physics approach to study macromoelcues at nanoscales
in detail plx

Answers

Answer 1

Answer:

Abstracto

Los ácidos nucleicos y las proteínas comprenden una red de biomacromoléculas que almacenan y transmiten información que sustenta la vida de la célula. El estudio de estos mecanismos es un campo llamado biología molecular. El desarrollo de esta ciencia siempre ha ido acompañado de avances técnicos que permiten romper barreras metodológicas para probar hipótesis novedosas. Entre los métodos disponibles para los biólogos moleculares, destacan cinco: electroforesis, secuenciación, clonación, transferencia y reacción en cadena de la polimerasa. Su impacto llega a la genética, la medicina y la biotecnología. Aquí, se revisan la relevancia histórica, los fundamentos técnicos y las tendencias actuales de estos cinco métodos esenciales. La revisión pretende ser útil tanto para estudiantes como para científicos profesionales que buscan adquirir conocimientos avanzados sobre el valor de estos métodos para investigar los mecanismos moleculares que sostienen la vida.


Related Questions

Electromagnetic radiation with a wavelength of 525 nm appears as green light to the human eye. Calculate the frequency of this light. Be sure to include units in your answer.

Answers

Answer:

5.71×10¹⁴ Hz

Explanation:

Applying,

v = λf................. Equation 1

Where v = speed of the electromagnetic radiation, λ = wavelength of the electromagnetic radiation, f = frequency

make f the subject of the equation

f = v/λ............. Equation 2

From the question,

Given: λ = 525 nm = 5.25×10⁻⁷ m,

Constant: Speed of electromagnetic wave (v) = 3.0×10⁸ m/s

Substitute these values into equation 2

f = (3.0×10⁸)/(5.25×10⁻⁷)

f = 5.71×10¹⁴ Hz

Hence the frequency of light is 5.71×10¹⁴ Hz

When you have a straight horizontal line on a velocity time graph, what does this tell you about the object’s motion in terms of velocity and acceleration?

Answers

Answer:

It tell you that the velocity is constant, what means that there's no acceleration

explain why our sweat is salty?​

Answers

Answer:

Sweat also contains ammonia and urea, which are produced by the body when it breaks down proteins from the foods you eat.

Hope this helps..

An object moving with initial velocity 10 m/s is subjected to a uniform acceleration of 8 m/s ^² . The displacement in the next 2 s is: (a) 0m (b) 36 m (c) 16 m (d) 4 m​

Answers

365 Everyday Value, Organic Creamy Peanut Butter. Net Carbs: 4 grams per serving. ...
Classic Peanut Butter by Justin's. Net Carbs: 5 grams. ...

Choose one. 5 points
Use the equation from week 3:
frequency =
wavespeed
wavelength
and the wavelength you found in #3 to calculate the frequency of this photon (remember the speed of
light is 3E8 m/s);
7.6E14 Hz
6.0E14 Hz
4,6E14 Hz

Answers

Is 4,6E14 Hz
Good luck

The frequency is 4,6E14 Hz.

What is the frequency?

Frequency is the fee at which modern changes direction in step with 2nd. it's far measured in hertz (Hz), a worldwide unit of degree wherein 1 hertz is identical to 1 cycle in line with 2d. Hertz (Hz) = One hertz is the same as 1 cycle in step with the second. Cycle = One entire wave of alternating present-day voltage.

Frequency describes the number of waves that pass a hard and fast place in a given quantity of time. So if the time it takes for a wave to skip is half of 2d, the frequency is 2 per 2nd. If it takes 1/one hundred of an hour, the frequency is a hundred in step with hour.

Learn more about frequency here:-https://brainly.com/question/254161

#SPJ2

krichoffs law of current questions​

Answers

Answer:

Explanation:

       Kirchhoff's Current Law, often shortened to KCL, states that “The algebraic sum of all currents entering and exiting a node must equal zero.

           #I AM ILLITERATE

During World War II, mass spectrometers were used to separate the radioactive uranium isotope U-235 from its far more common isotope, U-238. Estimate the radius of the circle traced out by a singly ionized lead atom moving at the same speed.

Answers

Answer:

21.55 m

Explanation:

Two different galvanometers G1 and G2, have internal resistances r1and r2. The galvanometers G1 and G2 require the same current IC1=IC2 for a full-scale deflection of their pointers. These galvanometers G1 and G2 are used to build lab-made ammeters A1 and A2 . Both ammeters A1 and A2 have the same maximum scale reading Imax1=Imax2=Imax. To build A1 ,shunt resistor of resistance Rsh1is used and to build A2 , shunt resistor of resistance Rsh2 is used. The value of these shunt resistor resistances are such that: Rsh1=3Rsh2. What is the ratio oftheir internal resistances: r1:r2?

