Answer:
Step-by-step explanation:
13. [tex]\frac{4}{20}*100= 20[/tex]%
14. [tex]\frac{2}{25}*100=8[/tex]%
15. [tex]\frac{35}{50}*100=70[/tex]%
16. [tex]\frac{150}{200} *100=75[/tex]%
17. [tex]\frac{4}{100}*x=56\\ 56*\frac{100}{4}=1400\\[/tex]days
Subtract: ? 5/6 - 4/6
Answer:
1/6
Step-by-step explanation:
5/6 - 4/6 = 1/6
Answer:
Step-by-step explanation:
To subtract these fractions, we need to have a common denominator. In this case, the denominators 5 and 6 do not match, so we have to find the least common multiple (LCM) of 5 and 6, which is 30.
Then, we can convert both fractions so that they have a denominator of 30:
5/6 = 25/30
4/6 = 20/30
Now we can subtract the numerators:
25/30 - 20/30 = 5/30
Simplifying the result to its lowest terms, we have:
5/30 = 1/6
Therefore, 5/6 - 4/6 = 1/6.
The Butler family and the Phillips family each used their sprinklers last summer. The water output rate for the Butler family's sprinkler was 25 L per hour. The water output rate for the Phillips family's sprinkler was 40 L per hour. The families used their sprinklers for a combined total of 55 hours, resulting in a total water output of 1750 L. How long was each sprinkler used?
The Butler family used their sprinkler for 30 hours and the Phillips family used their sprinkler for 25 hours.
Let's solve the problem with algebra.
Let x represent the number of hours the Butlers used their sprinkler, and y represent the number of hours the Phillips family used their sprinkler. We are aware of the following:
The Butler family's sprinkler had a water output rate of 25 L per hour, so the total amount of water they used is 25x.
The Phillips family's sprinkler had a water output rate of 40 L per hour, so the total amount of water they used was 40y.
The sprinklers were used by the families for a total of 55 hours, so x + y = 55.
The total amount of water produced was 1750 L, so 25x + 40y = 1750.
Using these equations, we can now solve for x and y.
First, we can solve for one of the variables in terms of the other using the equation x + y = 55. For instance, we can solve for x as follows:
x = 55 - y
When we plug this into the second equation, we get:
25(55 - y) + 40y = 1750
We get the following results when we expand and simplify:
1375 - 25y + 40y = 1750
15y = 375
y = 25
As a result, the Phillips family ran their sprinkler for 25 hours. We get the following when we plug this into the equation x + y = 55:
x + 25 = 55
x = 30
As a result, the Butlers used their sprinkler for 30 hours.
As a result, the Butler family sprinkled for 30 hours and the Phillips family sprinkled for 25 hours.
To know more similar question visit:
https://brainly.com/question/18089455
#SPJ1
The distribution of pitches thrown in all the at-bats in a baseball game is as follows
The probability of a pitcher throwing exactly 5 pitches in an at-bat is 0.1 or 10%.
What is probability and how is it calculated?
Probability is a measure of the likelihood of an event occurring. It is expressed as a number between 0 and 1, where 0 indicates that the event is impossible and 1 indicates that the event is certain. The probability of an event A is calculated as the ratio of the number of outcomes that correspond to event A to the total number of possible outcomes.
Calculating probability of a pitcher throwing exactly 5 pitches :
To calculate the probability of a pitcher throwing exactly 5 pitches in an at-bat, we need to add up the frequencies of all the at-bats that have exactly 5 pitches. From the given table, we see that there are 8 at-bats that have exactly 5 pitches.
The total number of at-bats is the sum of the frequencies of all pitch counts.
Total number of at-bats = 12+16+32+12+8 = 80
Therefore, the probability of a pitcher throwing exactly 5 pitches in an at-bat is:
P(5) = Frequency of 5-pitch at-bats / Total number of at-bats
P(5)= 8/80 = 0.1 or 10%
Hence, the probability that a pitcher will throw exactly 5 pitches in an at-bat is 10%.
To know more about probability visit :
brainly.com/question/9793303
#SPJ1
What is the correct numerical expression for "multiply the sum of 7 and 6 by the sum of 4 and 5?"
7 + 6 x 4 + 5
(7 + 6) x (4 + 5)
7 + (6 x 4) + 5
7 + 6 x (4 + 5)
The correct numerical expression for the given statement "multiply the sum of 7 and 6 by the sum of 4 and 5" is (7 + 6) x (4 + 5).
What is an expression?Mathematical statements are called expressions if they have at least two words that are related by an operator and contain either numbers, variables, or both. There are two sorts of expressions in mathematics: numerical expressions, which only contain numbers, and algebraic expressions, which also include variables. A mathematical expression is a phrase that has a minimum of two numbers or variables and at least one mathematical operation.
