Answer:
Atmospheric water generator is used in regions that have scarcity of water or have polluted water. These generators are reliable sources of clean and safe water and hence reduces dependency on bottled water.
Atmospheric water generator extract water from the air (humid air) through condensation. Extracted water then cools down to temperature below its dew point thereby producing potable drinking water.
Explanation:
Atmospheric water generator is used in regions that have scarcity of water or have polluted water. These generators are reliable sources of clean and safe water and hence reduces dependency on bottled water.
Atmospheric water generator extract water from the air (humid air) through condensation. Extracted water then cools down to temperature below its dew point thereby producing potable drinking water.
Answer:
A device that collects water from humid ambient air is known as an atmospheric water generator. Condensation is the process of extracting water vapor from the air by chilling it below its dew point, exposing it to desiccants, or pressurizing it. An AWG, unlike a dehumidifier, is meant to make the water drinkable. Because there is nearly always a little amount of water in the air that may be collected, AWGs are useful in situations where clean drinking water is difficult or impossible to get. Cooling and desiccants are the two most common ways used.
Explanation:
Having enough folic acid in your system by the early weeks of pregnancy is critical to prevent spina bifida.
Answer:
Yes.
Explanation:
Yes, enough folic acid in the body by the early weeks of pregnancy helps to prevent spina bifida. The body of woman uses folate during the pregnancy which produces red and white blood cells that help your baby to grow. Folate also lowers the risk of neural tube defect (NTD) in the unborn baby. Neural tube defect (NTDs) are the serious birth defects that greatly affect the spinal cord, brain and skull of the baby.
A 3.06 gram sample of an unknown hydrocarbon with empirical formula CH2O was found to contain 0.0170 moles of the substance. What are the molecular mass and molecular formula, respectively, of the compound
Answer:
180 amu
C₆H₁₂O₆
Explanation:
Step 1: Determine the molecular mass of the compound
The sample has a mass (m) of 3.06 g and it contains (n) 0.0170 moles. The molar mass M is:
M = m/n = 3.06/0.0170 mol = 180 g/mol
Then, the molecular mass is 180 amu.
Step 2: Determine the molar mass of the empirical formula.
M(CH₂O) = 1 × M(C) + 2 × M(H) + 1 × M(O)
M(CH₂O) = 1 × 12 g/mol + 2 × 1 g/mol + 1 × 16 g/mol = 30 g/mol
Step 3: Determine the molecular formula
First, we will determine "n" according to the following expression.
n = molar mass molecular formula / molar mass empirical formula
n = 180 g/mol / 30 g/mol = 6
The molecular formula is:
n × CH₂O = 6 × CH₂O = C₆H₁₂O₆
The table shows the recipe and the available ingredients for making the maximum possible number of sandwiches.
Making Sandwiches
Recipe for One Sandwich:
2 cheese slices, 1 ham slice, 2 bread slices
Ingredients Available:
12 cheese slices, 10 ham slices, 12 bread slices
If the ingredients represent reactants of a chemical reaction, which of the following represents the leftover reactant?
A. 2 ham slices
B. 4 ham slices
C. 2 cheese slices
D. 4 cheese slices
Answer:
B. 4 ham slices
Explanation:
A chemical reaction involves one or more substances known as reactants combining chemically to give one or more substances known as products.
Reactants in chemical reactions combine in definite mole or mass ratios to give products. Therefore, when one substance is present in excess of what is required to combine with another to form products, that substance is known as the excess reagent. The other substance which is present in a smaller amount and which when used up, the reaction stops is known as the limiting reagent.
From the illustration of the sandwiches in the question, the recipe for one sandwich represents the chemical equation of a reaction. The equation form is given below:
2 cheese slices + 1 ham slice + 2 bread slices ---> 1 sandwich
The ratio of the reactant is 2 : 1 : 2
From the available ingredients, 12 cheese slices, 10 ham slices, 12 bread slices.