Answers

Answer:

there are 3 photos attached. so check

Explanation:

Question 3 of 10
What has the same value no matter where it is located in the universe?
A. Volume
B. Weight
C. Mass
D. Density
Reset Selection

Answers

Answer:

C. Mass

Explanation:

if C is the vector sum of A and B C=A+B what must be true about directions and magnitude of A and B if C=A+B? what must be true about the directions and magnitude of A and B if C=0​

Answers

The vector sum is the algebraic sum if the two vectors have the same direction.

The sum vector is zero if the two vectors have the same magnitude and opposite direction

Vector addition is a process that can be performed graphically using the parallelogram method, see  attached, where the second vector is placed at the tip of the first and the vector sum goes from the origin of the first vector to the tip of the second.

There are two special cases where the vector sum can be reduced to the algebraic sum if the vectors are parallel

case 1. if the two vectors are parallel, the sum vector has the magnitude of the sum of the magnitudes of each vector

case 2. If the two vectors are antiparallel and the magnitude of the two vectors is the same, the sum gives zero.

In summary in the sum of vectors If the vectors are parallel it is reduced to the algebraic sum, also in the case of equal magnitude and opposite direction the sum is the null vector

a) Magnitudes: [tex]\| \vec A\| \ge 0[/tex], [tex]\|\vec B\| \ge 0[/tex], [tex]\|\vec C\| \ge 0[/tex]; Directions: [tex]\theta_{A} \in (-\infty, +\infty)[/tex] for [tex]\|\vec A\|\ne 0[/tex]. Undefined for [tex]\|\vec A\| = 0[/tex], [tex]\theta_{B} \in (-\infty, +\infty)[/tex] for [tex]\|\vec B\|\ne 0[/tex]. Undefined for [tex]\|\vec B\| = 0[/tex], [tex]\theta_{C} \in (-\infty, +\infty)[/tex] for [tex]\|\vec C\|\ne 0[/tex]. Undefined for [tex]\|\vec C\| = 0[/tex].

b) Magnitudes: [tex]\|\vec A\| \ge 0[/tex], [tex]\|\vec B\| \ge 0[/tex], [tex]\|\vec C\| = 0[/tex]; Directions: [tex]|\theta_{A}-\theta_{B}| = 180^{\circ}[/tex], [tex]\theta_{C}[/tex] is undefined.

a) Let suppose that [tex]\vec A \ne \vec O[/tex], [tex]\vec B \ne \vec O[/tex] and [tex]\vec C \ne \vec O[/tex], where [tex]\vec O[/tex] is known as Vector Zero. By definitions of Dot Product and Inverse Trigonometric Functions we derive expression for the magnitude and directions of [tex]\vec A[/tex], [tex]\vec B[/tex] and [tex]\vec C[/tex]:

Magnitude ([tex]\vec A[/tex])

[tex]\|\vec A\| = \sqrt{\vec A\,\bullet\,\vec A}[/tex]

[tex]\| \vec A\| \ge 0[/tex]

Magnitude ([tex]\vec B[/tex])

[tex]\|\vec B\| = \sqrt{\vec B\,\bullet\,\vec B}[/tex]

[tex]\|\vec B\| \ge 0[/tex]

Magnitude ([tex]\vec C[/tex])

[tex]\|\vec C\| = \sqrt{\vec C\,\bullet \,\vec C}[/tex]

[tex]\|\vec C\| \ge 0[/tex]

Direction ([tex]\vec A[/tex])

[tex]\vec A \,\bullet \,\vec u = \|\vec A\|\cdot \|u\|\cdot \cos \theta_{A}[/tex]

[tex]\theta_{A} = \cos^{-1} \frac{\vec A\,\bullet\,\vec u}{\|\vec A\|\cdot \|u\|}[/tex]

[tex]\theta_{A} = \cos^{-1} \frac{\vec A\,\bullet\,\vec u}{\|\vec A\|}[/tex]

[tex]\theta_{A} \in (-\infty, +\infty)[/tex] for [tex]\|\vec A\|\ne 0[/tex]. Undefined for [tex]\|\vec A\| = 0[/tex].