The given statement, "multiply the sum of 7 and 6 by the sum of 4 and 5", can be represented as:
sum of 7 and 6 = (7 + 6)
sum of 4 and 5 = (4 + 5)
multiply: (7 + 6) x (4 + 5)
Hence, the correct numerical expression for the given statement is (7 + 6) x (4 + 5).
Learn more about mathematical expression here:
https://brainly.com/question/13947055
#SPJ1
Answer:
(7 + 6) x (4 + 5).
Step-by-step explanation:
hope this helps!
Mr. West uses this recipe to make a batch of soup. He often doubles or triples the recipe and freezes some of the soup. What ratio of cups of stock to batches of soup should Mr. West use to make 1, 2, and 3 batches of soup? how many cups of stock are needed to double the recipe?
Therefore, if the recipe requires 4 cups of stock for one batch of soup, he will need 8 cups of stock to double the recipe.
What is ratio?Ratio is a mathematical term used to compare two or more quantities of the same kind. It is a way of expressing the relationship between two numbers or values. Ratios are usually expressed in the form of a:b, where a and b are the two quantities being compared.
by the question.
Let's assume that the recipe for one batch of soup requires 4 cups of stock. If Mr. West wants to make:
1 batch of soup: he would need 4 cups of stock.
2 batches of soup: he would need 8 cups of stock (4 cups x 2 batches).
3 batches of soup: he would need 12 cups of stock (4 cups x 3 batches).
Therefore, the ratio of cups of stock to batches of soup would be:
1 batch of soup requires 4 cups of stock.
2 batches of soup require 8 cups of stock, so the ratio would be 8 cups of stock per 2 batches of soup, or 4 cups of stock per batch of soup.
3 batches of soup require 12 cups of stock, so the ratio would be 12 cups of stock per 3 batches of soup, or 4 cups of stock per batch of soup.
To double the recipe, Mr. West would need to use twice the amount of each ingredient, including the stock.
To learn more about ratio:
https://brainly.com/question/13419413
#SPJ1
Find all relative extrema of the function. Use the Second-Derivative Test when applicable. (If an answer does not exist, enter DNE.) f (x) = x^4 ? 8x^3 + 4relative minimum (x, y) =( )relative maximum(x, y) =( )
The relative maximum of the function is (0, 4), and the relative minimum is (6, -152).
To find the relative extrema of the function f(x) = x^4 - 8x^3 + 4, we first take the derivative of the function:
f'(x) = 4x^3 - 24x^2
Then we set f'(x) = 0 to find the critical points:
4x^3 - 24x^2 = 0
4x^2(x - 6) = 0
This gives us two critical points: x = 0 and x = 6.
Next, we find the second derivative of f(x):
f''(x) = 12x^2 - 48x
We can use the Second-Derivative Test to determine the nature of the critical points.
For x = 0, we have:
f''(0) = 0 - 0 = 0
This tells us that the Second-Derivative Test is inconclusive at x = 0.
For x = 6, we have:
f''(6) = 12(6)^2 - 48(6) = 0
Since the second derivative is zero at x = 6, we cannot use the Second-Derivative Test to determine the nature of the critical point at x = 6.
To determine whether the critical points are relative maxima or minima, we can use the first derivative test or examine the behavior of the function around the critical points.
For x < 0, f'(x) < 0, so the function is decreasing.
For 0 < x < 6, f'(x) > 0, so the function is increasing.
For x > 6, f'(x) < 0, so the function is decreasing.
Therefore, we can conclude that the critical point at x = 0 is a relative maximum and the critical point at x = 6 is a relative minimum.
To know more about relative maxima and minima:
https://brainly.com/question/6422517
#SPJ4
What type of exercise is ideal for a client who is new to strength training and learning new movement patterns
Answer:
For a client who is new to strength training and learning new movement patterns, it is ideal to start with bodyweight exercises and light resistance training. This will help them focus on proper form and technique without risking injury. Additionally, exercises that engage multiple muscle groups and involve functional movements, such as squats, lunges, and push-ups, are recommended as they provide a good foundation for overall strength and fitness. It is important to progress slowly and gradually increase resistance over time as the client becomes more comfortable with the movements and their strength improves. A certified personal trainer or strength coach can provide guidance and create a tailored program to meet the individual needs and goals of the client.
Q6) The diagram shows a pyramid. The apex of the pyramid is V.
Each of the sloping edges is of length 6 cm.
A
6 cm
2 cm
B
2 cm с
F
6 cm
The base of the pyramid is a regular hexagon with sides of length 2 cm.
O is the centre of the base.
B
2 cm
E
2 cm C
Calculate the height of V above the base of the pyramid.
Give your answer correct to 3 significant figures.
V is 5.92 centimetres above the pyramid's base at its highest point.
