Answer:
5 + 20 + 6
Step-by-step explanation:
that's how you get
An airplane from Singapore to Melbourne takes about 7 1/2 hours to cover a distance of 6057 km. What is the average speed of the airplane.
Answer: 13.46 km/h
Step-by-step explanation:
7 1/2 hr= 450 min
6057/450= 13.46
DB is a diagonal of parallelogram ABCD
What is the measurement of
Please help ASAP
Answer:
m∠DAB+m∠ADC=180
115+ 29 + m∠ADB=180
m∠ADB=180 - 115 -29
= 36°
What is the range of g ( x ) = 3x − 2, if the domain is { − 1, 0, 1, 2 }?
Answer:
range{-5,4)
Step-by-step explanation:
3(-1)-2= -5
3(2)-2=4
There are 5 pears, 10 grapes, and 4 strawberries in a bag. What is the ratio of all pieces of fruits to pears?
Answer:
19: 5
Step-by-step explanation:
Total fruit is 5+10+4 = 19
fruit: pears
19: 5
Answer:
19:5
Step-by-step explanation:
5+10+4= 19
Pears= 5
Help, please, I'll give brainliest
Solve for x. round to the nearest tenth, if necessary.
Answer:
29
Step-by-step explanation:
all in all it is 180 so 61 + m (which is 90 because it is a right angle)=151
then 180-151=29
WILL MARK BRAINLIEST
picture included^^^^
need help asap please n thank you!
^^^^
Answer:
14
Step-by-step explanation:
The a value is from the center to the maximum
We want from minimum to max so we need 2 times the amplitude
a = 7
2 *7 = 14
Pls help me this is my homework
Answer:
C) 840
C) 87
D) 3000-150n
Step-by-step explanation:
Answer:
c
c
d
Step-by-step explanation:
Parallelogram PARL is similar to parallelogram WXYZ. If AP = 7, PL = 15, and WZ = 45, find the value of c.
Answer:
c = 21
Step-by-step explanation:
**I assume that side WX in my diagram (attached as an image below) is the value of C that we're looking for. ALSO, the sizes and lengths of the parallelograms are NOT to scale.**
If two parallelograms are similar, that means the lengths of the corresponding sides have EQUAL ratios.
PL corresponds with WZ. To get from 15 to 45, you would multiply 15 by 3, so the ratio of the legnths of the corresponding sides between these two parallelograms is 1:3.
With that in mind, we can apply this ratio to find WX.
We know that AP has a length of 7, so we will multiply that by 3, getting a value of 21, and 7:21 ratio is the same as 1:3.
c = 21
Hope this helps (●'◡'●)
help asap! what does sinø=
Answer:
-3/5
Step-by-step explanation:
Pythagorean formula :
x^2 + y^2 = r^2
(-8)^2 + (-6)^2 = r^2
64 + 36 = 100
r^2 = 100
r= 10
sin is the y coordinate over the radius :
-6/10
-3/5
4.Find the first five terms of the recursive sequence
Answer:
5, 12, 19, 26, 33
Step-by-step explanation:
Using the recursive rule and a₁ = 5 , then
a₂ = a₁ + 7 = 5 + 7 = 12
a₃ = a₂ + 7 = 12 + 7 = 19
a₄ = a₃ + 7 = 19 + 7 = 26
a₅ = a₄ + 7 = 26 + 7 = 33
The first 5 terms are 5, 12, 19, 26, 33
Hi I need help with this question please!!! I don’t understand it :/
Answer:
- 22.5
Step-by-step explanation:
Substitute x = 3 into f(x) and x = 16 into h(x) , then
[tex]\frac{1}{2}[/tex] g(3) - h(16)
= [tex]\frac{1}{2}[/tex] × - 3(3)² - (2[tex]\sqrt{16}[/tex] + 1)
= [tex]\frac{1}{2}[/tex] × - 3(9) - (2(4) + 1)
= [tex]\frac{1}{2}[/tex] × - 27 - (8 + 1)
= - 13.5 - 9
= - 22.5
What is the tangent ratio of angle x?
