in RADIAN mode to evaluate." Doing those steps, I got the correct constant but a coefficient that was completely off. For the second one, I was told "Good effort...express the quotient by first dividing the coefficients...then subtract your "like term" angles...for instance, cos (2pi/5) - cos (-pi/2) = cos (pi/6 - pi/3)...Finally, use the calculator (in radian MODE) to evaluate."
Answer:
Solution ( Second Attachment ) : - 2.017 + 0.656i
Solution ( First Attachment ) : 16.140 - 5.244i
Step-by-step explanation:
Second Attachment : The quotient of the two expressions would be the following,
[tex]6\left[\cos \left(\frac{2\pi }{5}\right)+i\sin \left(\frac{2\pi \:}{5}\right)\right][/tex] ÷ [tex]2\sqrt{2}\left[\cos \left(\frac{-\pi }{2}\right)+i\sin \left(\frac{-\pi \:}{2}\right)\right][/tex]
So if we want to determine this expression in standard complex form, we can first convert it into trigonometric form, then apply trivial identities. Either that, or we can straight away apply the following identities and substitute,
( 1 ) cos(x) = sin(π / 2 - x)
( 2 ) sin(x) = cos(π / 2 - x)
If cos(x) = sin(π / 2 - x), then cos(2π / 5) = sin(π / 2 - 2π / 5) = sin(π / 10). Respectively sin(2π / 5) = cos(π / 2 - 2π / 5) = cos(π / 10). Let's simplify sin(π / 10) and cos(π / 10) with two more identities,
( 1 ) [tex]\cos \left(\frac{x}{2}\right)=\sqrt{\frac{1+\cos \left(x\right)}{2}}[/tex]
( 2 ) [tex]\sin \left(\frac{x}{2}\right)=\sqrt{\frac{1-\cos \left(x\right)}{2}}[/tex]
These two identities makes sin(π / 10) = [tex]\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}[/tex], and cos(π / 10) = [tex]\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}[/tex].
Therefore cos(2π / 5) = [tex]\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}[/tex], and sin(2π / 5) = [tex]\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}[/tex]. Substitute,
[tex]6\left[ \left\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}+i\left\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}\right][/tex] ÷ [tex]2\sqrt{2}\left[\cos \left(\frac{-\pi }{2}\right)+i\sin \left(\frac{-\pi \:}{2}\right)\right][/tex]
Remember that cos(- π / 2) = 0, and sin(- π / 2) = - 1. Substituting those values,
[tex]6\left[ \left\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}+i\left\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}\right][/tex] ÷ [tex]2\sqrt{2}\left[0-i\right][/tex]
And now simplify this expression to receive our answer,
[tex]6\left[ \left\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}+i\left\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}\right][/tex] ÷ [tex]2\sqrt{2}\left[0-i\right][/tex] = [tex]-\frac{3\sqrt{5+\sqrt{5}}}{4}+\frac{3\sqrt{3-\sqrt{5}}}{4}i[/tex],
[tex]-\frac{3\sqrt{5+\sqrt{5}}}{4}[/tex] = [tex]-2.01749\dots[/tex] and [tex]\:\frac{3\sqrt{3-\sqrt{5}}}{4}[/tex] = [tex]0.65552\dots[/tex]
= [tex]-2.01749+0.65552i[/tex]
As you can see our solution is option c. - 2.01749 was rounded to - 2.017, and 0.65552 was rounded to 0.656.
________________________________________
First Attachment : We know from the previous problem that cos(2π / 5) = [tex]\frac{\sqrt{2}\sqrt{3-\sqrt{5}}}{4}[/tex], sin(2π / 5) = [tex]\frac{\sqrt{2}\sqrt{5+\sqrt{5}}}{4}[/tex], cos(- π / 2) = 0, and sin(- π / 2) = - 1. Substituting we receive a simplified expression,
[tex]6\sqrt{5+\sqrt{5}}-6i\sqrt{3-\sqrt{5}}[/tex]
We know that [tex]6\sqrt{5+\sqrt{5}} = 16.13996\dots[/tex] and [tex]-\:6\sqrt{3-\sqrt{5}} = -5.24419\dots[/tex] . Therefore,
Solution : [tex]16.13996 - 5.24419i[/tex]
Which rounds to about option b.