What is pyramid?A pyramid is a 3D pοlyhedrοn with the base οf a pοlygοn alοng with three οr mοre triangle-shaped faces that meet at a pοint abοve the base. The triangular sides are called faces and the pοint abοve the base is called the apex. A pyramid is made by cοnnecting the base tο the apex. Sοmetimes, the triangular sides are alsο called lateral faces tο distinguish them frοm the base. In a pyramid, each edge οf the base is cοnnected tο the apex that fοrms the triangular face.
Give the altitude the letter h. Next, we have:
tan(60) = h/2
Simplifying, we get:
h = 2 tan(60) = 2 √(3)
The Pythagorean theorem yields the following:
[tex]$\begin{align}{{V O^{2}+O F^{2}=V F^{2}}}\\ {{V O^{2}+1^{2}=6^{2}}}\\ {{V O^{2}=35}}\end{align}$[/tex]
Taking the square root of both sides, we get:
VO ≈ 5.92 cm
Rounding to three significant figures, we get:
VO ≈ 5.92 cm
To know more about pyramid's base visit:-
brainly.com/question/19567818
#SPJ1
A cultural researcher tests whether individuals from different cultures share or differ in the belief that dreams have meaning.
Independent Variable: ________
Quasi-Independent Variable: ________
Dependent Variable: ________
IV individuals from different cultures
DV the belief that dreams have meaning.
Independent Variable: Culture
Belief in the meaning of dreams is a quasi-independent variable (since it cannot be manipulated or assigned randomly)
The response to whether or not dreams have meaning is the dependent variable.
What are the three kinds of variables?An experimental investigation typically contains three types of variables: independent variables, dependent variables, and controlled variables.
What is the independent or quasi-independent variable?A compared to the rest of the country. Because the variable levels are pre-existing, it is not possible to assign participants to groups at random.
To know more about Variable visit:
brainly.com/question/1511425
#SPJ1
Find the associated z-score or scores that represent the following standard normal areas(hint use the excel function =NORM.S.INV()
A. Middle 50 percent
B. Lowest 5 percent
C. Middle 90%
Answer all questions please(URGENT
The z-scores that represent the middle 50% of the standard normal distribution are between -0.6745 and 0.6745, the lowest 5% of the standard normal distribution is -1.645, and the 90% of the standard normal distribution is between -1.645 and 1.645.
What is the definition of standard normal variation?The mean and variance of a standard normal distribution are both 0. A z distribution is another name for this.
Yes, here are the z-scores for the given standard normal areas:
A. Middle 50%: The area between the 25th and 75th percentiles corresponds to the middle 50% of the standard normal distribution. Using Excel's NORM.S.INV() function, we can calculate the z-scores that correspond to those percentiles as follows:
-0.6745 is the z-score corresponding to the 25th percentile.
The 75th percentile z-score is 0.6745.
As a result, the z-scores representing the middle 50% of the standard normal distribution range between -0.6745 and 0.6745.
B. Lowest 5%: The area to the left of the 5th percentile corresponds to the lowest 5% of the standard normal distribution. Using Excel's NORM.S.INV() function, we can calculate the z-score that corresponds to that percentile as follows:
The z-score associated with the fifth percentile is -1.645.
As a result, the z-score representing the bottom 5% of the standard normal distribution is -1.645.
C. Middle 90%: The area between the 5th and 95th percentiles corresponds to the middle 90% of the standard normal distribution. Using Excel's NORM.S.INV() function, we can calculate the z-scores that correspond to those percentiles as follows:
The z-score associated with the fifth percentile is -1.645.
The z-score associated with the 95th percentile is 1.645.
As a result, the z-scores representing the middle 90% of the standard normal distribution range between -1.645 and 1.645.
To know more about standard normal distribution visit:
https://brainly.com/question/29509087
#SPJ1
Which is correct answer?
a
b
c
When g be continuous on [1,6], where g(1) = 18 and g(6): = 11. Does a value 1 < c < 6 exist such that g(c) = 12
Yes, because of the intermediate value theoremWhat is intermediate value theorem?The intermediate value theorem is a fundamental theorem in calculus that states that if a continuous function f(x) is defined on a closed interval [a, b], and if there exists a number y between f(a) and f(b), then there exists at least one point c in the interval [a, b] such that f(c) = y.
According to the intermediate value theorem,
since g(x) is a continuous function on the closed interval [1, 6]
since g(1) = 18 is greater than 12, and
g(6) = 11 is less than 12,
there must be at least one value c between 1 and 6 where g(c) = 12.
Therefore, we can conclude that a value of c does exist such that g(c) = 12.
Learn more about intermediate value theorem at:
https://brainly.com/question/30557318
#SPJ1
The rate at which a rumor spreads through a town of population N can be modeled by the equation dt/dx = kx(N−x) where k is a constant and x is the number of people who have heard the rumor. (a) If two people start a rumor at time t=0 in a town of 1000 people, find x as a function of t given k=1/250. (b) When will half the population have heard the rumor?