tan x= 20/21
tan x= 21/29
tan x= 20/29
tan x= 21/20
Answer:
[tex]\tan x=21/20[/tex]
Step-by-step explanation:
In any right triangle, the tangent of an angle is equal to its opposite side divided by its adjacent side. (o/a)
For angle [tex]x[/tex], its opposite side is 21 feet and its adjacent side is 20 feet. Therefore, we have:
[tex]\boxed{\tan x=21/20}[/tex]
What is the solution to this equation?
log_8 16 + 2log_8x =2
The value of x for the given equation [tex]log_{8}[/tex](16) + 2[tex]log_{8}[/tex](x) = 2 will be 2 so option (B) must be correct.
What is a logarithm?The exponent indicates the power to which a base number is raised to produce a given number called a logarithm.
In another word, a logarithm is a different way to denote any number.
Given the equation
[tex]log_{8}[/tex](16) + 2[tex]log_{8}[/tex](x) = 2
We know that,
xlogb = log[tex]b^{x}[/tex]
So,
2[tex]log_{8}[/tex](x) = logx²
For the same base
logA + logB = log(AB)
So,
[tex]log_{8}[/tex](16) + [tex]log_{8}[/tex](x)² = 2
[tex]log_{8}[/tex](16x²) = 2
We know that
[tex]log_{a}[/tex](b) = c ⇒ b = [tex]a^{c}[/tex]
so,
[tex]log_{8}[/tex](16x²) = 2 ⇒ 8² = 16x²
x = 2 hence x = 2 will be correct answer.
For more about logarithm
https://brainly.com/question/20785664
#SPJ2
What is the answer? How to solve?
Answer:
a +73°=90°
a= 90°-73°
a =17°
d+18°=90°
d=90°-18°
d =72 °
Use the coordinates of the labeled point to find the point-slope equation of the line.
(12, -1)
Answer:
Choice C.
[tex]y + 1 = - 2(x - 2)[/tex]
Step-by-step explanation:
When converting to
[tex]y = mx + b[/tex]
We are left with:
[tex]y = - 2x + 3[/tex]
Which fits both the x-intercept and y-intercept.
An object is launched at 19.6 meters per second (m/s) from a 58.8-meter tall platform. The equation for the
object's height s at time t seconds after launch is s(t) = - 4.9t2 + 19.6t + 58.8, where s is in meters. Create a
table of values and graph the function. Approximately what is the maximum height that the object will get?
O 76.4 meters
113.5 meters
O 78.4 meters
58.8 meters
Answer:
Step-by-step explanation:
The easiest way to do this is to complete the square on the quadratic. This allows us to see what the vertex is and answer the question without having to plug in a ton of numbers to see what the max y value is. Completing the square will naturally put the equation into vertex form:
[tex]y=-a(x-h)^2+k[/tex] where h will be the time it takes to get to a height of k.
Begin by setting the quadratic equal to 0 and then moving over the constant, like this:
[tex]-4.9t^2+19.6t=-58.8[/tex] and the rule is that the leading coefficient has to be a 1. Ours is a -4.9 so we have to factor it out:
[tex]-4.9(t^2-4t)=-58.8[/tex] Now take half the linear term, square it, and add it to both sides. Our linear term is a -4, from -4t. Half of -4 is -2, and -2 squared is 4, so we add a 4 to both sides. BUT on the left we have that -4.9 out front there as a multiplier, so we ACTUALLY added on to the left was -4.9(4) which is -19.6:
[tex]-4.9(t^2-4t+4)=-58.8-19.6[/tex] and now we have to clean this up. The right side is easy, that is -78.4. The left side...not so much.
The reason we complete the square is to create a perfect square binomial, which is the [tex](x-h)^2[/tex] part from above. Completing the square does this naturally, now it's just up to us to write the binomial created during the process:
[tex]-4.9(t-2)^2=-78.4[/tex] Now, move the constant back over and set the equation back equal to y:
[tex]-4.9(t-2)^2+78.4=s(t)[/tex] and we see that the vertex is (2, 78.4). That means that 2 seconds after launch, the object reached its max height of 78.4 meters, the third choice down.