Direction ([tex]\vec B[/tex])

[tex]\vec B\,\bullet \, \vec u = \|\vec B\|\cdot \|\vec u\| \cdot \cos \theta_{B}[/tex]

[tex]\theta_{B} = \cos^{-1} \frac{\vec B\,\bullet\,\vec u}{\|\vec B\|\cdot \|\vec u\|}[/tex]

[tex]\theta_{B} = \cos^{-1} \frac{\vec B\,\bullet\,\vec u}{\|\vec B\|}[/tex]

[tex]\theta_{B} \in (-\infty, +\infty)[/tex] for [tex]\|\vec B\|\ne 0[/tex]. Undefined for [tex]\|\vec B\| = 0[/tex].

Direction ([tex]\vec C[/tex])

[tex]\vec C \,\bullet\,\vec u = \|\vec C\|\cdot\|\vec u\|\cdot \cos \theta_{C}[/tex]

[tex]\theta_{C} = \cos^{-1}\frac{\vec C\,\bullet\,\vec u}{\|\vec C\|\cdot\|\vec u\|}[/tex]

[tex]\theta_{C} = \cos^{-1} \frac{\vec C\,\bullet\,\vec u}{\|\vec C\|}[/tex]

[tex]\theta_{C} \in (-\infty, +\infty)[/tex] for [tex]\|\vec C\|\ne 0[/tex]. Undefined for [tex]\|\vec C\| = 0[/tex].

Please notice that [tex]\vec u[/tex] is the Vector Unit.

b) Let suppose that [tex]\vec A \ne \vec O[/tex] and [tex]\vec B \ne \vec O[/tex] and [tex]\vec C = \vec O[/tex]. Hence, [tex]\vec A = -\vec B[/tex]. In other words, we find that both vectors are antiparallel to each other, that is, that angle between [tex]\vec A[/tex] and [tex]\vec B[/tex] is 180°. From a) we understand that [tex]\|\vec A\| \ge 0[/tex], [tex]\|\vec B\| \ge 0[/tex], but [tex]\|\vec C\| = 0[/tex].

Then, we have the following conclusions:

Magnitude ([tex]\vec A[/tex])

[tex]\|\vec A\| \ge 0[/tex]

Magnitude ([tex]\vec B[/tex])

[tex]\|\vec B\| \ge 0[/tex]

Magnitude ([tex]\vec C[/tex])

[tex]\|\vec C\| = 0[/tex]

Directions ([tex]\vec A[/tex], [tex]\vec B[/tex]):

[tex]|\theta_{A}-\theta_{B}| = 180^{\circ}[/tex]

Direction ([tex]\vec C[/tex]):

Undefined

Light of a given wavelength is used to illuminate the surface of a metal, however, no photoelectrons are emitted. In order to cause electrons to be ejected from the surface of this metal you should: ___________

a. use light of the same wavelength but increase its intensity.
b. use light of a shorter wavelength.
c. use light of the same wavelength but decrease its intensity.
d. use light of a longer wavelength.

Answers

Answer:

use light of the same wavelength but decrease it's intensity

A race car goes from a complete stop at the start line to 150 miles per hour in 5 seconds. What is its acceleration? Show your work.

Answers

Answer:

Explanation:

150/5  = 30

30mph per 1 second

A 1.50 kg book is sliding along a rough horizontal surface. At point A it is moving at 3.21 m/s , and at point B it has slowed to 1.25 m/s .
Part A
How much work was done on the book between A and B ?
Part B
If -0.750J of work is done on the book from B to C , how fast is it moving at point C ?
Part C
How fast would it be moving at C if 0.750J of work were done on it from B to C ?

Answers

I assume friction is the only force acting on the book as it slides.

(A) By the work-energy theorem, the total work performed on the book as it slides is equal to the change in its kinetic energy:

W = ∆K

W = 1/2 (1.50 kg) (1.25 m/s)² - 1/2 (1.50 kg) (3.21 m/s)²

W-6.56 J

(B) Using the work-energy theorem again, the speed v of the book at point C is such that

-0.750 J = 1/2 (1.50 kg) v ² - 1/2 (1.50 kg) (1.25 m/s)²

==>   v = 0.750 m/s

(C) Take the left side to be positive, then solve again for v.

0.750 J = 1/2 (1.50 kg) v ² - 1/2 (1.50 kg) (1.25 m/s)²

==>   v1.60 m/s

A 69.0-kg astronaut is floating in space, luckily he has his trusty 28.0-kg physics book. He throws his physics book and accelerates at 0.0130 m/s2 in the opposite direction. What is the magnitude of the acceleration of the physics book?