(a) The function x as a function of t is t = 250ln(499x/998)
(b) Half the population will have heard the rumor approximately 109.86 units of time after it was started.
(a) To solve the differential equation dt/dx = kx(N−x), we can separate the variables and integrate
dt/dx = kx(N−x)
dt/(N-x) = kx dx
Integrating both sides, we get
t = -1/k × ln(N-x) - 1/k × ln(x) + C
where C is the constant of integration.
To find C, we can use the initial condition that two people start the rumor at t=0, so x=2:
0 = -1/k * ln(N-2) - 1/k * ln(2) + C
C = 1/k * ln(N-2) + 1/k * ln(2)
Substituting C back into the equation, we get:
t = -1/k * ln(N-x) - 1/k * ln(x) + 1/k * ln(N-2) + 1/k * ln(2)
Simplifying, we get
t = 1/k * [ln((N-2)x/(2(N-x)))]
Substituting k=1/250 and N=1000, we get:
t = 250ln(499x/998)
(b) We want to find the time t when half the population has heard the rumor, so x = N/2 = 500. Substituting this into the equation we obtained in part (a), we get
t = 250ln(499(500)/998) = 250ln(249/499)
t ≈ 109.86
Therefore, half the population will have heard the rumor approximately 109.86 units of time after it was started.
Learn more about differential equation here
brainly.com/question/29199325
#SPJ4
The graph represents a relation where x represents the independent variable and y represents the dependent variable. a graph with points plotted at negative 5 comma 1, at negative 2 comma 0, at negative 1 comma 3, at negative 1 comma negative 2, at 0 comma 2, and at 5 comma 1 Is the relation a function? Explain. No, because for each input there is not exactly one output. No, because for each output there is not exactly one input. Yes, because for each input there is exactly one output. Yes, because for each output there is exactly one input.
No, the relation is not a function, because for each input there is not exactly one output.
What is graph?A graph is a visual representation of data that shows the relationship between variables or sets of data. It consists of a set of points, called vertices or nodes, which are connected by lines or curves, called edges or arcs. Graphs are commonly used to display numerical information, such as trends, patterns, or relationships, and can be used to analyze and interpret data.
The relation is not a function because for the input x = -1, there are two different output values, y = 3 and y = -2. A function is a relation where each input has exactly one output, but in this case, the input -1 has two different outputs, violating the definition of a function.
To know more about graph, visit:
https://brainly.com/question/17267403
#SPJ1
35% of households say they would feel secure if they had 50000 in savings he randomly selected 8 households and ask them if they would feel secure if they had 50000 in savings find the probability that the number that say that they would feel secure a exactly 5B more than 5 &c at most 5
Probability that precisely 5 people will respond that they would feel comfortable is 0.0808
Probability that more than 5 people will respond that they would feel comfortable is0.1061
Probability that at most 5 people will respond that they would feel comfortable is 0.9747
Probability Definition in MathProbability is a way to gauge how likely something is to happen. Several things are difficult to forecast with absolute confidence.
Solving the problem:35 percent of households claim that having $50,000 in savings would make them feel comfortable. Ask 8 homes that were chosen at random if they would feel comfortable if they had $50,000 in savings.
Binomial conundrum with p(secure) = 0.35 and n = 8.
the likelihood that the number of people who claim they would feel comfortable is
(a) The number exactly five is equal to ⁸C₅ (0.35)5×(0.65)×3=binompdf(8,0.35,5) = 0.0808.
(b) more than five = 1 - binomcdf(8,0.35,4) = 0.1061
(c) at most five = binomcdf(8,0.35,5) = 0.9747.
to know more about forecast, visit:
https://brainly.com/question/28839529
#SPJ1
A car travelling north at 48 km/hr is approaching an intersection. A truck travelling East at 60 km/hr is moving away from the same intersection. How is the distance between the car and the truck changing when the car is 9 m from the intersection and the truck is 40 m from the intersection?
The rate at which the distance between the car and the truck is changing when the car is 9 m from the intersection and the truck is 40 m from the intersection is about 19.187 m/s
What is the rate of change of a function?The rate of change of a function is an indication of how fast the function's output changes per unit change in the input of the function.