Find the mean of the data summarized in the given frequency distribution. Compare the computed mean to the actual mean of 51.1 degrees. Low Temperature (◦F) 40−44 45−49 50−54 55−59 60−64 Frequency 3 6 13 7
Answer:
[tex]Mean = 53.25[/tex]
Step-by-step explanation:
Given
Low Temperature : 40−44 || 45−49 || 50−54 || 55−59 || 60−64
Frequency: --------------- 3 -----------6----------- 1-----------3--- -----7
Required
Determine the mean
The first step is to determine the midpoints of the given temperatures
40 - 44:
[tex]Midpoint = \frac{40+44}{2}[/tex]
[tex]Midpoint = \frac{84}{2}[/tex]
[tex]Midpoint = 42[/tex]
45 - 49
[tex]Midpoint = \frac{45+49}{2}[/tex]
[tex]Midpoint = \frac{94}{2}[/tex]
[tex]Midpoint = 47[/tex]
50 - 54:
[tex]Midpoint = \frac{50+54}{2}[/tex]
[tex]Midpoint = \frac{104}{2}[/tex]
[tex]Midpoint = 52[/tex]
55- 59
[tex]Midpoint = \frac{55+59}{2}[/tex]
[tex]Midpoint = \frac{114}{2}[/tex]
[tex]Midpoint = 57[/tex]
60 - 64:
[tex]Midpoint = \frac{60+64}{2}[/tex]
[tex]Midpoint = \frac{124}{2}[/tex]
[tex]Midpoint = 62[/tex]
So, the new frequency table is as thus:
Low Temperature : 42 || 47 || 52 || 57 || 62
Frequency: ----------- 3 --||- -6-||- 1-||- --3- ||--7
Next, is to calculate mean by
[tex]Mean = \frac{\sum fx}{\sum x}[/tex]
[tex]Mean = \frac{42 * 3 + 47 * 6 + 52 * 1 + 57 * 3 + 62 * 7}{3+6+1+3+7}[/tex]
[tex]Mean = \frac{1065}{20}[/tex]
[tex]Mean = 53.25[/tex]
The computed mean is greater than the actual mean
200,000=2x10 to the power of 6
False.
2x10^6 you move the decimal point 6 places to the right. ( add 6 zeros after the 2)
2x 10^6 = 2,000,000
Use parenthesis to make each number sentence true.
124 - 6 x 0 + 15 = 34
Answer:
12 - 6 x (0 + 15) = 34
How I got my answer
First, how i got my answer was that I had to solve the equation first, ignoring the answer. I got 0 x 6 = 0, then I did 124 - 0 = 124, then I did 124 - 15 = 109, which clearly isn't 34. I figured that we have to put the parentheses around the zero because if we don't, we are going have to multiply something by zero, which always gets zero. After that, I decided that I should put the parentheses around either the 6, or the 15. I did both, and saw which one was correct. If we put it around the 6, we get, 124 - (6 x 0) + 15 = 124 - 0 - 15 = 124 - 15 = 109, which isn't 34. Then I checked 124 - 6 x (0 + 15) = 124 - 6 x 15 = 124 - 90 = 34, and we just got the answer.
P.S. Sorry if it was confusing, I didn't really know how to explain it
*please help* If multiple forces are acting on an object, which statement is always true?
The acceleration will be directed in the direction of the gravitational force.
The acceleration will be directed in the direction of the applied force.
The acceleration will be directed in the direction of the net force. <-- MY ANSWER
The acceleration will be directed in the direction of the normal force.
Answer: You are correct. The answer is choice C.
The sum of the vectors is the resultant vector, which is where the net force is directed.
An example would be if you had a ball rolling on a table and you bumped the ball perpendicular to its initial velocity, then the ball would move at a diagonal angle rather than move straight in the direction where you bumped it.
Acceleration is the change in velocity over time, so the acceleration vector tells us how the velocity's direction is changing.
The direction of the acceleration on a body upon which multiple forces are applied depends on the direction of the netforce acting on the body.
When multiple forces acts on a body, such that the different forces acts in different directions. The acceleration will be in the direction of the netforce. This is the direction where the Cummulative sum of the forces is greatest. Acceleration due to gravity is always acting downward, if the upward force is greater than the Gravitational force, then the acceleration won't be in that direction.Therefore, acceleration will be due in the direction of the netforce.