12 cheese slices will require 6 ham slices and 12 bread slices to produce 6 sandwiches.
However, since there are 10 ham slices, 4 ham slices will be left over unused. This is the excess or leftover reactant.
Answer:
B. 4 ham slices
Explanation:
Got it right on the test
What are the laws and calculations governing gas behavior?
Answer:
Laws governing gas behavior.
Explanation:
Boyle's law:
It relates the pressure and volume of an ideal gas at a constant temperature.
According to this law:
"The volume of a fixed amount of gas at constant temperature is inversely proportional to its pressure".
[tex]P \alpha V[/tex].
Charle's law:
It relates the volume and absolute temperature of an ideal gas at a constant pressure.
According to this law:
"The volume of a fixed amount of gas at constant pressure is directly proportional to its absolute temperature".
[tex]V \alpha T[/tex].
Avogadro's law:
According to this law:
equal volumes of all gases under the same conditions of temperature and pressure contain, an equal number of moles.
[tex]V \alpha n[/tex].
Ideal gas equation:
By combining all the above-stated gas laws, this equation is formed as shown below:
[tex]V \alpha \frac{nT}{P} \\=> V= R. nT/ P\\=>PV=nRT[/tex]
R is called universal gas constant.
It has a value of 0.0821L.atm.mol-1.K-1.
Answer:
Boyle's law, Charle's law, Guy Lussac's law and Avogadro's law
Explanation:
All the gases behaves similarly when the environment conditions are normal. But when the physical condition changes like when the pressure, volume or temperature changes, the gas behaves differently and shows a deviation.
The number of gas laws are :
Boyle's Law
Boyle's law states that when the temperature remaining constant, the pressure of the gas varies inversely to the volume of the gas.
i.e. [tex]P \propto \frac{1}{V}[/tex]
Charle' law
Charle's law states that when pressure is constant, the temperature of a gas is directly proportional to the volume.
i.e. , [tex]$T \propto V$[/tex]
Gay Lussac's law
Gay - Lussa law states the volume and the mass of the pressure of the gas is directly proportional to the temperature of the gas.
i.e. P.T = constant
Avogadro's law
It states that under the conditions of same pressure as well as temperatures, the gases having equal volumes will have same numbers of molecules.
i.e. [tex]\frac{V_1}{n_1}=\frac{V_2}{n_2}[/tex] = constant
A pressure cooker contains 5.68 L of air at a temperature of 390 4K if the absolute pressure of the air in the pressure cooker is 205 Pa how many moles of air are in the cooker
Answer:
3.59x10⁻⁴ mol
Explanation:
Assuming ideal behaviour we can solve this problem by using the PV=nRT formula, where:
P = 205 PaV = 5.68 Ln = ?R = 8314.46 Pa·L·mol⁻¹·K⁻¹T = 390.4 KWe input the data given by the problem:
205 Pa * 5.68 L = n * 8314.46 Pa·L·mol⁻¹·K⁻¹ * 390.4 KAnd solve for n:
n = 3.59x10⁻⁴ molcalculate the maximum theoretical percent recovery from the recrystallization of 1.00g of benzoic acid
Answer:
The maximum theoretical percent recovery from the recrystallization of 1.00 g of benzoic acid from 15 mL of water = 94.9%
Note: The question is incomplete. A similar but complete question is given below:
The solubility of benzoic acid in water is 6.80g per 100mL at 100 degrees C and 0.34 g per 100mL at 25 degrees C.
Calculate the maximum theoretical percent recovery from the recrystallization of 1.00 g of benzoic acid from 15 mL of water, assuming the solution is filtered at 25 degrees C.