Let y represent the distance of the car from the intersection, and let x represent the distance of the truck from the intersection, we get;
The distance between the car and the truck, d, can be obtained from Pythagorean Theorem as follows;
d² = y² + x²
2·d·d/dt = 2·y·dy/dt + 2·x·dx/dt
dy/dt = The speed of the car = 48 km/h = 40/3 m/s
dx/dt = The speed of the truck = 60 km/h = 50/3 m/s
y = The distance of the car from the intersection = 9 m
x = The distance of the truck from the intersection = 40 m
d² = 9² + 40² = 1681
d = √(1681) = 41
d = 41 m
Therefore;
2×41×d/dt = 2×9 × 40/3 + 2 × 40 × 50/3 = 4720/3
d/dt = 4720/3/(2 × 41) = 2360/123 ≈ 19.187
d/dt ≈ 19.187 m/s
The rate of change distance between the car and the truck d/dt is about 19.187 m/s
Learn more on the rate of change of a function here: https://brainly.com/question/28207177
#SPJ1
Find the standard normal area for each of the following Round your answers to the 4 decimal places
The standard normal areas are given as follows:
P(1.22 < Z < 2.15) = 0.0954. P(2 < Z < 3) = 0.0215.P(-2 < Z < 2) = 0.9544.P(Z > 0.5) = 0.3085.How to obtain probabilities using the normal distribution?The z-score of a measure X of a normally distributed variable that has mean represented by [tex]\mu[/tex] and standard deviation represented by [tex]\sigma[/tex] is obtained by the equation presented as follows:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The z-score represents how many standard deviations the measure X is above or below the mean of the distribution of the data-set, depending if the obtained z-score is positive(above the mean) or negative(below the mean).The z-score table is used to obtain the p-value of the z-score, and it represents the percentile of the measure X in the distribution.Considering the second bullet point, the areas are given as follows:
P(1.22 < Z < 2.15) = p-value of Z = 2.15 - p-value of Z = 1.22 = 0.9842 - 0.8888 = 0.0954.P(2 < Z < 3) = 0.0215 = p-value of Z = 3 - p-value of Z = 1 = 0.9987 - 0.9772 = 0.0215.P(-2 < Z < 2) = p-value of Z = 2 - p-value of Z = -2 = 0.9772 - 0.0228 = 0.9544P(Z > 0.5) = 1 - p-value of Z = 0.5 = 1 - 0.6915 = 0.3085.More can be learned about the normal distribution at https://brainly.com/question/25800303
#SPJ1
For each random variable defined here, describe the set of possible values for the variable, and state whether the variable is discrete.a. X= the number of unbroken eggs in a randomly chosen standard egg cartonb. Y= the number of students on a class list for a particular course who are absent on the first day of classesc. U= the number of times a duffer has to swing at a golf ball before hitting itd. X= the length of a randomly selected rattlesnakee. Z= the amount of royalties earned from the sale of a first edition of 10,000 textbooksf. Y= the PH of a randomly chosen soil sample g. X= the tension (psi) at which a randomly selected tennis racket has been strungh. X= the total number of coin tosses required for three individuals to obtain a match (HHH or TTT)
a. X= number of unbroken eggs in a standard carton. b. Y= number of absent students on first day of a course. c. U= number of swings before hitting a golf ball. d. X= length of a rattlesnake.
e. Z= royalties earned from selling a first edition of 10,000 textbooks. f. Y= pH of a soil sample. g. X= tension (psi) of a tennis racket. h. X= total coin tosses required for three individuals to get a match.
a. X can take on values 0, 1, 2, 3, 4, 5, 6, as there can be zero to six unbroken eggs in a standard egg carton. X is a discrete random variable.
b. Y can take on values 0, 1, 2, 3, ..., n, where n is the total number of students on the class list. Y is a discrete random variable.
c. U can take on values 1, 2, 3, .... U is a discrete random variable.
d. X can take on any positive real value, as the length of a rattlesnake can vary continuously. X is a continuous random variable.
e. Z can take on any non-negative real value, as the amount of royalties earned can be any non-negative amount. Z is a continuous random variable.
f. Y can take on any value between 0 and 14, as the pH of a soil sample can range from 0 to 14. Y is a continuous random variable.
g. X can take on any positive real value, as the tension at which a tennis racket has been strung can vary continuously. X is a continuous random variable.
h. X can take on values 3, 4, 5, 6, ... as there must be at least three coin tosses and the tosses must continue until a match is obtained. X is a discrete random variable.
Learn more about random variables here: brainly.com/question/17238189
#SPJ4
54.2 consider the competing species model, equaltion 54.1 sketch the phase plane and the trajectories of both population
To sketch the phase plane and trajectories of both populations in the competing species model, plot the population of one species on the x-axis and the population of the other species on the y-axis. Then, plot the isoclines and use them to determine the direction and stability of the population trajectories.
The competing species model is a system of two differential equations that describe the population dynamics of two species competing for the same resources. To sketch the phase plane and trajectories, plot the population of one species on the x-axis and the population of the other species on the y-axis. Then, plot the isoclines, which are curves that represent the values of one species' population at which the other species' population does not change.
The isoclines are found by setting each differential equation to zero and solving for one population in terms of the other. For example, the isocline for species 1 is found by setting dN1/dt = 0 and solving for N2. The resulting equation gives the values of N2 at which the population of species 1 does not change. Plotting these curves on the phase plane divides it into regions where the population of each species increases or decreases.
