Answer:
B, 10+ /10 units
Step-by-step explanation:
Create a scatterplot for the following population data, using t = 0 to stand for 1950. Then
estimate the population of Namibia in the years 1940, 1997, and 2005. Note: Population
values are in thousands. (Hint: Begin by determining which row is the x-value and which row
is the y-value)
Answer:
The population of Namibia in the years 1940, 1997, and 2005 was 371.2 , 1671.64 and 2064.74 respectively.
Step-by-step explanation:
Refer the attached figure
We will use equation calculator to find the equation of given plot
[tex]y = 483.36 \times e^0.0264x[/tex]
We are supposed to find the population of Namibia in the years 1940, 1997, and 2005.
x values are years
y values are population
For 1940, [tex]x = -10, y = y = 483.36 \times e^{0.0264(-10)} = 371.2[/tex]
For 1997, [tex]x = 47, y = y = 483.36 \times e^{0.0264 \times 47} = 1671.64[/tex]
For 2005,[tex]x = 55, y = y = 483.36 \times e^{0.0264 \times 55} = 2064.74[/tex]
Hence The population of Namibia in the years 1940, 1997, and 2005 was 371.2 , 1671.64 and 2064.74 respectively.
Solve the following formula for m v2=3Pmn
Answer:
m= 0 /(−3np+v2 )
Step-by-step explanation:
How many terms are in 3x + 2y + 8z?
Answer:
three terms
Step-by-step explanation:
3x + 2y + 8z
Since we cannot simplify
There are three terms
3x, 2y, 8z
sometimes true, always true, or never true?
===========================================
Explanation:
I'll use x in place of n
Let y = x^2 - 4x + 5
If we complete the square, then,
y = x^2 - 4x + 5
y = (x^2 - 4x) + 5
y = (x^2 - 4x + 4 - 4) + 5
y = (x^2 - 4x + 4) - 4 + 5
y = (x-2)^2 + 1
The quantity (x-2)^2 is never negative as squaring any real number value is never a negative result. Adding on 1 makes the result positive. So y > 0 regardless of whatever x is. Replace x with n, and this shows how n^2 - 4n + 5 is always positive for any integer n.
------------
You could also use the quadratic formula to find that x^2 - 4x + 5 = 0 has no real solutions, so there are no x intercepts. Either the graph is entirely above the x axis or it is entirely below the x axis.
Plug in any x value you want, say x = 0, and the result is positive. Meaning that whatever x value you plug in will be positive (as the graph can't cross the x axis to go into negative territory)
Anyone know the answer or how to solve this
Answer:
9 for part b 40 for part a
Step-by-step explanation:
if u do 5 times the numbers it gives u the product so 45 is 9 times 5 and 40 os 8 times 5
Answer:
Part A: 9 orange beads
Part B: 40 blue beads
Step-by-step explanation:
Notice that you need to have the proportion of blue beads always 5 times larger than the number of orange beads. therefore you need to complete the table following such pattern:
Part A: for 45 blue beads, she needs to use : 45/5 = 9 orange beads
Part B: for 8 orange beads, she needs to use 8 * 5 = 40 blue beads
given that -6,-6 is on the graph of f x find the corresponding point for the function f(3/4x)
Answer:
The corresponding point is (-8, -6).
Step-by-step explanation:
Given that
(-6,-6) lies on the graph of [tex]f(x)[/tex]
A function is represented in the form:
[tex]y = f(x)[/tex]
i.e. (-6,-6) means value of x = -6 is put and value y came out as -6.
[tex]f(-6) = -6[/tex]
Now, we have to find the corresponding point on [tex]f(\frac{3}{4}x)[/tex].
We know the value of [tex]f(-6)[/tex]
Let us find the value of x where [tex]\frac{3}{4}x[/tex] becomes equal to -6
[tex]\dfrac{3}{4}x=-6\\\Rightarrow 3x=-24\\ \Rightarrow x =-8[/tex]
So, let us put value of [tex]x = -8[/tex] in [tex]f(\frac{3}{4}x)[/tex]:
[tex]f(\frac{3}{4}\times (-8))\\\Rightarrow f(3\times (-2))\\\Rightarrow f(-6) = -6[/tex](as per given statement)
So, the corresponding point is (-8, -6).
I NEED HELP ON THIS QUESTION!!!!! I WILL GIVE BRAINLIEST TO THE BEST ANSWER!!!!
Answer:
D
Step-by-step explanation:
Both are exponential decay.