Explanation:
Solubility of benzoic acid in water at 100 degrees C = 6.80g per 100mL
Solubility of benzoic acid in water at 25 degrees C = 0.34 g per 100mL
Mass of benzoic acid to be theoretically recovered from 100 mL of water = 6.80 g - 0.34 g = 6.46 g
At 25 degrees;
0.34 g of benzoic acid is present in 100 mL of water
x g of benzoic acid will be present in 15 mL of water
x = 0.34 × 15 / 100 = 0.051 g
Mass of benzoic acid to be theoretically recovered from 25 mL of water = 1.00 g - 0.051 g = 0.949 g
Maximum theoretical percent recovery = (mass recovered / original mass dissolved) x 100%
Maximum theoretical percent recovery = (0.949 / 1.00) × 100% = 94.9 %
Therefore, the maximum theoretical percent recovery from the recrystallization of 1.00 g of benzoic acid from 15 mL of water = 94.9%
Please help me, it’s my last try
Answer:
Group 1A: alkali metals, or lithium family.
Group 2A: alkaline earth metals, or beryllium family.
Group 7A: the manganese family.
Group 8A: the iron family.
Explanation:
Answer:
1A: Alkali Metals
2A: Alkaline Earth Metals
7A: Halogens
8A: Noble Gases
Intramolecular forces of attraction are important in holding large molecules together.
a. True
b. False
Answer:
False. Intermolecular forces of attraction are important in holding large molecules together.
Explanation:
Within a molecule, atoms are held together by intramolecular forces. That is, intramolecular forces are the attractive forces that hold the atoms or ions that make up chemical substances (elements and compounds) together, forming a chemical bond.
On the other hand, intermolecular forces are those that act on different molecules or ions and that make them attract or repel each other. In other words, intermolecular forces are those that occur between the different molecules of a compound, and cause these molecules or ions to attract or repel each other.
So, intermolecular forces of attraction are important in holding large molecules together.
which type of chemical bond would be formed between two elements having electron configuration of 1s2 2s2 2p6 3s2 and 1s2 2s2 2p4
Rocks are classified as igneous, metamorphic, or sedimentary according to
Answer:
D. the minerals they contain
Hope this answer is right!!
someone answer please
Answer:
A
Explanation:
Describe the three freezing points. Is there a relationship between the amount of solute in the solution and the freezing temperature
Answer:
The three freezing points will all be slightly different. It is given that a water solution has a freezing point of zero degrees Celsius, so water would have a freezing temperature below that. Salt will lower the freezing point, the more that is added.
Explanation:
13. What does the Law of Conservation of Mass state?
5.96 g of ammonia reacts completely according to the following reaction:
2 NH, (g) + Co, (g) → CN,OH, (s) + H20 (1)
(a) What is the theoretical yield of urea (CN,OH,) for this reaction?
(b) If 13.74 g of urea are produced, what is the percent yield for this equation?
please show work, will give brainliest
Explanation:
this explanation may help u to understand:)
4) The initial rate of the reaction between substances P and Q was measured in a series of
experiments and the following rate equation was deduced.
rate = k[P]?[Q]
Complete the table of data below for the reaction between P and Q
*Help asap please*
Answer:
The initial rate of the reaction between substances P and Q was measured in a series of
experiments and the following rate equation was deduced.
[tex]rate = k[P]^{2} [Q][/tex]
Complete the table of data below for the reaction between P and Q
Explanation:
Given rate of the reaction is:
[tex]rate= k[P]^{2} [Q]\\=>[Q]=\frac{rate}{k.[P]^{2} } \\and \\\\\\\ [P]=\sqrt{\frac{rate}{k.[Q]} }[/tex]
Substitute the given values in this formulae to get the [P], [Q] and rate values.