Answers

Answer:

0.032 [tex]m/s^2[/tex]

Explanation:

Given :

Weight of the astronaut = 69 kg

Weight of the physics book = 28 kg

Acceleration of the astronaut = 0.0130 [tex]m/s^2[/tex]

The force that is applied on the astronaut :

[tex]F=ma[/tex]

   [tex]$=69 \times 0.013$[/tex]

   = 0.897 N

Therefore, by Newton's 3rd law, we know that the force applied on the physics book is also F = 0.897 N

Therefore, the acceleration of the physics book is given by :

[tex]$a = \frac{\text{Force on physics book}}{\text{mass of physics book}}$[/tex]

[tex]$a = \frac{0.897}{28}$[/tex]

a = 0.032 [tex]m/s^2[/tex]

Hence, the acceleration of the physics book is  0.032 [tex]m/s^2[/tex].

Answer:

The acceleration of astronaut is 5.27 x 10^-3 m/s^2.

Explanation:

mass of astronaut, M = 69 kg

Mass of book, m = 28 kg

acceleration of book, a = 0.013 m/s^2

Let the acceleration of astronaut is A.

According to the Newton's third law, for every action there is an equal and opposite reaction.

So, the force acting on the book is same as the force acting on the astronaut but the direction is opposite to each other.

M A = m a

69 x A = 28 x 0.013

A = 5.27 x 10^-3 m/s^2

(c) It takes you hours to to bring the turkey from to . During that time, the electrical grid transfers a constant Watts of power into the the oven. Take the turkey and the air in the oven to be your system. What was the thermal transfer of energy between the system and the surroundings

Answers

Complete Question

(c) It takes you 5 hours to to bring the turkey from 10.0°C to 75.0 °C. During that time, the electrical grid transfers a constant 2500.0 Watts of power into the the oven. Take the turkey and the air in the oven to be your system. What was the thermal transfer of energy between the system and the surroundings?

Answer:

[tex]Q=4.50 *10^7J[/tex]

Explanation:

From the question we are told that:

Time [tex]t=5hours[/tex]

Temperature rise [tex]dT= 65\textdegree[/tex]

Power [tex]P=2500.0 Watts[/tex]

Generally, the equation for Power is mathematically given by

[tex]P=\frac{Q}{t}[/tex]

Therefore

[tex]Q=2500*5*360[/tex]

[tex]Q=4.50 *10^7J[/tex]

A wire long and with mass is positioned horizontally near the earth's surface and perpendicular to a horizontal magnetic field of magnitude . What current I must flow through the wire in order that the wire accelerate neither upwards nor downwards

Answers

The question is incomplete. The complete question is :

A wire 0.6 m long and with mass m = 11 g is positioned horizontally near the earth's surface and perpendicular to a horizontal magnetic field of magnitude B = 0.4 T. What current I must flow through the wire in order that the wire accelerate neither upwards nor downwards? The magnetic field is directed into the page.

Solution :

Given :

Length of the wire, L = 0.6 m

Mass of the wire length, m = 11 g

                                             = [tex]11 \times 10^{-3}[/tex] kg

Magnetic field , B = 0.4 T

Know we know that :

ILB = mg

or [tex]$I=\frac{mg}{BL}$[/tex]

 [tex]$I= \frac{(11 \times 10^{-3})(9.81)}{(0.4)(0.6)}$[/tex]

 [tex]I=0.44963\ A[/tex]

 [tex]I = 449.63 \ mA[/tex]

potential diffetence​

Answers

Answer:

6v

Explanation:

V=IR

V= 2* 3

V= 6 volts

12. A concave lens has a focal length of 10 cm. An object 2.5 cm high is placed 30 cm from the lens. Determine the position and size of the image. (3)​

Answers

Answer:

I think 9.5

Explanation:

............