Learn more :https://brainly.com/question/17858024?referrer=searchResults
If 6x +3= 2x+ 19, then x =
Answer:
x = 4
Step-by-step explanation:
6x + 3 = 2x + 19 ------ subtract 3 both sides
6x + 3 - 3 = 2x + 19 - 3 simplify
6x = 2x + 16 ------ subtract 2x both sides
6x - 2x = 2x + 16 - 2x simplify
4x = 16
x = 16 / 4
x = 4
Answer: x = 4
Step-by-step explanation: If the variable appears on both sides of the equation, we put the variables together on one side of the equation and the numbers together on the other side of the equation.
So let's put our variables on the left side by first subtracting
2x from both sides of the equation to get 4x + 3 = 19.
Next, we subtract 3 from both sides to get 4x = 16.
Finally, we divide both sides by 4 to get x = 4.
HELP ME ILL GIV ROBUX Identify the property shown by the equation. 14 × 6 = 6 × 14 A. Commutative Property B. Associative Property C. Identity Property D. Distributive Property PLEASE HELP ME
Answer:
Its commutative property..
Step-by-step explanation:
Commutative property says A×B=B×A
Explanation is attached below.
What is the true solution to the equation below? 2 in e in2×-in e in 10×= in 30 A x=30 B x=75 C x=150 D x=300
Answer:
Option B.
Step-by-step explanation:
Let as consider the given equation:
[tex]2\ln e^{\ln 2x}-\ln e^{\ln 10x}=\ln 30[/tex]
It can be written as
[tex]2(\ln 2x)-(\ln 10x)=\ln 30[/tex] [tex][\because \ln e^a=a][/tex]
[tex]\ln (2x)^2-(\ln 10x)=\ln 30[/tex] [tex][\because \ln a^b=b\ln a][/tex]
[tex]\ln \dfrac{4x^2}{10x}=\ln 30[/tex] [tex][\because \ln \dfrac{a}{b}=\ln a-\ln b][/tex]
[tex]\ln \dfrac{2x}{5}=\ln 30[/tex]
On comparing both sides, we get
[tex]\dfrac{2x}{5}=30[/tex]
Multiply both sides by 5.
[tex]2x=150[/tex]
Divide both sides by 2.
[tex]x=75[/tex]
Therefore, the correct option is B.
Answer:
b x=75
Step-by-step explanation:
A store has clearance items that have been marked down about 30%. They are having a sale, advertising an additional 55% off clearance items. What percent of the original price do you end up paying
Answer:
60% discount given in total, so only 40% is paid.
Step-by-step explanation:
Statistics professors believe the average number of headaches per semester for all students is more than 18. From a random sample of 15 students, the professors find the mean number of headaches is 19 and the standard deviation is 1.7. Assume the population distribution of number of headaches is normal.
Complete Question
Statistics professors believe the average number of headaches per semester for all students is more than 18. From a random sample of 15 students, the professors find the mean number of headaches is 19 and the standard deviation is 1.7. Assume the population distribution of number of headaches is normal.the correct conclusion at [tex]\alpha =0.001[/tex] is?
Answer:
There is no sufficient evidence to support the professor believe
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 18[/tex]
The sample size is [tex]n = 15[/tex]
The sample mean is [tex]\= x = 19[/tex]
The standard deviation is [tex]\sigma = 1.7[/tex]
The level of significance is [tex]\alpha = 0.001[/tex]
The null hypothesis is [tex]H_o: \mu = 18[/tex]
The alternative hypothesis is [tex]H_a : \mu > 18[/tex]
The critical value of the level of significance from the normal distribution table is
[tex]Z_{\alpha } = 3.290527[/tex]
The test hypothesis is mathematically represented as
[tex]t = \frac{\= x - \mu }{ \frac{\sigma}{ \sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 19 - 18}{ \frac{1.7}{ \sqrt{15} } }[/tex]
[tex]t = 2.28[/tex]
Looking at the value of t and [tex]Z_{\alpha }[/tex] we can see that [tex]t < Z_{\alpha }[/tex] so we fail to reject the null hypothesis.