From the first row,
the value of k can be calulated:
[tex]k=\frac{rate}{[P]^{2}[Q] } \\ =\frac{4.8*10^-3}{(0.2)^{2} 2. (0.30)} \\ =0.4[/tex]
Second row:
2. Rate value:
[tex]rate =0.4* (0.10)^{2} * (0.10)\\\\ =4.0*10^-3mol.dm^-3.s^-1[/tex]
3.Third row:
[tex][Q]=\frac{rate}{k.[P]^{2} } \\ =9.6*10^-3 / (0.4 *(0.40)^{2} \\ =0.15mol.dm^{-3}[/tex]
4. Fourth row:
[tex][P]=\sqrt{\frac{rate}{k.[Q]} }\\=>[P]=\sqrt{\frac{19.2*10^-3}{0.60*0.4} } \\=>[P]=0.283mol.dm^{-3}[/tex]
It took 2.30 minutes using a current of 3.00 A to plate out all the copper from 0.300 L of a solution containing Cu2 . What was the original concentration of Cu2
Answer:
7.16 × 10⁻³ M
Explanation:
Let's consider the reduction reaction of copper during the electroplating.
Cu²⁺(aq) + 2 e⁻ ⇒ Cu(s)
We can calculate the moles of Cu²⁺ present in the solution using the following relations.
1 A = 1 C/s.1 min = 60 s.1 mole of electrons has a charge of 96486 C (Faraday's constant).1 mole of Cu²⁺ is reduced when 2 moles of electrons are gained.The moles of Cu²⁺ reduced are:
[tex]2.30 min \times \frac{60s}{1min} \times \frac{3.00C}{s} \times \frac{1mole^{-} }{96486C} \times \frac{1molCu^{2+} }{2mole^{-} } = 2.15 \times 10^{-3} molCu^{2+}[/tex]
[tex]2.15 \times 10^{-3} moles[/tex] of Cu²⁺ are in 0.300 L of solution.
[Cu²⁺] = 2.15 × 10⁻³ mol/0.300 L = 7.16 × 10⁻³ M
Kristy finds the mass of an object to be 20 grams and the volume to be 10 mL. What is the density of the object? (don't send me links, just give a straight answer)
Which compound is insoluble in water?
Answer:
The answer is C... I am almost positive.
In the reaction below, what is the limiting reactant when 1.24 moles NH3 of reacts with 1.79 moles of NO?
4NH_3 + 6NO (right arrow) 5N_2 + 6H_2O
1. NO
2. H_2O
3. NH_3
4. N_2
Answer:
Option 1. NO
Explanation:
The balanced equation for the reaction is given below below:
4NH₃ + 6NO —> 5N₂ + 6H₂O
From the balanced equation above,
4 moles of NH₃ reacted with 6 moles of NO.
Finally, we shall determine the limiting reactant. This can be obtained as follow:
From the balanced equation above,
4 moles of NH₃ reacted with 6 moles of NO.
Therefore, 1.24 moles of NH₃ will react with = (1.24 × 6)/4 = 1.86 moles of NO
From the calculation made above, we can see that a higher amount of NO (i.e 1.86 moles) than what was given (i.e 1.79 moles) is needed to react completely with 1.24 moles of NH₃.
Therefore, NO is the limiting reactant and NH₃ is the excess reactant.
Thus, the 1st option gives the correct answer to the question
Answer:
1. NO .
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to identify the limiting reactant by simply calculating the moles of any product, say N2, via the moles of each reactant and including the corresponding mole ratio (4:5 and 6:5):
[tex]1.24molNH_3*\frac{5molN_2}{4molNH_3}=1.55molN_2 \\\\1.79molNO*\frac{5molN_2}{6molNO}=1.50molN_2[/tex]
Thus, since NO yields the fewest moles of N2 product, we infer it is the limiting reactant.
Regards!
The compound sodium hydrogen sulfate is a strong electrolyte. Write the reaction when solid sodium hydrogen sulfate is put into water:
Answer:
NaHSO₄(s) --H₂O--> Na⁺(aq) + HSO₄⁻(aq)
Explanation:
Sodium hydrogen sulfate is a strong electrolyte, that is, when dissolved in water it completely dissociates into the cation sodium and the anion hydrogen sulfate. The corresponding chemical equation is:
NaHSO₄(s) --H₂O--> Na⁺(aq) + HSO₄⁻(aq)
Which of the following explains the high boiling
point of water?
a Surface tension
b Polarity
C Capillary action
d Hydrogen bonding
Answer:
The correct answer is - d. hydrogen bonding.