The direction and stability of the population trajectories can be determined by analyzing the slope of the vector field, which represents the rate of change of the population at each point in the phase plane. Trajectories move in the direction of the vector field, and their stability depends on the curvature of the isoclines. If the isoclines intersect at a single point, it is a stable equilibrium where both populations coexist. If they intersect at multiple points, the stable equilibrium depends on the initial conditions of the populations. If they do not intersect, one species will eventually drive the other to extinction.
To know more on competing species model
https://brainly.com/question/15100592
#SPJ4
--The question is incomplete, answering to the question below--
"Consider the competing species model, how to sketch the phase plane and the trajectories of both population"
nction value. n=4 -1,4, and 2+2i are zeros; f(1)=-30
The polynomial function with the given zeros and numeric value at x = 1 is given as follows:
f(x) = x^4 - 7x³ + 16x² - 8x - 32
How to define the polynomial function?The zeros of the polynomial function are given as follows:
x = -1.x = 4.x = 2 + 2i.x = 2 - 2i. -> complex-conjugate theorem, when a complex number is a root of a polynomial function, it's conjugate also is.Then the linear factors of the function are given as follows:
x + 1.x - 4.x - 2 - 2i.x - 2 + 2i.According to the Factor Theorem, the function with leading coefficient a can be defined as a product of it's linear factors are follows:
f(x) = a(x + 1)(x - 4)(x - 2 - 2i)(x - 2 + 2i).
f(x) = a(x² - 3x - 4)(x² - 4x + 8)
f(x) = a(x^4 - 7x³ + 16x² - 8x - 32).
When x = 1, y = -30, hence the leading coefficient a is obtained as follows:
-30 = a(1 - 7 + 16 - 8 - 32)
-30a = -30
a = 1.
Hence the function is:
f(x) = x^4 - 7x³ + 16x² - 8x - 32
Missing InformationThe problem asks for the polynomial function with the given zeros and numeric value at x = 1.
More can be learned about polynomial functions at https://brainly.com/question/7693326
#SPJ1
Find the area of the figure. (Sides meet at right angles.)
3 yd
8 yd
3 yd
5 yd
6 yd
The area οf the figure is 33 square yards.
What is rectangle?A rectangle is a clοsed 2-D shape, having 4 sides, 4 cοrners, and 4 right angles (90°).The οppοsite sides οf a rectangle are equal and parallel. Since, a rectangle is a 2-D shape, it is characterized by twο dimensiοns, length, and width. Length is the lοnger side οf the rectangle and width is the shοrter side.
A crοssed rectangle is a crοssed (self-intersecting) quadrilateral which cοnsists οf twο οppοsite sides οf a rectangle alοng with the twο diagοnals (therefοre οnly twο sides are parallel). It is a special case οf an antiparallelοgram, and its angles are nοt right angles and nοt all equal, thοugh οppοsite angles are equal. Other geοmetries, such as spherical, elliptic, and hyperbοlic, have sο-called rectangles with οppοsite sides equal in length and equal angles that are nοt right angles.
Tο find the area οf the figure, we first find the area οf the rectangle (8 yds by 6 yds) and subtract the area οf the smaller rectangle (3 yds by 5 yds). The area οf the figure is:
Area = (8 yd)(6 yd) - (3 yd)(5 yd)
[tex]= 48 yd^2 - 15 yd^2[/tex]
[tex]= 33 yd^2[/tex]
Therefοre, the area οf the figure is 33 square yards.
To know more about problems related to rectangles, click here:
https://brainly.com/question/27035529
#SPJ1
Tom’s yearly salary is $78000
Calculate Tom’s fortnightly income. (Use 26
fortnights in a year.)
Fortnightly income =
$
Tom's fortnightly income is $3000.
What is average?In mathematics, an average is a measure that represents the central or typical value of a set of numbers. There are several types of averages commonly used, including the mean, median, and mode.
To calculate Tom's fortnightly income, we need to divide his yearly salary by the number of fortnights in a year:
Fortnightly income = Yearly salary / Number of fortnights in a year
Fortnightly income = $78000 / 26 = $3000
Therefore, Tom's fortnightly income is $3000.
To know more about average and given link below -brainly.com/question/24057012
#SPJ4
question - Calculate the Tom's fortnightly income and yearly salary by the number of fortnights in a year .
Arguing geometrically, find all eigenvectors and eigen-values of the linear transformations in Exercises 15 through 22. In each case, find an eigenbasis if you can, and thus determine whether the given transformation is diagonalizable.
Reflection about a plane V in R3
The eigenvalues of the reflection about a plane in R3 are 1 and -1, with corresponding eigenvectors lying on the plane and perpendicular to the plane, respectively. Therefore, the transformation is diagonalizable with an eigenbasis consisting of these eigenvectors.