Do you believe in ghost​

Answers

Answer:

well its about our thinking but i do believe in ghost a little

II) One 3.2-kg paint bucket is hanging by a massless cord from another 3.2-kg paint bucket, also hanging by a massless cord, as shown in Fig. 4-49. ( ) If the buckets are at rest, what is the tension in each cord? ( ) If the two buckets are pulled upward with an acceleration of 1.25 m/s by the upper cord, calculate the tension in each cord

Answers

Answer:

Here , mass of bucket ,m = 3.2 Kg

Now , let the tension in upper rope is T1

the tension in the middle rope is T2

a)

For lower bucket, balancing forces in vertical direction

T2 - mg = 0

T2 = mg

T2 = 3.2 *9.8

T2 = 31.36 N

tension in the middle rope is 31.36 N

For the upper bucket , balancing forces in vertical direction

T1 - T2 - mg = 0

T1 = T2 + 3.2 *9.8

T1 = 62.72 N

the tension in the upper rope is 62.72 N

B)

for a = 1.25 m/s^2

Using second law of motion ,for both the buckets

Fnet = ma

T1 - 2mg = 2m*a

T1 = 2*3.2*(9.8 +1.25)

T1 = 70.72 N

the tension in the upper rope is 70.7 N

Now , the lower bucket

Using second law of motion,

T2 - mg = ma

T2 = 3.2 * (9.8 + 1.25)

T2 = 35.36 N

the tension in the lower rope is 35.36 N

Joule is a SI unit of power
Measuring cylinder is used to measure the volume of a liquid

Answers

Answer:

The SI unit of power is watt

If the mass of an object is 10 kg and the
velocity is -4 m/s, what is the momentum?
A. 4 kgm/s
B. -40 kgm/s
C.-4 kgm/s
D. 40 kgm/s

Answers

Answer:

B. -40 kgm/s is the answer

RATIO of longest wavelengths corresponding to Lyman and Balmer series in hydrogen spectrum is:
1) 7/29
2) 9/31
3) 5/27
4) 5/23​

Answers

Answer:

[tex]5/27[/tex]

Explanation:

wavelengths for Lyman series

[tex]\lambda=\frac{1}{R(1-\frac{1}{4} })=\frac{4}{3R}[/tex]

wavelengths for Balmer series

[tex]\lambda_B=\frac{1}{R(\frac{1}{4}-\frac{1}{9}) } =\frac{1}{R(\frac{5}{36}) } =\frac{36}{5R}[/tex]

[tex]\frac{ \lambda_L}{ \lambda_B} =\frac{4}{3R} \times\frac{5R}{36} =5/27[/tex]

OAmalOHopeO

The ratio of longest wavelengths corresponding to the Lyman and Balmer series in the hydrogen spectrum is 5/27. The correct option is 3.

What is Lyman and Balmer series?

Lyman and Balmer series are sets of spectral lines in the emission spectrum of hydrogen, which result from the transitions of the electron from higher energy levels to lower energy levels.

The Lyman series consists of spectral lines that are produced by transitions of the electron from higher energy levels to the n=1 energy level. These transitions release energy in the form of ultraviolet photons. The lowest energy level in hydrogen is the n=1 energy level, which is also called the ground state. Therefore, the Lyman series includes the transition of the electron from any energy level greater than or equal to n=2 to the ground state.

The Balmer series consists of spectral lines that are produced by transitions of the electron from higher energy levels to the n=2 energy level. These transitions release energy in the form of visible photons. The lowest energy level in the Balmer series is the n=2 energy level. Therefore, the Balmer series includes the transition of the electron from any energy level greater than or equal to n=3 to the n=2 energy level.

Lyman and Balmer's series are named after the scientists who discovered them. The Lyman series is named after Theodore Lyman, an American physicist who discovered the series in 1906. The Balmer series is named after Johann Balmer, a Swiss mathematician who discovered the series in 1885.

Here in the Question,

The longest wavelength in the Lyman series of the hydrogen spectrum corresponds to the transition from the n = 2 energy level to the n = 1 energy level, while the longest wavelength in the Balmer series corresponds to the transition from the n = 3 energy level to the n = 2 energy level.

The wavelengths of these transitions can be calculated using the Rydberg formula:

1/λ = R(1/n1^2 - 1/n2^2)

where λ is the wavelength of the photon emitted, R is the Rydberg constant (1.097 × 10^7 m^-1), and n1 and n2 are the initial and final energy levels of the electron.

For the longest wavelength in the Lyman series, we have n1 = 2 and n2 = 1, so:

1/λ_lyman = R(1/2^2 - 1/1^2) = 3R/4

For the longest wavelength in the Balmer series, we have n1 = 3 and n2 = 2, so:

1/λ_balmer = R(1/3^2 - 1/2^2) = 5R/36

Therefore, the ratio of the longest wavelengths in the Lyman and Balmer series is:

λ_lyman/λ_balmer = (3R/4)/(5R/36) = 27/20

Simplifying this ratio gives:

λ_lyman/λ_balmer = 27/20

Multiplying both the numerator and denominator by 1/3R, we get:

λ_lyman/λ_balmer = (1/2)/(1/3) = 3/2

Therefore, the ratio of the longest wavelengths in the Lyman and Balmer series is 3:2, or 3/5 in fractional form. Simplifying this ratio gives:

λ_lyman/λ_balmer = 5/3

Taking the reciprocal of both sides, we get:

λ_balmer/λ_lyman = 3/5

Therefore, the correct answer is (3) 5/27.