Explanation:
Water has strong hydrogen bonds between its molecules that require a very high amount of energy in order to break. Water molecules are joined together or bound with a strong intermolecular force called hydrogen bonds.
These bonds require more kinetic energy which means more temperature or heat in order to break the bonds and turn into steam and this is the reason it has a high boiling point.
A worker gets paid 11.33 $/hour. The worker works on average 39.7 hours/week for 48 weeks per year. How much does the worker make in 1.7 years?
Answer:
36704 $
Explanation:
First we calculate how much the worker gets paid in one week:
11.33 $/hour * 39.7 hour/week = 449.80 $/weekThen we calculate how many weeks does the worker work in 1.7 years:
48 week/year * 1.7 years = 81.6 weeksFinally we calculate how much does the worker make in 1.7 years:
449.80 $/week * 81.6 weeks = 36704 $Describe the buffer capacity of the acetic acid buffer solution in relation to the addition of both concentrated and dilute acids and bases. Reference the results in Data Tables 1,2,3, and 4 in your answer.
Answer:
The more concentrated acetic acid buffer has a better buffer capacity because requires more moles of acid or base to change the pH than a more diluted acetic acid buffer.
Explanation:
Buffer capacity is defined as the moles of an acid or base that are needed to change the pH of a buffer in 1 unit.
A more concentrated solution of acetic buffer contains more moles of the acid per liter of solution. A solution that contains more moles of the acetic ion or the acetic acid requires more moles of base or acid to change the pH, that means:
The more concentrated acetic acid buffer has a better buffer capacity because requires more moles of acid or base to change the pH than a more diluted acetic acid buffer.
Refer to your completed Table 1d of the recitation guide of ionic compound naming rules to determine whether this statement is true or false. A Roman numeral in a compound name tells you how many of that ion appear in the formula. Select one: True False
Answer:
False
Explanation:
Roman numerals are seen in the names of several compounds. They often appear immediately after the name of central atom in the molecule.
These Roman numerals are used to depict the oxidation state of the central atom in the molecule and not to show how many of that ion appear in the formula.
For instance, in carbon IV oxide, the Roman numeral IV shows that the central atom in the compound-carbon is in the +4 oxidation state.
20ml of water is mixed with 40gm of fine powder. Calculate the concentration of the solution obtained.
Answer:
[tex]\%m=66.7\%[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the concentration of the solution obtained, by knowing 20 mL of water are the same to 20 g and therefore the mass of the solution is 40g+20g=60g.
Next, we apply the following equation to obtain the required concentration:
[tex]\%m=\frac{40g}{60g} *100\%\\\\\%m=66.7\%[/tex]
Regards!
Phosphine, PH3, a reactive and poisonous compound, reacts with oxygen as follows: 4PH3(g) 8O2(g) - P4O10(s) 6H2O(g) If you need to make 6.5 moles of P4O10, how many moles of PH3 is required for the reaction
Answer: 26 moles of [tex]PH_3[/tex] are required for the reaction.
Explanation:
We are given:
Moles of [tex]P_4O_{10}[/tex] = 6.5 moles
The given chemical reaction follows:
[tex]4PH_3(g)+8O_2(g)\rightarrow P_4O_{10}(s)+6H_2O(g)[/tex]
By the stoichiometry of the reaction:
If 1 mole of [tex]P_4O_{10}[/tex] is produced by 4 moles of [tex]PH_3[/tex]
So, 6.5 moles of [tex]P_4O_{10}[/tex] will be produced by = [tex]\frac{4}{1}\times 6.5=26mol[/tex] of [tex]PH_3[/tex]
Hence, 26 moles of [tex]PH_3[/tex] are required for the reaction.