Consider a reflection about a plane V in R3. Let's denote this linear transformation by T.
We know that any vector v in R3 can be decomposed uniquely into a sum of two vectors, one in V and one in the orthogonal complement of V. Let's denote these subspaces by V and V⊥, respectively. Then we have:
R3 = V ⊕ V⊥
Since T reflects vectors across the plane V, any vector in V will be fixed by the transformation, while any vector in V⊥ will be flipped across the plane.
Let's consider a vector v in V. Since T fixes v, we have:
T(v) = v
This means that v is an eigenvector of T with eigenvalue 1.
Now let's consider a vector u in V⊥. Since T flips u across the plane V, we have:
T(u) = -u
This means that u is an eigenvector of T with eigenvalue -1.
Since any vector in R3 can be written as a sum of a vector in V and a vector in V⊥, we have shown that every vector in R3 is an eigenvector of T, and the corresponding eigenvalues are 1 and -1.
To find an eigenbasis, we need to find a basis for R3 consisting of eigenvectors of T. We have already shown that every vector in R3 is an eigenvector, so the standard basis {e1, e2, e3} is an eigenbasis. Therefore, T is diagonalizable.
The eigenvalues are λ1 = 1 and λ2 = -1, and the corresponding eigenvectors are {v} and {u}, where v is any nonzero vector in V and u is any nonzero vector in V⊥.
To know more about eigenvectors:
https://brainly.com/question/31013028
#SPJ4
54 students, some study History and Government. n(G)=3x n(U)=54 n(H)=2x n(HnG)=x
i. How many students study both History and Government?
ii. How many students study only one subject?
Therefore, the number of students who study only one subject is n(H-only) + n(G-only) = 14 + 28 = 42.
What do you mean by set?In mathematics, a set is a collection of distinct objects, which are called its elements. These objects can be anything, such as numbers, letters, or even other sets. Sets are usually denoted by capital letters and the elements of a set are listed within braces, separated by.
Given by the question.
i. n (H ∩ G) can be found using the formula:
n(H ∩ G) = n(H) + n(G) - n(H U G)
where n (H U G) represents the number of students who study either History or Government or both.
We know that n(H) = 2x and n(G) = 3x. Also, n(U) = 54, which means the total number of students is 54. Therefore, we can write:
n (H U G) = n(H) + n(G) - n (H ∩ G)
54 = 2x + 3x - x
54 = 4x
x = 13.5
Since x must be a whole number, we can round it up to 14. Therefore, n (H ∩ G) = x = 14.
ii. The number of students who study only one subject can be found by subtracting n (H ∩ G) from n(H) and n(G) respectively, and then adding the number of students who study neither History nor Government.
n(H-only) = n(H) - n (H ∩ G) = 2x - x = x = 14
n(G-only) = n(G) - n (H ∩ G) = 3x - x = 2x = 28
n(Neither) = n(U) - n (H U G) = 54 - 14 = 40
To learn more about subtracting:
https://brainly.com/question/2346316
#SPJ1
Create a random triangle,
ABC . Record the lengths of its sides.
The triangle ABC with the given dimensions:AB = 10, BC = 6, CA = 90 are constructed.
Explain about the side-side-side congruence?You may determine the third angle by deducting the first two angles from 180 if you know the angles of one SSS triangle and another SSS triangle.Triangles that have corresponding sides with the same measurements are subject to the SSS hypothesis. A triangle with sides of 3, 4, & 5 and a triangle with sides of 4, 3, and 5 are two examples. SSS triangles—triangles whose values of all three sides coincide also with parameters of the second triangle—are also known as SSS triangles.The dimension of the triangle ABC are:
AB = 10
BC = 6
CA = 90
Thus, the triangle with the given dimensions are constructed.
Know more about the side-side-side congruence
https://brainly.com/question/3999145
#SPJ1
If m∠ADB = 110°, what is the relationship between AB and BC? AB < BC AB > BC AB = BC AB + BC < AC
The relationship between AB and BC is given as follows:
AB > BC.
What are supplementary angles?Two angles are defined as supplementary angles when the sum of their measures is of 180º.
The supplementary angles for this problem are given as follows:
<ADB = 110º. -> given<CDB = 70º. -> sum of 180º.By the law of sines, we have that:
AB/sin(110º) = BC/sin(70º).
As sin(110º) > sin(70º), the inequality for this problem is given as follows:
AB > BC.
More can be learned about inequalities at https://brainly.com/question/25275758
#SPJ1
Answer:
AB>BC
Step-by-step explanation:
AI-generated answer
Based on the given information, the relationship between AB and BC depends on the measure of angle ZADB. If mZADB is 110°, we can determine the relationship as follows:
Since triangle ABD and triangle CBD share side AB, the larger the angle ZADB, the longer the side AB will be compared to side BC. Therefore, if mZADB is 110°, we can conclude that AB is greater than BC.
