Answer:
Step-by-step explanation:
I need help asap!!!!!!!!!
How many solutions can be found for the equation 3y + 5 − 2y = 11?
A. Zero
B. One
C. Two
D. Infinitely many
Answer:
B one
Step-by-step explanation:
3y + 5 - 2y = 11
3y -2y + 5 = 11
Combine like terms
y + 5 = 11
Subtract 5 from both sides
y = 11 - 5
y = 6
So, Only one solution
Answer:
there is only 1 solution.
Step-by-step explanation:
We can solve the equation to find it's number of solutions, but we already know it only has 1 solution because it is a linear equation (y is raised to the first power).
3y + 5 − 2y = 11
y + 5 = 11
y = 6
This confirms that there is only 1 solution.-------
The distances in miles driven by a sample of nine different cars using 13 gallons of gasoline were 174, 201, 271, 208, 196, 340, 214, 236, and 385. Find the mean and the standard deviation for the distances traveled. How many cars fall within one standard deviation of the mean?
When You order the numbers you get
174 196 201 208 214 236 271 340 385
To get the mean, you add up all the numbers
Sum:2225
Then you divide it by how many test subjects there are (9 cars)
2225÷9=247.222222222 Which is your mean
Q1 is between 196 and 201
Q3 is between 271 and 340
If you get the mean of both, Q1 would be 198.5 and Q3 is 305.5
The amount of cars between them is 6
Can you answer this math homework? Please!
Step-by-step explanation:
[tex]x + 3y = 7 \\ 2x + 4y = 8 \\ x = 7 - 3y \\ 2(7 - 3y) + 4y = 8 \\ 14 - 6y + 4y = 8 \\ 14 - 2y = 8 \\ - 2y = - 6 \\ y = 3 \\ x = 7 - 3(3) \\ x = 7 - 9 \\ x = - 2[/tex]
Answer:
2x+3y=7x4
x+4y=8x3
8x+12y=27
3x+12y=24
8x-3x =5x
+12y-+12y=0
27-24=3
5x/5 3/5x
answer = x = 3/5
y=1.85
how many metres are there in 5½ kilometres
Answer:
5500m..................
. If QS bisects angle PQR, m angle PQS = (7x - 6)° , and m angle SQR = (4x + 15)° , find m angle PQT.
Answer:
94
Step-by-step explanation:
PQS = (7x - 6)°
SQR = (4x + 15)° since QS bisect PQR these two expressions must be equal
so
7x - 6 = 4x + 15 transfer like terms to the same side of the equation
7x - 4x = 15 + 6
3x = 21 divide both sides by 3
x = 7
also the sum of these two would give us the measure of PQR
7x + 4x + 15 - 6 = PQR
11x + 9 = PQR replace x with 7
11*7 + 9 = 86 this is the measure of angle PQR and also supplementary to PQT so the measure of PQT = 180 - 86
If QS bisects angle PQR. the m<PQT=94 °
Given :
Measure of angles PQS = (7x - 6)° , and m angle SQR = (4x + 15)°
QS bisects angle PQR. So m<PQS=m<SQR
[tex]7x-6=4x+15\\Solve \; for \; x\\7x-4x-6=15\\3x-6=15\\3x=15+6\\3x=21\\divide \; by \;3 \\x=7[/tex]
Now we find out m<PQR
[tex]m<PQR=m<PQS+m<SQR\\m<PQR=7x-6+4x+14\\m<PQR=11x+8\\x=7\\m<PQR=11(7)+8=85[/tex]
We know that <PQR and <PQT are linear pair of angles
The sum of linear pair of angles are supplementary
[tex]m<PQR+m<PQT=180\\86+m<PQT=180\\m<PQT=180-86\\m<PQT=94[/tex]
Learn more : brainly.com/question/617412
find the missing length indicated
Answer:
119?
Step-by-step explanation:
Find the next three terms in the geometric sequence -3, 9, -27, 81, ...
Answer:
...-243, 729, -2187
Step-by-step explanation:
-3, 9, -27, 81, -243, 729, -2187
Everytime ×(-3)
-3×(-3)=9
9×(-3)=-27
-27×(-3)=81
Etc.
Help, please (single variable calculus)
Hi there!
[tex]\large\boxed{ 14.875}[/tex]
Our interval is from 0 to 3, with 6 intervals. Thus:
3 ÷ 6 = 0.5, which is our width for each rectangle.
Since n = 6 and we are doing a right-riemann sum, the points we will be plugging in are:
0.5, 1, 1.5, 2, 2.5, 3
Evaluate:
(0.5 · f(0.5)) + (0.5 · f(1)) + (0.5 · f(1.5)) + (0.5 · f(2)) + (0.5 · f(2.5)) + (0.5 · f(3)) =
Simplify:
0.5( -2.75 + (-3) + (-.75) + 4 + 11.25 + 21) = 14.875
Find the missing length indicated
Answer:
x= 135
Step-by-step explanation:
Combine these radicals. -√5-3√5
Answer:
-4√5
Step-by-step explanation:
-√5-3√5
-√5(1 + 3)
-4√5
please help me please i need help
Answer:
3.6cm cubed
Step-by-step explanation:
First solve for both glasses' volumes.
Use l×w×h to plug in the numbers:
3.1×2×3=18.6
3.7×2×3=22.2
then subtract= 3.6
Answer:
3.6 [tex]cm^{3}[/tex]
Step-by-step explanation:
Volume for first container is 3.1 x 2 x 3 = 18.6
Volume for second container is 3.7 x 2 x 3 = 22.2
22.2 - 18.6 = 3.6
Which polynomial represents the sum below?
7x9.5x*-**8
5x 0.9x**
A. 5x10.7x8 + 5x5.9x+16
B. 5x10 + 7x8 + 5x5 + 8x+ 16
C. 12x18+1474+8x+ 16
D. 12/16 + 4X4+ 7x+ 16
GEOMETRY: PLEASE HELP!!
Answer:
[tex]GF=72[/tex]
Step-by-step explanation:
All triangles in the given figure are similar, from SAS. Notice that marked in the diagram, [tex]CD=DE=EF=FA[/tex].
For triangle [tex]\triangle CGF[/tex] was base [tex]GF[/tex], leg [tex]CF[/tex] contains three of these marked segments. In triangle [tex]\triangle CHE[/tex] with base [tex]HE[/tex], leg [tex]CE[/tex] has two of these marked segments. By definition, similar polygons have corresponding sides in a constant proportion. Therefore, the length of GF must be [tex]3/2[/tex] the length of EH. Since the length of EH is given as 48, we have:
[tex]GF=\frac{3}{2}EH, \\\\GF=\frac{3}{2}\cdot 48,\\\\GF=\boxed{72}[/tex]
Helppppppp pleaseeeeeee
Answer:
x=19.27329
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta = opp / hyp
tan 56 = x/ 13
13 tan 56 = x
x=19.27329
Me ajudem pfvr!!!!....
Use the coordinates of the labeled point to find the point-slope equation of
the line.
(2, -1)
Answer: (C) [tex]y+1=-2(x-2)[/tex]
Step-by-step explanation:
Slope: y = mx +b
By looking at the graph we can see that the slope has a rise of 2 and a run of -1 (aka. -2x) We can also tell that this has a y-intercept of 3
So our slope is: y = -2x + 3
Now you just have to find the answer that matches.
What are the solutions to the quadratic equation below?
The table shows values for functions f(x) and g(x)
X
f(a) = 2-2
g(x) = -22
-3
18
6
-2
4.
4
-1
2
2
0
0
1
2
2.
44
3
6
18
What is the solution to f(x) = g(x) ?
Select each correct answer.
Answer: When f(x)=g(x) , x equal to -2 or -1
Step-by-step explanation:
In a taste test, five different customers are each presented with 3 different soft drinks. The same soft drinks are used with each customer, but presented in random order. If the selections were made by random guesses, find the probability that all five customers witnesses would pick the same soft drink as their favorite. (There is more than one way the customers can agree.)
Answer:
0.01235
Step-by-step explanation:
we can solve for probability by using the formula;
favourable outcome/total number of outcomes
in this question, the number of favorable outcome = 3
the total number of outcomes = 3⁵
= 3x3x3x3x3 = 243
probability = 3/243
= 0.012345678
this can be approximated to be 0.01235
0.01235 is therefore the probability that all 5 customers would pick the same soft drink as their favorite drink.
Find the value of the indicated angle. Justify your answer.
Answer:
x=15
Step-by-step explanation:
The first triangle
90+2x+4x=180
90+6x=180
6x=90
x=15
A certain rectangular prism has a height of 6 m, a length of 5 m, and a width of 4 m. Give the dimensions of a second rectangular prism that will have the same surface area of the first one.
Please don't put unhelpful answers!
Answer:
I think sqrt(74/3)
Step-by-step explanation:
I saw this problem before
Michael's class took a field trip to the art museum. It took them 45 minutes to drive to the museum. They stayed at the museum for 1 hour and 25 minutes. When the class left the museum, it was 11:10AM What time did Michael's class leave for the field trip?
AABC is a right triangle in which zB is a right angle, AB = 1, AC = 2. and BC = V3.
COS Cx sin A =
The value of COS Cx sin A by the given data is V3/4.
What are trigonometric identities?Trigonometric identities are the functions that include trigonometric functions such as sine, cosine, tangents, secant, and, cot.
Trigonometric ratio can be defined in terms of ratios of perpendicular, bases and hypotenuse. These are defined only in right angled triangles (triangles whose one angle is of 90 degree measure).
We are given that;
AB = 1, AC = 2 and BC = V3
Now,
To find the value of cos C x sin A, we need to use the trigonometric ratios of the right triangle.
We know that cos C = adjacent/hypotenuse = AB/AC = 1/2 and sin A = opposite/hypotenuse = BC/AC = V3/2.
cos C x sin A = (1/2) x (V3/2) = V3/4.
Therefore, by the trigonometric ratio the answer will be V3/4.
Learn more about trigonometric ratios;
https://brainly.com/question/21286835
#SPJ7
Would kindly appreciate the help please !
Answer:
cannot be determined
Step-by-step explanation:
We do not know if any of the angles are equal and are only given two sides.
We cannot determine if the two triangles are similar
simplify 2x2a^2 x2a^2
simplify36a^3 x 1over 4a^2
express 64 in index form
simplify 5^2 x m^2
and pls also explain briefly how u got the answer
Step-by-step explanation:
> 2×2a²×2a²
8a⁴
> 36a³×1/4a²
9a³×1/a²
9a
> 2⁶
> 5²m²
357 students went on a field trip. Eight
buses were filled and 5 students traveled
in cars. How many students were in each
bus?
Answer:
There were 44 students in each bus.
Step-by-step explanation:
357 - 5 = 352
352/8 = 44
Answer:
Step-by-step explanation:
Total students = 357
Total buses filled = 8
No of students traveled in car = 5
Remaining students = 357 - 5 = 352
Students in each bus = 352 ÷ 8 = 44 students
What is the value of −8−√288 / 2∙(−2)?
Answer:
[tex] \frac{ - 8 - \sqrt{288} }{2 \times ( - 2)} = \frac{ - 8 -16.97 }{ - 4} = \frac{ - 24.97}{ - 4} = 6.2425[/tex]
Find the sum of first five multiple of 5
Answer:
75
Step-by-step explanation:
The first five multiples of 5 are 5, 10, 15, 20, and 25. The sum of the first five multiples of 5 is 75.
The value of a jewel in 2015 was $17500. The jewel was purchased in 2008, and its value appreciated 2.5%
each year. What was the initial value of the jewel when it was first bought? Round to two decimal places
Answer:
$14722.14
Step-by-step explanation:
We are given that
In 2015
The value of jewel=$17500
Rate of appreciation, r=2.5%
We have to find the initial value of the jewel when it was first bought.
Time, n=7 years
Final value=[tex]Initial\;value (r/100+1)^n[/tex]
Using the formula
[tex]17500=Initial\;value(2.5/100+1)^7[/tex]
[tex]17500=Initial\;value(1.025)^7[/tex]
[tex]Initial\;value=\frac{17500}{(1.025)^7}[/tex]
Initial value=$14722.14
Hence, the the initial value of the jewel when it was first bought=$14722.14
Which expression is equivalent to
36÷3+3
a 3x2^+3
b 2^2÷3x3
c 3x2^2÷3
d 2^2+3x3