Wages and salaries
Kelly earns a salary of $68 430 pa how much does he earn each week, each fortnight and each month?
Answer:
Each week = $ 1311.41
Each fortnight = $ 2622.84
Each month = $ 5702.5
Step-by-step explanation:
Given that,
Annual salary of Kelly = $ 68,430
As we know,
There are 52.18 weeks in a year.
So,
Weekly income = Annual salary ÷ no. of weeks in the year
= $ 68,430 ÷ 52.18
= $ 1311.42
Fortnight income = 2 * weekly income
= 2 * $ 1311.42
= $ 2622.84
Each month's income = Annual income ÷ 12(no. of months)
= $ 68,430 ÷ 12
= $ 5702.5
if x=2+√5 find the value of x²-1/x²
Answer:
[tex]{ \tt{ {x}^{2} - \frac{1}{ {x}^{2} } }} \\ = { \tt{ {(2 + \sqrt{5} )}^{2} - \frac{1}{ {(2 + \sqrt{5}) }^{2} } }} \\ = { \tt{ \frac{(2 + \sqrt{5} ) {}^{4} - 1}{ {(2 + \sqrt{5} )}^{2} } }} \\ = { \tt{ \frac{(9 + 4 \sqrt{5}) {}^{2} }{ {(9 + 4\sqrt{5}) }}}} \\ = { \tt{9 + 4 \sqrt{5} }}[/tex]
Answer:
[tex]8\sqrt{5}[/tex]
Step-by-step explanation:
[tex]x = 2 + \sqrt{5}\\\\ x^{2} = (2+ \sqrt{5})^{2} \\\\ \ \ \ \ = 2^{2}+2* \sqrt{5}*2+( \sqrt{5})^{2}\\\\[/tex]
[tex]= 4 + 4 \sqrt{5}+5\\\\= 9+4 \sqrt{5}[/tex]
[tex]\frac{1}{x^{2}}=\frac{1}{9+4\sqrt{5}}\\\\=\frac{1*(9-4\sqrt{5}}{(9+4\sqrt{5})(9-4\sqrt{5})}\\\\=\frac{9-4\sqrt{5}}{9^{2}-(4\sqrt{5})^{2}}\\\\=\frac{9-4\sqrt{5}}{81-4^{2}(\sqrt{5})^{2}}\\\\=\frac{9-4\sqrt{5}}{81-16*5}\\\\=\frac{9-4\sqrt{5}}{81-80}\\\\=\frac{9-4\sqrt{5}}{1}\\\\=9-4\sqrt{5}[/tex]
[tex]x^{2}-\frac{1}{x^{2}}= 9 + 4\sqrt{5} -(9 - 4\sqrt{5})\\\\[/tex]
[tex]= 9 + 4\sqrt{5} - 9 + 4\sqrt{5}\\\\= 9 - 9 + 4\sqrt{5} + 4\sqrt{5}\\\\= 8\sqrt{5}[/tex]
3. Rita is applying for a job as an engineer. Hier starting salary at Company will be $30,000 a $300 yearly
raise. Her starting salary at company will be $65.000 with a 5% increase sach year. If Rata is working at a
company for 5 years. Which company should she pick?
Answer:
The 65,000 salary
Step-by-step explanation:
Because the 30,000 salary after 5 years would be 31,500.
30,000+300=30,300
30,300+300=30,600
30,600+300=30,900
30,900+300=31,200
31,200+300=31,500
The 65,000 paying company
65,000x1.05=68,250
68,250x1.05=71.662.5
71,662.5x1.05=75,245.625
75,245.625x1.05=79,007.90625
79,007.90625x1.05=82,958.3015625
her salary after 5 years would be 82,958.3015625
Multiply. (Use photo). Enter your answer in simplest radical form.