To learn about the ratio of the minimum wavelength of Lyman and Balmer series click:

https://brainly.com/question/12725892

#SPJ2

Two loudspeakers are placed 1.8 m apart. They play tones of equal frequency. If you stand 3.0 m in front of the speakers, and exactly between them, you hear a minimum of intensity. As you walk parallel to the plane of the speakers, staying 3.0 m away, the sound intensity increases until reaching a maximum when you are directly in front of one of the speakers. The speed of sound

Answers

The question is incomplete. The complete question is :

Two loudspeakers are placed 1.8 m apart. They play tones of equal frequency. If you stand 3.0 m in front of the speakers, and exactly between them, you hear a minimum of intensity. As you walk parallel to the plane of the speakers, staying 3.0 m away, the sound intensity increases until reaching a maximum when you are directly in front of one of the speakers. The speed of sound in the room is 340 m/s.

What is the frequency of the sound?

Solution :

Given :

The distance between the two loud speakers, [tex]d = 1.8 \ m[/tex]

The speaker are in phase and so the path difference is zero constructive interference occurs.

At the point [tex]D[/tex], the speakers are out of phase and so the path difference is [tex]$=\frac{\lambda}{2}$[/tex]

Therefore,

[tex]$AD-BD = \frac{\lambda}{2}[/tex]

[tex]$\sqrt{(1.8)^2+(3)^2-3} =\frac{\lambda}{2}$[/tex]

[tex]$\lambda = 2 \times 0.4985$[/tex]

[tex]$\lambda = 0.99714 \ m$[/tex]

Thus the frequency is :

[tex]$f=\frac{v}{\lambda}$[/tex]

[tex]$f=\frac{340}{0.99714}$[/tex]

[tex]f=340.9744[/tex] Hz

a standard bathroom scale is placed on an elevator. A 34 kg boy enters the elevator on the first floor and steps on the scale. What will the scale read (in newtons) when the elevator begins to accelerate upward at 0.4 m/s2

Answers

Answer:F = 255 N

Explanation:

It is given that,

Mass of the boy, m = 25 kg

Acceleration of the elevator,  

The elevator is accelerating in upward direction. The net force acting on the boy is given by :

g is the acceleration due to gravity

F = 255 N

The scale reading is 255 N as it begins to accelerate upward. hence, this is the required solution.

In a photoelectric effect experiment, it is observed that violet light does not eject electrons from a particular metal. Next, red light with the same intensity is incident on the same metal. Which result is possible

Answers

Answer:

No ejection of photo electron takes place.

Explanation:

When a photon of suitable energy falls on cathode, then the photoelectrons is emitted from the cathode. This phenomenon is called photo electric effect.

The minimum energy required to just  eject an electron is called work function.

The photo electric equation is

E = W + KE

where, E is the incident energy, W is the work function and KE is the kinetic energy.

W = h f

where. h is the Plank's constant and f is the threshold frequency.

Now, when the violet light is falling, no electrons is ejected. When the red light is falling, whose frequency is less than the violet light, then again no photo electron is ejected from the metal surface.

Air enters a nozzle steadily at 2.21 kg/m3 and 20 m/s and leaves at 0.762 kg/m3 and 150 m/s. If the inlet area of the nozzle is 60 cm2, determine (a) the mass flow rate through the nozzle, and (b) the exit area of the nozzle

Answers

a) The mass flow rate through the nozzle is 0.27 kg/s.

b) The exit area of the nozzle is 23.6 cm².

a) The mass flow rate through the nozzle can be calculated with the following equation:

[tex] \dot{m_{i}} = \rho_{i} v_{i}A_{i} [/tex]

Where:

[tex]v_{i}[/tex]: is the initial velocity = 20 m/s

[tex]A_{i}[/tex]: is the inlet area of the nozzle = 60 cm²  

[tex]\rho_{i}[/tex]: is the density of entrance = 2.21 kg/m³

[tex] \dot{m} = \rho_{i} v_{i}A_{i} = 2.21 \frac{kg}{m^{3}}*20 \frac{m}{s}*60 cm^{2}*\frac{1 m^{2}}{(100 cm)^{2}} = 0.27 kg/s [/tex]  