In summary, when mZADB is 110°, the relationship between AB and BC is:
AB > BC.
Which expressions are equivalent to 8(3/4y -2)+6(-1/2+4)+1
Answer: 6y + 6
Step-by-step explanation:
To simplify the expression 8(3/4y -2) + 6(-1/2+4) + 1, we can follow the order of operations (PEMDAS):
First, we simplify the expression within parentheses, working from the inside out:
6(-1/2+4) = 6(7/2) = 21
Next, we distribute the coefficient of 8 to the terms within the first set of parentheses:
8(3/4y -2) = 6y - 16
Finally, we combine the simplified terms:
8(3/4y -2) + 6(-1/2+4) + 1 = 6y - 16 + 21 + 1 = 6y + 6
Therefore, the expression 8(3/4y -2) + 6(-1/2+4) + 1 is equivalent to 6y + 6.
(b) There are 40 students in a class. If the number of boys is 10 more than that of girls, find the number of boys and girls.
Answer:
Boys are 25
Girls are 15
Step-by-step explanation:
Total class population = 40
Let girls population = g
Then, boys population = (10+g)
Boys + Girls = 40
[tex]{ \sf{(10 + g) + g = 40}} \\ { \sf{2g = 30}} \\ { \sf{g = 15}}[/tex]
Girls = 15
Boys = (10 + g) = (10 + 15) = 25
The water bill was $120. It went up 5%. Use two different expressions to find the amount of the new water bill. You may use a calculator.
The new water bill after 5% increase is $126.
Define PercentageThe ratio that may be stated as a fraction of 100 is called as a percentage in mathematics. To compute a percentage of a number, divide it by its whole and then multiply it by 100. The percentage therefore refers to a component per hundred. Per 100 is what the term percent signifies. The letter "%" stands for it.
First Expression:Given bill of water =$120
Increment in percentage=5%
New water bill= 120+120×5/100
=$126
Hence, The new water bill after 5% increase is $126.
2nd Expression% increase = Increase in bill ÷ Old bill × 100.
5%=Increase in bill/120×100
Increase=5×120/100
=6
New bill=Old bill+ increase=120+6=126
hence, the new water bill after 5% increase is $126.
To know more about fraction, visit:
https://brainly.com/question/10354322
#SPJ1
Find the real solutions of the following equation by graphing.
x³ - 6x²+5x=0
The Solution(s) is/are ? .
The real solutions of the following equation are 5 and 1
[ Graph is attached below ]
Solving equation graphically:
To solve the given equation graphically we need to find the coordinate points that pass through the graph.
This can be done by taking 'x' values and solving for them 'y' values.
Now draw the graph using the above coordinates and find the solution as shown below.
Here we have
x³ - 6x²+ 5x = 0
Let y = x³ - 6x²+ 5x
To draw the graph find the coordinates of points as follows
At x = 0 => y = (0) + (0) + (0) = 0
At x = 1 => y = (1)³ - 6(1)² + 5(1) = 0
At x = -1 => y = (-1)³ - 6(-1)² + 5(-1) = - 12
At x = 2 => y = (2)³ - 6(2) + 5(2) = 6
From the above calculation,
The coordinates of the points to draw the graph are (0, 0), (1, 0), (-1, -12), and (2, 6)
Here the solutions of the graph are the x-coordinate of points where the graph cuts the x-axis
From the figure, the graph will cut the x-axis at 1 and 5
Therefore,
The real solutions of the following equation are 5 and 1
[ Graph is attached below ]
Learn more about Graphs at
https://brainly.com/question/8210152
#SPJ1
Please see attached question
Using graphs, we can see that the point (4,2) can be a coordinate where y will represent x.
What are graphs?The graph is simply a structured representation of the data. The numerical information gathered through observation is referred to as data.
If there is just one value of y (output) for every value of x, the relationship between x and y is said to be a function (input).
In other words, there can only be one value of y for each value of x.
Determine each plotted point's coordinates first:
(-4,4)
(-2,3)
(0,1)
(2, -1)
(3,0)
The following point cannot have any of the x-coordinates of the displayed points, which are -4, -2, 0, 2, and 3.
Options include:
A (0,1) →The relationship cannot be regarded as a function at this stage as the x-coordinate zero already has a corresponding value of y.
B (2,2) →Although there is already a value of y for the location x=2, the relationship cannot be regarded as a function at this point.
C (3,4) →Although there is already a value of y for the location x=3, the relationship cannot be regarded as a function at this point.
D (4,2) → The relationship will still be regarded as a function even though there are no points on the graph with the coordinates x=4 displayed.
Therefore, option D (4,2) is the point where y will represent x.
To know more about graphs, visit:
https://brainly.com/question/17267403
#SPJ1
The complete question:
Please see attached question