Answer:
72√2
Step-by-step explanation:
3√2 × 2√8 × √3 × √6
The above can be simplified as follow:
3√2 × 2√8 × √3 × √6
Recall
a√c × b√d = (a×b)√(c×d)
3√2 × 2√8 × √3 × √6 = (3×2)√(2×8×3×6)
= 6√288
Recall
288 = 144 × 2
6√288 = 6√(144 × 2)
Recall
√(a×b) = √a × √b
6√(144 × 2) = 6 × √144 × √2
= 6 × 12 × √2
= 72√2
Therefore,
3√2 × 2√8 × √3 × √6 = 72√2
find the measure of acute angle of a right angle triangle when one angle is 60°
Answer:
30 degrees.
Step-by-step explanation:
Let the acute angle be x.
Then as the 2 acute angles in a right triangle sum to 90 degrees,
x = 90 - 60
= 30.
We used the information we know to give us this equation.
90°+60°+x=180°
We add 90° and 60° to give 150°
150°+x=180°
x must therefore be 30°Solve the equation sine Ф=0.6792 for 0°≤Ф≤360
Answer:
42.78⁹, 137.22⁹.
Step-by-step explanation:
sine Ф=0.6792
Angle Ф in the first quadrant = 42.78 degrees.
The sine is also positive in the second quadrant so the second solutio is
180 - 42.78
= 137.33 degres.
-2/3a+5/6a-1/5a-1/6
Answer:
[tex]\frac{-1}{30} a - \frac{1}{6}[/tex]
Step-by-step explanation:
please solve this please
Answer:
3
Step-by-step explanation:
How do I solve this math equation: 7=8-p
Answer:
p = 1
Step-by-step explanation:
7 = 8 - p
7 + p = 8
p = 8-7
p = 1
Answered by Gauthmath
4.
a. The total area of the model is 130 m2. Write an equation to find x. b. Solve the equation by completing the square.
A. (x + 2)(2x + 2) = 130; x = 5.12 m
B. (x + 2)(2x + 2) = 130; x = 6.70 m
C. (x + 2)(x + 2) = 130; x = 9.40 m
D. (x + 2)(2x + 2) = 130; x = 6.58 m
Answer:
(x+2)(2x+2) = 130
x=6.58m
Step-by-step explanation:
The shape of the whole figure is a triangle. Hence the area of the whole figure is expressed as:
Area = Length * Width
Given
Length = 2 + x + x = 2+2x
Width = 2 + x
Area = 130m²
Substitute the resultng values into the formula;
(2+2x)(2+x)= 130
(x+2)(2x+2) = 130
Expand the bracket:
[tex]2x^2+2x+4x+4=130\\2x^2+6x+4=130\\[/tex]
Divide through by 2
[tex]x^2+3x+2=65\\x^2+3x=65-2\\x^2+3x = 63[/tex]
Complete the square by adding the square of the half of the coefficient of x to both sides:
[tex](x^2+3x+(\frac{3}{2} )^2)=63+(\frac{3}{2} )^2[/tex]
[tex](x+\frac{3}{2} )^2=63 + \frac{9}{4} \\(x+\frac{3}{2} )^2=\frac{252+9}{4} \\(x+\frac{3}{2} )^2=\frac{261}{4}\\(x+\frac{3}{2} )^2=65.25[/tex]
Take the square root of both sides
[tex]\sqrt{(x+(\frac{3}{2} ))^2} = \sqrt{65.25}\\x+\frac{3}{2}= 8.078\\x=8.078-1.5\\x=6.58m[/tex]
Hence the value of x is 6.58m
HEELLLPPPPPP what’s the answer????????????????????????? HEELLLLLLLPPPPPPPPPPPPPP
Answer:
(-2,-2)
Step-by-step explanation:
x^2 + y^2 = 9
A circle has an equation of the form
(x-h)^2 + (y-k)^2 = r^2
where the center is at ( h,k) and the radius is r
The circle is centered at (0,0) and has a radius 3
The only point entirely within the circle must have points less than 3
(-2,-2)
What is the range of the function f(x) = -2(6^x) + 3?
o (-inf,-2]
0 (-inf,3)
O [-2,inf)
O [3,inf)
Answer:
write question in short form
Step-by-step explanation:
Help with question 24 the answer is (y-2)(a-b) but I need explain I don’t understand
Answer:
a(y_2)_b(y_2) =a_b)(y_2(