Answer:
D.Step-by-step explanation:
f(0) = 24, f(1) = 6 and f(2) = 0 means f(x) > 0 in (0,2)
and f(0) > f(1) > f(2) means f is decreasing in (0,2)
g(0) = 15 and g(2) = 0 means g(x) > 0 in (0,2)
and g(0) > g(2) means g is decreasing in (0,2)
how many cars the baseball team needs to wash before it starts making a profit. The team spent $75 setting up the car wash, and they are charging $5 per car for a wa The first step in modeling this situation is to track how much money the baseball team will take in. Write an equation to represent the amount of money collected in dollars, y, in terms of the number of cars washed, x. Ignore the setup cost.
Answer:
y = 5x
Step-by-step explanation:
The revenue (y) is 5 dollars for each car washed. The number of cars washed is x, so the revenue equation is ...
y = 5x
_____
Additional comment
At the end of the exercise of writing revenue and cost and profit equations, you will find that the break-even number of cars is the ratio of fixed cost (start-up cost in this case) to the profit contribution of each car (per-car charge in this case). That is, it will take 75/5 = 15 cars to break even. Each additional car will contribute a positive profit.
Answer:
Equation INCLUDING the setup cost: y = 5x - 75
Equation EXCLUDING the setup cost: y = 5x
Step-by-step explanation:
It spent a total of $75 to set up the car wash.
It is charging $5 per car.
y = amount collected in $
x = number of cars washed
=> We can make an equation INCLUDING the setup cost and EXCLUDING the setup cost.
=> INCLUDING the setup cost.
=> y = 5x - 75
=> I subtracted 75 from 5x because they spent a total of $75 to set up the car wash.
=> I wrote 5x because they get $5 for each car so if they wash 10 cars they get 5 * 10 = $50.
An EXAMPLE from the above equation:
y = 5x -75
=> y = 5*14 - 75
=> y = 70 - 75
=> y = -5
=> This means that if they wash 14 cars, they still have a debt of 5 dollars.
An equation EXCLUDING the setup cost will look like:
=> y = 5x
I wrote this because, they didn't spend any money so they will get 5 dollars per car. How many cars they wash, the answer will be 'number of cars x 5'.
An EXAMPLE from the above equation is:
=> y = 5x
=> y = 5 * 14
=> y = $70
=> This means that if they wash 14 cars, they get $70.
When factoring 6x2−7x−20 by grouping, how should the middle term be rewritten?
It should be written as 8x−15x.
It should be written as −2x−5x.
It should be written as x−8x.
It should be written as −x−7x.
I think its B but im not sure
Is the given equation a quadratic equation? Explain.
x(x−6)=−5
The equation is not a quadratic equation because there is no x2-term.
The equation is a quadratic equation because there is an x2-term.
The equation is not a quadratic equation because the expression is not equal to zero.
The equation is not a quadratic equation because there is a term with degree higher than 2.
Which of the following is an example of the difference of two squares? x2−9
x3−9
(x+9)2
(x−9)2
Answer:
(3x+4)(2x-5)
Step-by-step explanation:
Factor by grouping.
You store square notepaper in a cube shape box with an inside edge length of 3 inches. What is the volume of the box
A cube has sides that are all equal lengths .
Volume of a cube is S^3, where S is the length of the side.
Volume = 3^3 = 3 x 3 x 3 = 27 cubic inches.
The volume of box will be 27 inch³.
A square notepaper is stored in a cube shape box with an inside edge length of 3 inches.
We have to calculate the volume of the box.
What is the volume of a cube ?
The volume of a cube is the multiplication of the edge length (a) for three times i.e., a × a × a = a³ .
As per the question ,
Inside edge length of cube = 3 inches
So ,
the volume of box will be ;
= a × a × a
= 3 × 3 × 3
= 27 inch³
Thus , the volume of box will be 27 inch³.
To learn more about volume of cube click here ;
https://brainly.com/question/25248189
#SPJ2
What is 32 divided by 192
Do you mean 32/192 or 192/32 because 32/192= 0.1666 where 192/32= 6
Answer:
1/6.
Step-by-step explanation:
32/192 Divide top and bottom by 8:
= 4 / 24 Now by 4:
= 1/6.
which is the solution set of 18 - 3n + 2 = n + 20 - 4n Ф 0 all reals
Answer:
all reals
Step-by-step explanation:
Simplified, you have ...
20 -3n = 20 -3n
The equation is a tautology, true for all values of n.
The solution set is "all reals."