This mean that there is no sufficient evidence to support the professor believe
Simplify the slope of bd
Answer:
[tex] \boxed{ - 1}[/tex]Step-by-step explanation:
The co-ordinates of B = ( 0 , a ) ⇒ ( x₁ , y₁ )
The co-ordinates of D = ( a , 0 )⇒( x₂ , y₂ )
Let's find the slope of BD
Slope = [tex] \mathrm{ = \frac{y2- y1}{x2 - x1} }[/tex]
[tex] \mathrm{ = \frac{0 - a}{a - 0} }[/tex]
[tex] \mathrm{ = \frac{ - a}{a} }[/tex]
[tex] \mathrm{ = - 1}[/tex]
[tex] \mathcal{HOPE \: I \: HELPED !}[/tex]
[tex] \mathcal{BEST \: REGARDS !}[/tex]
Simplify to create an equivalent expression. 4(-15-3p)-4(-p+5)
Answer:
- 8p - 80
Step-by-step explanation:
Given
4(- 15 - 3p) - 4(- p + 5) ← distribute both parenthesis
= - 60 - 12p + 4p - 20 ← collect like terms
= - 8p - 80
Answer:
-8p -80
Step-by-step explanation:
4(-15-3p)-4(-p+5)
Distribute
-60 -12p +4p -20
Combine like terms
-60-20 -8p +4p
-80-8p
-8p -80
ΔABC is similar to ΔMNO. The scale factor from ΔMNO to ΔABC is 3∕2 . If the area of ΔMNO is 10 square units, what's the area of ΔABC? Question 12 options: A) 45 square units B) 90 square units C) 22.5 square units D) 15 square units
Answer:
The area of ΔABC= 6.667 square units
Step-by-step explanation:
ΔABC is similar to ΔMNO.
The scale factor from ΔMNO to ΔABC is 3∕2
the area of ΔMNO is 10 square units,
The area of ΔABC/the area of ΔMNO
= 2/3
The area of ΔABC/10= 2/3
The area of ΔABC= 2/3 * 10
The area of ΔABC= 20/3
The area of ΔABC= 6 2/3
The area of ΔABC= 6.667 square units
Answer:
22.5 square units
Step-by-step explanation:
i multiplied 10 by 2 to get 20 and went with the closest answer and got it right.
i dont know how to do math but i guess it worked
You are an urban planner assessing the growth of a city. Ten years ago, the city's population was 250,823. Its current population is 325,823. By about what percentage has the city grown over the past ten years? Round to the nearest percent.
Answer:
Here is the answer i got-
Step-by-step explanation:
325823-250823=75000
325823’s 244367250percent is 75000
A baking scale measures mass to the tenth of a gram, up to 650 grams. Which of the following measurements is possible using this scale? a.3.8 grams b.120.01 grams c.800.0 grams d.54 milligrams
Answer:
Step-by-step explanation:
The answer is b
120.01 grams
24. After a vertical reflection across the x-axis, f(x) is
Options:
A. –f(x)
B. f(x – 1)
C. –f(–x)
D. f(–x)
Answer:
A. –f(x)
Step-by-step explanation:
The transformation of a reflection about the x-axis is
f(x) -> -f(x).
So the answer is
A. –f(x)
1) Dada a função, em reais, definida por f(x)=3.x-5. calcule :
a) f(2)=
b) f(-1)=
Answer:
f(x)= 3x-5
f(2) = 3(2)-5 = 6-5= 1
f(-1)= 3(-1)-5= -3-5= -8
Hope this helps
if u have question let me know in comments ^°^
find x, if sq.root(x) +2y^2 = 15 and sq.root(4x) - 4y^2=6
Answer:
Example: solve √(2x−5) − √(x−1) = 1
isolate one of the square roots:√(2x−5) = 1 + √(x−1) square both sides:2x−5 = (1 + √(x−1))2 ...
expand right hand side:2x−5 = 1 + 2√(x−1) + (x−1) ...
isolate the square root:√(x−1) = (x−5)/2. ...
Expand right hand side:x−1 = (x2 − 10x + 25)/4. ...
Multiply by 4 to remove division:4x−4 = x2 − 10x + 25.
Answer:
Step-by-step explanation:
ewrerewrwrwerrwer
What is the area of polygon EFGH?
Answer:
C. 42 square units
Step-by-step explanation:
This is a rectangle and to calculate the area of a rectangle we multiply length and width
The length of this rectangle is 7 units and the width is 6 units
6 × 7 = 42 square units
Determine if the matrix is symmetric.
(-1 -5 -9 8)
The transpose of the given matrix is nothing. Because this is_____to the given matrix, the given matrix_____symmetric.