Hence, the mass flow rate through the nozzle is 0.27 kg/s.

b) The exit area of the nozzle can be found with the Continuity equation:

[tex] \rho_{i} v_{i}A_{i} = \rho_{f} v_{f}A_{f} [/tex]

[tex] 0.27 kg/s = 0.762 kg/m^{3}*150 m/s*A_{f} [/tex]

[tex] A_{f} = \frac{0.27 kg/s}{0.762 kg/m^{3}*150 m/s} = 0.00236 m^{2}*\frac{(100 cm)^{2}}{1 m^{2}} = 23.6 cm^{2} [/tex]

Therefore, the exit area of the nozzle is 23.6 cm².

You can find another example of mass flow rate here: https://brainly.com/question/13346498?referrer=searchResults

I hope it helps you!                                                                   

a) Mass flow rate through the nozzle: 0.265 kilograms per second, b) Exit area of the nozzle: 23.202 square centimeters.

We determine the Mass Flow Rate through the nozzle and the Exit Area of the nozzle by means of the Principle of Mass Conservation. A nozzle is a device that works at Steady State, so that Mass Balance can be reduced into this form:

[tex]\dot m_{in} = \dot m_{out}[/tex] (1)

Where:

[tex]\dot m_{in}[/tex] - Inlet mass flow, in kilograms per second.

[tex]\dot m_{out}[/tex] - Outlet mass flow, in kilograms per second.

Given that air flows at constant rate, we expand (1) by dimensional analysis:

[tex]\rho_{in} \cdot A_{in}\cdot v_{in} = \rho_{out}\cdot A_{out}\cdot v_{out}[/tex] (2)

Where:

[tex]\rho_{in}, \rho_{out}[/tex] - Air density at inlet and outlet, in kilograms per cubic meter.

[tex]A_{in}, A_{out}[/tex] - Inlet and outlet area, in square meters.

[tex]v_{in}, v_{out}[/tex] - Inlet and outlet velocity, in meters per second.

a) If we know that [tex]\rho_{in} = 2.21\,\frac{kg}{m^{3}}[/tex], [tex]A_{in} = 60\times 10^{-4}\,m^{2}[/tex] and [tex]v_{in} = 20\,\frac{m}{s}[/tex], then the mass flow rate through the nozzle is:

[tex]\dot m = \rho_{in}\cdot A_{in}\cdot v_{in}[/tex]

[tex]\dot m = \left(2.21\,\frac{kg}{m^{3}} \right)\cdot (60\times 10^{-4}\,m^{2})\cdot \left(20\,\frac{m}{s} \right)[/tex]

[tex]\dot m = 0.265\,\frac{kg}{s}[/tex]

The mass flow rate through the nozzle is 0.265 kilograms per second.

b) If we know that [tex]\rho_{in} = 2.21\,\frac{kg}{m^{3}}[/tex], [tex]A_{in} = 60\times 10^{-4}\,m^{2}[/tex], [tex]v_{in} = 20\,\frac{m}{s}[/tex], [tex]\rho_{out} = 0.762\,\frac{kg}{m^{3}}[/tex] and [tex]v_{out} = 150\,\frac{m}{s}[/tex], then the exit area of the nozzle is:

[tex]\rho_{in} \cdot A_{in}\cdot v_{in} = \rho_{out}\cdot A_{out}\cdot v_{out}[/tex]

[tex]A_{out} = \frac{\rho_{in}\cdot A_{in}\cdot v_{in}}{\rho_{out}\cdot v_{out}}[/tex]

[tex]A_{out} = \frac{\left(2.21\,\frac{kg}{m^{3}} \right)\cdot (60\times 10^{-4}\,m^{2})\cdot \left(20\,\frac{m}{s} \right)}{\left(0.762\,\frac{kg}{m^{3}} \right)\cdot \left(150\,\frac{m}{s} \right)}[/tex]

[tex]A_{out} = 2.320\times 10^{-3}\,m^{2}[/tex]

[tex]A_{out} = 23.202\,cm^{2}[/tex]

The exit area of the nozzle is 23.202 square centimeters.

The car has a mass of 0·50 kg. The boy
now increases the speed of the car to 6·0
ms-1 . The total radial friction between
the car and the track has a maximum
value of 7.0 N. Show by calculation that
the car cannot continue to travel in the circular path.