Solve for a
5+14a=9a-5 a=
Answer:
-2
Step-by-step explanation:
5+14a=9a-5
+5 +5
10+14a=9a
-9a -9a
10+5a=0
-5a -5a
10= -5a
÷5 ÷5
2= -a
*-1 *-1
-2=a
The test to detect the presence of respiratory syncytial virus is 97% accurate for a person who has the virus and 99% accurate for a person who does not have the virus. In a given population, 0.55% of the people are infected.
The probability that a randomly chosen person gets an incorrect result is
.
Answer:
The probability that a randomly selected person gets incorrect result is 2.2 × 10⁻⁴
Step-by-step explanation:
The parameters given are;
The accuracy of the test for a person who has the respiratory synctial virus = 97%
The accuracy of the test for a person who does not have the respiratory synctial virus = 99%
We have;
a = TP =
b = FP
c = FN
d = TN
a/(a + c) = 0.97
d/(d + b) = 0.99
a/(a + b) = 0.97*0.0055/(0.97*0.0055 + (1 - 0.99)*(1-0.0055))
PPV = 0.349 = 34.9%
Therefore, we have;
a/(a + c) = 0.97 and
a/(a + b) = 0.349
0.97(a + c) =0.349(a + b)
(0.97 - 0.349)a = 0.349·b - 0.97·c
a = (0.349·b - 0.97·c)0.621
b × (1 - 0.0055) = (1 - 0.97)×(1 - 0.0055)
b = 1 - 0.97 = 0.03
Similarly,
c = 1 - 0.99 = 0.01
The proportion of the population that have false positive and false negative = 0.03 + 0.01 = 0.04 = 4%
The probability that a randomly selected person gets incorrect result = 0.04×0.0055 = 0.00022.
Answer:
0.01011
Step-by-step explanation:
Today, Ling is going to an art museum to see a special exhibit. It takes Ling 45 minutes to walk to the subway station. She will ride the subway for 45 minutes and then walk 15 minutes to the art museum. If Ling needs to be at the art museum by 9:30 A.M., what is the latest time she can leave her house?
Answer: 7:55
Step-by-step explanation: in total the journey is 105mins so if she has to reach by 9:30. Then she has to leave her house 105mins before 9:30
Please answer this question now
Answer:
m∠C = 102°
Step-by-step explanation:
This is a quadrilateral inscribed in a circle
The sum of opposite angles in a cyclic quadrilateral is equal to 180°
m∠D + m∠B = 180°
m∠B = 180° - m∠D
m∠B = 180° - 80°
m∠B = 100°
We know what m∠B
We have external angles outside the circle.
m∠CDA is opposite m∠B
m∠CDA = 2 × m∠B
m∠CDA = 2 × 100°
m∠CDA = 200°
m∠CDA is the sum of m∠CD and m∠DA
m∠CDA = m∠CD + m∠DA
m∠DA = m∠CDA - m∠CD
m∠DA = 200° - 116°
m∠DA = 84°
m∠DAB is an exterior angle also, hence,
m∠DAB is the sum of m∠DA and m∠AB
m∠DAB = m∠DA + m∠AB
m∠DAB = 84° + 120°
m∠DAB = 204°
Finally we can solve for m∠C
m∠DAB is Opposite m∠C
So, m∠C = 1/2 × m∠DAB
m∠C = 1/2 × 204
m∠C = 102°
HELP IM BEING TIMED!!
Answer:
Value of x is 8
Step-by-step explanation:
Given:
[tex]\sqrt{\frac{896z^{15}}{225z^6} }=\frac{xz^4}{15} \sqrt{14z}\\\\Computation: \\\\From\ squaring\ both\ side\\\\ {\frac{896z^{15}}{225z^6} }=\frac{x^2z^8}{225} ({14z})\\\\896z^9=14x^2z^9\\\\896=14x^2\\\\64=x^2\\\\x = 8[/tex]
So, Value of x is 8
I need help. What is (-5/3)²
Answer:
Exact form:
25/9
Decimal form:
2.(7)
Mixed fraction form:
2 7/9
Step-by-step explanation:
Hope you found this helpful
Answer:
(-5/3)² = 25/9
Step-by-step explanation:
(a/b)ⁿ = aⁿ / bⁿ
(-5/3)² = -5² / 3² = 25 / 9
convert degree into Radian that is 18 degree 12'
Answer:
[tex]\frac{\pi }{10}[/tex] radians
Step-by-step explanation:
To convert degrees into radians, multiply the degrees with [tex]\frac{\pi}{180}[/tex].