Gamma rays have the highest frequency among all common electromagnetic radiations. It means the gamma rays have the highest energy and the longest wavelength
Answer:
yes
Explanation:
cos of high electron transfer
In this lab, you will be making solutions of potassium permanganate (KMnO4), which has a formula weight of 158.04 g/mole. Remember to show your calculations and include tne Correct unnits in your answers
a) How many grams of KMnO4 would you need to make 1 L of a 2M solution?
b) How many grams of KMnO4 would you need to make 350 mL of a 0.75 M solution?
c) How many grams of KMnO4 would you need to make 80 mL of a 0.01 M solution?
Answer:
A. Mass of KMnO₄ = 316.08 g
B. Mass of KMnO₄ = 41.49 g
C. Mass of KMnO₄ = 0.13 g.
Explanation:
A. Determination of the mass of KMnO₄
We'll begin by determining the number of mole of KMnO₄ in the solution. This can be obtained as follow:
Volume = 1 L
Molarity = 2 M
Mole of KMnO₄ =?
Mole = Molarity × Volume
Mole of KMnO₄ = 2 × 1
Mole of KMnO₄ = 2 moles
Finally, we shall determine the mass of KMnO₄. This can be obtained as follow:
Mole of KMnO₄ = 2 moles
Molar mass of KMnO₄ = 158.04 g/mole
Mass of KMnO₄ =?
Mass = mole × molar mass
Mass of KMnO₄ = 2 × 158.04
Mass of KMnO₄ = 316.08 g
B. Determination of the mass of KMnO₄
We'll begin by determining the number of mole of KMnO₄ in the solution. This can be obtained as follow:
Volume = 350 mL = 350/1000 = 0.35 L
Molarity = 0.75 M
Mole of KMnO₄ =?
Mole = Molarity × Volume
Mole of KMnO₄ = 0.75 × 0.35
Mole of KMnO₄ = 0.2625 mole
Finally, we shall determine the mass of KMnO₄. This can be obtained as follow:
Mole of KMnO₄ = 0.2625 mole
Molar mass of KMnO₄ = 158.04 g/mole
Mass of KMnO₄ =?
Mass = mole × molar mass
Mass of KMnO₄ = 0.2625 × 158.04
Mass of KMnO₄ = 41.49 g
C. Determination of the mass of KMnO₄
We'll begin by determining the number of mole of KMnO₄ in the solution. This can be obtained as follow:
Volume = 80 mL = 80/1000 = 0.08 L
Molarity = 0.01 M
Mole of KMnO₄ =?
Mole = Molarity × Volume
Mole of KMnO₄ = 0.01 × 0.08
Mole of KMnO₄ = 0.0008 mole
Finally, we shall determine the mass of KMnO₄. This can be obtained as follow:
Mole of KMnO₄ = 0.0008 mole
Molar mass of KMnO₄ = 158.04 g/mole
Mass of KMnO₄ =?
Mass = mole × molar mass
Mass of KMnO₄ = 0.0008 × 158.04
Mass of KMnO₄ = 0.13 g
how old was the oldest animal fossil
help thx
Answer:
the Rhyniognatha hirsti
Explanation:
at age 400 million years old
(a) Describe the process by which Nitrogen is obtained from air on a large scale
The element nitrogen exists as a gas and is obtained from air on a large scale by fractional distillation of air.
What is an element?An element is defined as a substance which cannot be broken down further into any other substance. Each element is made up of its own type of atom. Due to this reason all elements are different from one another.
Elements can be classified as metals and non-metals. Metals are shiny and conduct electricity and are all solids at room temperature except mercury. Non-metals do not conduct electricity and are mostly gases at room temperature except carbon and sulfur.
The number of protons in the nucleus is the defining property of an element and is related to the atomic number.All atoms with same atomic number are atoms of same element.
Learn more about element,here:
https://brainly.com/question/14347616
#SPJ2