Answer:
because this is equal to the given matrix, the given matrix is symmetric.
Step-by-step explanation:
A symmetric matrix is a square matrix which has same number of rows and columns. Square matrix is equal to transpose. Equal matrices have equal dimensions. The given matrix is symmetric because the rows and columns are equally distributed.
Please help solve for the median !!
Answer:
Median = 14
Step-by-step explanation:
2, 5, 14, 15, 21, 18, 15, 9, 2
First, order the numbers:
2, 2, 5, 9, 14, 15, 15, 18, 21
Then, cancel out the numbers, starting the first and last number, going outwards in. If there is 1 number left, it is your median. If there are 2 left, add the 2 numbers together and divide them by two:
2, 2, 5, 9, 14, 15, 15, 18, 21
2, 5, 9, 14, 15, 15, 18
5, 9, 14, 15, 15
9, 14, 15
14
The median is 14.
Please tell me if I was wrong! I hope this helps you!
Answer: The median is 14
Step-by-step explanation: The median is the number that is halfway into the data set. To find the median, the data should be arranged in order from least to greatest. For this example. 2,2,5,9,14,15,15,18,21. Find the number that is halfway. which is 14
Little bit more math hw
Answer:
[tex]x=-2[/tex]
Step-by-step explanation:
For these kind of problems, simply take the denominator and compare it to zero. Then solve the equation.
[tex]x+2=0\\\\\Rightarrow x=-2[/tex] By subtracting 2 from both sides!
Best Regards!
given that f(x)=x^2-4x -3 and g(x)=x+3/4 solve for f(g(x)) when x=9
Answer:
f(g(9)) = 945/16
Step-by-step explanation:
To find f(g(x)), you have to substitute g(x) wherever there is an x in f(x).
g(x) = x + 3/4
f(x) = x² - 4x - 3
f(g(x)) = (x + 3/4)² - 4(x + 3/4) - 3
f(g(x)) = x² + 3/2x + 9/16 - 4x + 3 - 3
f(g(x)) = x² - 5/2x + 9/16 + 3 - 3
f(g(x)) = x² - 5/2x + 9/16
Now, put a 9 wherever there is an x in f(g(x)).
f(g(9)) = (9)² - 5/2(9) + 9/16
f(g(9)) = 81 - 5/2(9) + 9/16
f(g(9)) = 81 - 45/2 + 9/16
f(g(9)) = 117/2 + 9/16
f(g(9)) = 945/16
GIVING OUT BRAINLIEST TO THE FIRST PERSON TO ANSWER!!
One circle has a diameter of 6 inches. A second, larger circle has a diameter that is four times the diameter of the first circle. What is the ratio of the area of the smaller circle to the larger circle?
A. 2:3
B. 1:6:4
C. 1:16
D. 1:64
Please include ALL work! <3
Answer:
The answer is option CStep-by-step explanation:
To find the ratio first find the diameter of the larger circle
Diameter of first circle = 6 inches
Diameter of second circle = 4 × diameter of the first circle
Which is
Diameter of second circle
= 4 × 6 = 24 inches
Area of a circle = πr²
r is the radius
Area of smaller circle
Diameter = 6 inches
Radius = 6 / 2 = 3 inches
Area = (3)² π = 9π in²
Area of larger circle
Diameter = 24 inches
Radius = 24 / 2 = 12 inches
Area = (12)²π = 144π in²
The ratio of the smaller circle to the larger circle is
[tex] \frac{9\pi}{144\pi} [/tex]
Reduce the fraction by 9π
That's
[tex] \frac{1}{16} [/tex]
We have the final answer as
1 : 16Hope this helps you
Answer:
C. 1:16
Step-by-step explanation:
Area of a circle is:
[tex]\pi \times {r}^{2} [/tex]
Small circle Area:
radius = diameter/2
radius = 6/2 = 3
[tex]area \: of \: a \: circle \: = \pi {3}^{2} [/tex]
a = 28.27
Large circle 4 times larger diameter
6*4 = 24
diameter = 24
r = 24/2
r = 12
[tex]a \: = \pi {12}^{2} [/tex]
a = 452.39
area of large circle/ area of small circle
452.39/28.27 = 16.00
ratio is 1:16
A 20-foot ladder is placed against a tree. The bottom is located 5 feet from the base of the tree and the top of the ladder is 5√15 feet up the tree. Use tangent to find the angle created between the ladder and tree. Include a sketch that shows all known information and clearly shows what you need to find. Show all work and give the answer rounded to the nearest tenth of a degree.
Answer:
14.5°
Step-by-step explanation:
The sketch results in an angle of depression problem.
In this case, the opposite side of the triangle formed is 5 ft
The hypotenuse side is 20 ft
The adjacent side is the [tex]5\sqrt{15}[/tex] ft
Using tangent θ = opp/adj
tangent θ = 5/[tex]5\sqrt{15}[/tex] = [tex]\frac{1}{\sqrt{15} }[/tex] = 0.258
θ = [tex]tangent^{-1}[/tex] 0.258 = 14.5°
The first side of a triangle measures 3 in. less than the second side, the third side is 2 in. more than the first side, and the perimeter is 20 in. Set up an equation that relates the sides of the triangles in terms of the perimeter of the triangle.
Answer:
P = 3x - 4
Step-by-step explanation:
Side 1 = x - 3
Side 2 = x
Side 3 = 2 + (Side 1) = 2 + x - 3 = x - 1
Perimeter = 20 in
Perimeter = Side 1 + Side 2 + Side 3
Perimeter = (x - 3) + (x) + (x - 1)
Perimeter = x - 3 + x + x - 1
Perimeter = 3x - 3 - 1
Perimeter = 3x - 3 - 1
Perimeter = 3x - 4
P = 3x - 4
while jeff was replacing the obstruction of light on a cell tower, he accidentally dropped his cell phone. If he was 150 ft up at the time, approximately how long did it take the phone to reach the ground
Answer:
3.19 seconds
Step-by-step explanation:
Given:
Phone gets dropped from a Height = 150 ft
To find:
Time taken for the phone to reach the ground = ?
Solution:
First of all, let us learn about the formula of distance in terms of Initial speed u; Time t and Acceleration a:
[tex]s=ut+\dfrac{1}{2}at^2[/tex]
Here the phone is dropped from a height so a = g m/[tex]s^2[/tex] i.e. acceleration due to gravity.
g = 9.8 m/[tex]s^2[/tex]
s = 150 ft
Initial velocity, u = 0
Putting all the values in the formula:
[tex]150=0 t+\dfrac{1}{2}gt^2\\\Rightarrow 50=\dfrac{1}{2}\times 9.8 \times t^2\\\Rightarrow t^2=\dfrac{50}{4.9 }\\\Rightarrow t^2=10.20\\\Rightarrow t = 3.19\ sec[/tex]
So, the time taken is 3.19 seconds.
Find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter. x = 5 + ln(t), y = t2 + 2, (5, 3)
Answer:
Step-by-step explanation:
Given that:
[tex]x = 5 + In (t)[/tex]
[tex]y = t^2+2[/tex]
At point (5,3)
To find an equation of the tangent to the curve at the given point,
By without eliminating the parameter
[tex]\dfrac{dx}{dt}= \dfrac{1}{t}[/tex]
[tex]\dfrac{dy}{dt}= 2t[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ \dfrac{dy}{dt} }{\dfrac{dx}{dt} }[/tex]
[tex]\dfrac{dy}{dx}= \dfrac{ 2t }{\dfrac{1}{t} }[/tex]
[tex]\dfrac{dy}{dx}= 2t^2[/tex]
[tex]\dfrac{dy}{dx}_{ (5,3)}= 2t^2_{ (5,3)}[/tex]
t² + 5 = 4
t² = 4 - 5
t² = - 1
Then;
[tex]\dfrac{dy}{dx}_{ (5,3)}= -2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7
By eliminating the parameter
x = 5 + In(t)
In(t) = 5 - x
[tex]t =e^{x-5}[/tex]
[tex]y = (e^{x-5})^2+5[/tex][tex]y = (e^{2x-10})+5[/tex]
[tex]\dfrac{dy}{dx} = 2e^{2x-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2e^{10-10}[/tex]
[tex]\dfrac{dy}{dx}_{(5,3)} = 2[/tex]
The equation of the tangent is:
[tex]y -y_1 = m(x-x_1)[/tex]
[tex](y-3 )= -2(x - 5)[/tex]
y - 3 = -2x +10
y = -2x + 7
y = 2x - 7