If you have 18 degrees:
[tex]18*\frac{\pi}{180} = \frac{\pi }{10}[/tex]
A cylinder has a radius of 2.8 in and a height of 2.4 in. Which cylinder is similar?
(p.s. the pic is the awnser choices)
also if you can awnser this xan you awnser it asap im currently taking a test thanks :)
Answer:
option 2 with radius of 1.4 in, and height of 1.2 in.
Step-by-step explanation:
If two cylinders are similar, the ratio of one cylinder's radius to its height must be the same as that of the other.
To know which cylinder is similar to the given cylinder with radius 2.8 in and height of 2.4 in, find the ratio, and compare with the ratio of the options provided. The option with the same ratio, is the cylinder that is similar.
This,
The given cylinder => radius : height = [tex] \frac{2.8}{2.4} = \frac{0.7}{0.6} = \frac{7}{6} [/tex]
First option:
Radius : height = [tex] \frac{1.8}{1.4} = \frac{0.9}{0.7} = \frac{9}{7} [/tex]
Second option:
Radius : height = [tex] \frac{1.4}{1.2} = \frac{0.7}{0.6} = \frac{7}{6} [/tex]
Third option:
Radius : height = [tex]\frac{5.6}{4.2} = \frac{0.8}{0.6} = \frac{0.4}{0.3} = \frac{4}{3}[/tex]
Fourth option:
Radius : height = [tex] \frac{2.4}{2.8} = \frac{0.6}{0.7} = \frac{6}{7} [/tex]
The correct option with the cylinder that is similar with the given cylinder is option 2 with radius of 1.4 in, and height of 1.2 in.
Solve equation show all steps what 2x-3x+5=18
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
Let's solve your equation step-by-step.
[tex]2x-3x+5=18[/tex]
Step 1: Simplify both sides of the equation.
[tex]2x-3x+5=18\\2x + -3x + 5 = 18[/tex]
[tex]( 2x + -3x ) + ( 5) = 18[/tex] (Combine Like Terms)
[tex]-x + 5 = 18\\-x + 5 = 18[/tex]
Step 2: Subtract 5 from both sides.
[tex]-x + 5 - 5 = 18 - 5 \\-x = 13[/tex]
Step 3: Divide both sides by -1.
[tex]\frac{-x}{-1} = \frac{13}{-1} \\x = -13[/tex]
Answer : [tex]\boxed {x = -13}[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Have a great day/night!
❀*May*❀
Answer:
[tex] \boxed{ \bold{ \mathsf{ \purple{x = - 13}}}}[/tex]Step-by-step explanation:
[tex] \mathsf{2x - 3x + 5 = 18}[/tex]
Collect like terms
[tex] \mathsf{ - x + 5 = 18}[/tex]
Move constant to R.H.S and change it's sign
[tex] \mathsf{ - x = 18 - 5} [/tex]
Calculate the difference
[tex] - x = 13[/tex]
Change the signs on both sides of the equation
[tex] \mathsf{x = - 13}[/tex]
---------------------------------------------------------------
[tex] \blue{ \mathsf{verification}}[/tex]
[tex] \mathsf{LHS \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: RHS}[/tex]
[tex] \mathsf{2x - 3x + 5 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 18}[/tex]
[tex] \mathsf{ = 2 \times ( - 13) - 3 \times ( - 13) + 5}[/tex]
[tex] \mathsf{ - 26 + 39 + 5}[/tex]
[tex] \mathsf{ = 13 + 5}[/tex]
[tex] = 18[/tex]
Thus, LHS = RHS
hope I helped!
Best regards!
URGENTLY NEED THIS ASAP PLZ TYSM
Marcie solved the following inequality, and her work is shown below:
−2(x − 5) ≤ 6x + 18
−2x + 10 ≤ 6x + 18
−8x +10 ≤ 18
−8x ≤ 8
x ≤ −1
What mistake did Marcie make in solving the inequality?
She subtracted 6x from both sides when she should have added.
She subtracted 10 from both sides when she should have added.
She did not make a mistake.
When dividing by −8, she did not change the direction of the sign.
Answer:
fifth option
Step-by-step explanation:
Given
- 2(x - 5) ≤ 6x + 18 ← distribute left side
- 2x + 10 ≤ 6x + 18 ( subtract 6x from both sides )
- 8x + 10 ≤ 18 ( subtract 10 from both sides )
- 8x ≤ 8
Divide both sides by - 8, reversing the sign as a result of dividing by a negative quantity, thus
x ≥ - 1
Nine new employees, two of whom are married to each other, are to be assigned nine desks that are lined up in a row. If the assignment of employees to desks is made randomly, what is the probability that the married couple will have nonadjacent desks
Answer:
P = 0,88 or P = 88 %
Step-by-step explanation:
The probability of having a married couple in nonadjacent desks is the total number of probabilities minus the probabilities of having them in adjacent places divide by total number of outcomes
The total possibilities (outcomes) of 9 elements in a row is:
P(₉) = 9!