Answers

Answer:

A solenoid is a type of electromagnet, the purpose of which is to generate a controlled magnetic field through a coil wound into a tightly packed helix. The coil can be arranged to produce a uniform magnetic field in a volume of space when an electric current is passed through it.

The car cannot continue to travel in the circular path, if the radius of the circular track is less than 2.57 m.

What is meant by centripetal force ?

Centripetal force is described as the force applied to a body that is travelling in a circular motion and is pointed in the direction towards the center of the circular path.

Here,

Mass of the car, m = 0.5 kg

Velocity of the car, v = 6 m/s

Radial friction between the car and the track, f = 7 N

The necessary centripetal force for the car to execute the circular motion is provided by the maximum radial frictional force between the car and the track.

So, the condition that the car cannot continue to travel in the circular path is that the centripetal force required is greater than the maximum radial friction.

So,

mv²/r > f

0.5 x 6²/r > 7

Therefore, the radius of the circular track,

r < 18/7

r < 2.57 m

Hence,

The car cannot continue to travel in the circular path, if the radius of the circular track is less than 2.57 m.

To learn more about centripetal force, click:

https://brainly.com/question/14249440

#SPJ3

how much heat is produced in one hour by an electric iron which draws 2.5ampere when connected to a 100V supply​

Answers

Explanation:

I=2.5 Ampere ; V=100V ;t = 1 hour=60secs

We know Heat = VIt

H=100×2.5×60=15,000J

If an object with constant mass is accelerating, what does Newton's second
law imply?
A. It will continue to accelerate until it meets an opposing force.
B. The object is exerting an opposite but equal force.
C. A force must be acting on the object.
D. The object will be difficult to decelerate.

Answers

Answer:

C. A force must be acting on the object.

Explanation:

This is due to the action of its momentum direction.

[tex].[/tex]

Other Questions
The angle between 5i-j+k & 2i-j+k is Find a (Round to the nearest tenth). PLS HURRY!! Cardio kickboxing is a form of ________ exercise. What is a nuclear weaponmoratorium?A. Nuclear weapons would be donated to smallercountries that could not afford them.B. There would be a need to increase weapons toprotect a nation.C. There would be a stoppage of making more nuclearweapons. find the derivative of e power ax divide by log bx The pair of figures to the right are similar. The area of one figure is given. Find the area of the other figure to the nearest whole number. Area of larger triangle = 165 ft^2 Thank you!! Why is bromine more electronegative than iodine? A 210 Ohm resistor uses 9.28 W ofpower. How much current flowsthrough the resistor?(Unit = A) A company determines that its weekly online sales, Upper S (t ), in hundreds of dollars, t weeks after online sales began can be estimated by the equation below. Find the average weekly sales for the first 3 weeks after online sales began. Upper S (t )equals2 e Superscript t A sinewave has a period (duration of one cycle) of 645 s. What is the corresponding frequency of this sinewave, in kHz, expressed to 3 significant figures?please help me figure this out I am so confused There are some sections of the SDS that are not mandatory True or false The accounting records of Jamaican Importers, Inc., at January 1, 2021, included the following: Assets: Investment in IBM common shares $ 1,345,000 Less: Fair value adjustment (145,000) $ 1,200,000 No changes occurred during 2021 in the investment portfolio. Prepare appropriate adjusting entry(s) at December 31, 2021, assuming the fair value of the IBM common shares was:_____. 1, $ 1,175,000 2, $ 1,275,000 3, $ 1,375,00 Which sentence uses theunderlined academicvocabulary word incorrectly?eA. I would like to modify my statement; Ineed to add some details I left out.B. I need to modify my diet to allow for ahigher protein intakeC. When I grazed that plant, I may havejust czposed myself to poison ivy.D. I need to modify myself to bed-- it'slate and I'm tired, Governor Orval Faubus is associated withA. the Massive Resistance speech.B. the Southern Manifesto.C. barring the integration of Little Rock Central High School. what is the name of the world most amazing mountain What is the function of the Moderator band in the right ventricle? When is the universal theme of story often revealed The equation y=2(x-1)^2-5y=2(x1) 2 5y, equals, 2, left parenthesis, x, minus, 1, right parenthesis, squared, minus, 5 is graphed in the xyxyx, y-plane. Which of the following statements about the graph is true? What is the impact on human achievement?A. SocialB. CulturalC. PoliticalD. Economic what are the features of dot net ???