P(₉) = 9*8*7*6*5*4*3*2*1
P(₉) = 362880
And the outcomes in which they are adjacent to each other is:
We consider them as one unit them we in this situation have 8 elements
P(₈) = 8!
P(₈) = 8*7*6*5*4*3*2*1
P(₈) = 40320
Then the probability that the married couple will have nonadjacent desks is:
P = P(₉) - P(₈) / P(₉)
P = 362880 - 40320 / 362880
P = 322560/ 362880
P = 0,88 or P = 88 %
Which of the following shows the correct solution steps and solution to 7x-4= -18?
Answer:
x = -2
Step-by-step explanation:
To solve for x always get x on one side
First add 4 on each side, 4 + 7x - 4 = -18 + 4
Next subtract 18 from 4, making it -14 7x = -14
Now divide 7 on each side, x = -2
Solve for 'x' in both of the following problems. Show all your work/explanations on your own paper and then submit a picture of your work and answers in the dropbox below.
Answer/Step-by-step explanation:
1. <B is an inscribed angle intercepting arc CA.
Therefore, m<B = ½*128 (inscribed angle theorem)
m<B = 64°
x = 180 - (m<B + m<A) (sum of angles in a triangle)
x = 180 - (64 + 43)
x = 180 - 107 = 73°
2. [tex] KH*HI = JH*HG [/tex] (intersecting chords theorem)
[tex] 10*x = 14*5 [/tex]
Solve for x
[tex] 10x = 70 [/tex]
[tex] \frac{10x}{10} = \frac{70}{10} [/tex]
[tex] x = 7 [/tex]
. A salesman sold 300 bags of maize to a retailer at Kshs .2000 each .He was given a commission of 3%.The salesman allowed a discount of 0.2% on the maize sold. This discount was deducted from his commission. (a) Calculate (i) The discount allowed
Answer:
The discount allowed per bag is kshs 4
while the discount allowed on all the 300 bags is kshs 1,200
Step-by-step explanation:
Here, we are interested in calculating the discount allowed on the sales of the bag of maize.
From the question, we are told that the sales man allowed a discount of 0.2% on the maize sold.
Now, to find the amount of this, we proceed as follows;
What we simply need to do is to find 0.2% of the each of the price of the maize bags, and then we can proceed to find the total discount given on all maize bags sold.
The discount on each bag of maize would be;
0.2% of kshs 2000
That would be;
0.2/100 * 2,000 = 400/100 = kshs 4
Since there are 300 bags, the total amount of discount allowed is 300 * kshs 4 = kshs 1,200
Factor 8(9) + 18
8(9+18)
9(8+2)
18(4+1)
18(1+4)
[tex]8(9)+18[/tex]
$=8\cdot9+2\cdot9$
$=(8+2)\cdot9$
Write an equation in slope-intercept form of the line that passes through (-1, 4) and (0,2).
y =
Answer:
y =( -1/2 )x + 2
Step-by-step explanation:
first step is to determine the slope of the line ( which is the rise over the run) or symbolically slope is defined as m= ∆x / ∆y, so plugging those values we get...
m= ∆x / ∆y = (-1 - 0) / (4 - 2) = -1 / 2
so next is to find the zero( y-intercept) of the function by ....
y = mx + b
y = ( -1/2)x + b (since m is equal to -1/2)
2 = ( -1/2)0 + b
2= b
What is the area?
6 mm
5 mm
3 mm
13 mm
8 mm
9 mm
Answer:
none of above .
Step-by-step explanation:
because the unit of area is always in square forms.
*LAST QUESTION, HURRY AND PLEASE ANSWER, WILL CHOOSE BRAINLIEST FOR DETAILS AND ANSWER* How many times larger is the rectangular prism than the cube?
Answer:
The rectangular prism is 30 times larger than the cube.
Step-by-step explanation:
The Cube has a length of 2, a width of 2, and a height of 2.
Volume = length times width times height or V=lwh
2 x 2 x 2= 8
The Rectangular prism has a length of 10, a width of 6, and a height of 4.
10 x 6 x 4= 240
240 divided by eight is 30.
Answer:
30 times larger than the cube.
Step-by-step explanation: