Answer:
Growth: y = 1700(1.25)^t, y = 4000(1.0825)^t, y = 1.5(10)^t
Decay: y =240(1/2)^t, y = 12,000(0.72)^t, y = 8000(0.97)^t
Step-by-step explanation:
In an exponential equation, growth and decay are determined by the factor you are multiplying by exponentially. If it's under 1 you're basically exponentially dividing the initial value. Over 1 and you are increasing the value.
(10 points!) The function below has an input, x, and produces a specific output, c. (Pictured below.)
Answer:
x =[tex]x =(\frac{c}{4} )^{1/3} \\[/tex]
input 2 output 32
output 256 input 4
Step-by-step explanation:
In one U.S city, the taxi cost is $3 plus $0.80 per mile. If you are traveling from the airport, there is an additional charge of $5.50 for tolls. How far can you travel from the airport by taxi for $56.50?
Answer:
60 miles
Step-by-step explanation:
Create an equation where y is the total cost and x is the number of miles traveled.
0.8x will represent the cost from the miles traveled. 8.5 will be added to this to represent the taxi cost and additional charge from tolls:
y = 0.8x + 8.5
Plug in 56.50 as y and solve for x, the number of miles:
y = 0.8x + 8.5
56.5 = 0.8x + 8.5
48 = 0.8x
60 = x
So, you can travel 60 miles
How do I solve this?
The answer for the first line segment : (-3,-7) (-4,0)
The answer for 2nd line segment is :(-3,8) (-9,-5)
Step-by-step explanation:
Let do line segment QR and ST. first.
Step 1: Find a line that contains a points that is perpendicular to the line of reflection
"A reflection of a pre image and new image is perpendicular to the line of reflection.
This means for points Q,S,T and R, there is a line that. contains one point that is perpendicular to the line of reflection.
A line that is perpendicular to the line of reflection is the negative reciprocal of the slope so this means all 4 lines must be on a different slopes but the slopes must be 1/2.
To simplify, things, here are the lines that will all 4 points be on
Point R will be on line y=1/2x-11/2Point Q will be on line y=1/2x+2Point S will be on line y=1/2x+19/2Point T will be on line y=1/2x-1/2Step 2: Find a point where both the line and line of reflection intersect at.
Now we need to find a line where both the line of reflections and the 4 lines will intersect at separately.
The line with Point R will intersect with the line of reflection at point (1,-5)The line with Point Q will intersect with line of reflection at Point (-2,1)The line with Point S will intersect at point (-5,7)The line worth Point T will intersect at Point(-1,-1).Step 3: Find the endpoints given the midpoint and the originally endpoint.
A reflection per and new image is equidistant from the point of reflection. So we. an say that the point where the line intersect is the midpoint of the pre and new image.
Using this info,
The endpoint for R prime is (-3, -7).The endpoint for Q prime is (-4,0). The endpoint of S prime is (-3,8).The endpoint of T prime is (-9,-5).Connect R prime and Q prime. And that the new line segments
Connects S prime and T prime and that the new line segments.
You are making a committee from the class and need to have 6 students on it. There are 32 students in the class.
answer in permutations
Answer:
32P6
Step-by-step explanation:
nPr
n=32
r=6
Identify the transformation that occurs to create the graph of k(x).
k(x)=9f(x)
Answer:
To create the graph of k(x) , the graph of f(x) undergoes a vertical stretching by a factor of 9.
Step-by-step explanation:
We are given that
[tex]k(x)=9f(x)[/tex]
We have to Identify the transformation that occurs to create the graph of k(x).
To create the graph of k(x) we will multiply the function f(x) value by 9.
Let f(x) be any function
[tex]g(x)=a f(x)[/tex]
Where a>1
It means to obtain the graph of g(x) the graph f(x) has undergone a vertical stretching by a factor of a.
We have k=9>1
Therefore, to create the graph of k(x) , the graph of f(x) undergoes a vertical stretching by a factor of 9.
the shorter side of a rectangle is 60% of the longer side and the perimeter of the rectangle is 96 inches. find the side lengths
Answer:length 30, width 18
Step-by-step explanation:
60% +100%=160%
160% × 2 = 320 %
96/320 = 0.3 ×100 =30 ( length)
30 × 0.6 =18 (width)
Check: (18 + 30) 2 = 96
Write the quadratic form in the form specified then give the vertex of its graph.
Answer:
Equation: f(x) = 2(x + 5)^2 + 2
Vertex: (-5, 2)
Step-by-step explanation:
The form the question wants us to write the quadratic function in is called "vertex form":
f(x) = a (x - h)^2 + k
a = the a in a standard quadratic equation (y = ax^2 + bx + c) or the coefficient of the x^2
h = x coordinate of the vertex
k = y coordinate of the vertex
To find the vertex, we are going to use the quadratic equation given:
2x^2 + 20x + 52
Comparing it to the standard quadratic equation (y = ax^2 + bx + c),
a = 2
b = 20
c = 52
Now we can start finding our vertex.
To find h, we are going to use this formula:
-b / 2a
We already know b = 20 & a = 2, so we can just substitute that into our formula:
- (20) / 2*2
Which equals:
-20/4 = -5
So h (or the x coordinate of the vertex) is equal to -5
Next we will find k, or the y coordinate of the vertex.
To do that, we are going to plug in -5 into 2x^2 + 20x + 52:
2(-5)^2 + 20(-5) + 52
2(25) -100 + 52
50 - 100 + 52
-50 + 52
2
k (or the y coordinate of the vertex) is equal to 2
The vertex is (-5, 2)
However, we still need to find our equation in vertex form.
We know a = 2, h = -5, & k = 2. Now we substitute these into our vertex form equation:
a(x - h)^2 + k
(2)(x - (-5))^2 + (2)
2(x + 5)^2 + 2
(Remember that the -5 cancels with the - in front of it, making it a positive 5)
The equation is f(x) = 2(x + 5)^2 + 2
Hope it helps (●'◡'●)
Consider random samples of size 1200 from a population with proportion 0.65 . Find the standard error of the distribution of sample proportions. Round your answer for the standard error to three decimal places.
Answer:
The standard error of the distribution of sample proportions is of 0.014.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Consider random samples of size 1200 from a population with proportion 0.65 .
This means that [tex]n = 1200, p = 0.65[/tex]
Find the standard error of the distribution of sample proportions.
This is s. So
[tex]s = \sqrt{\frac{0.65*0.35}{1200}} = 0.014[/tex]
The standard error of the distribution of sample proportions is of 0.014.
Based on the diagram, what is cos A?
Enter your answer in the boxes.
COS A=
[tex] cos(A) = \frac{ {b}^{2} + {c}^{2} - {a}^{2} }{2bc} [/tex]
The cos A will be b/c
Cosine functionCosine function in a triangle is the ratio of the adjacent side to that of the hypotenuse
How to solve this problem?The steps are as follow:
Given,AB = c
BC = a
AC = b
AB is hypotenous whereas AC is adjacent side to AAccording to formula of cos,Cos A = Adjacent side to A / Hypoteneous
Cos A = AC / AB
Cos A = b / c
Therefore the value of Cos A in given figure will be b / c
Learn more about Cosine function here:
https://brainly.com/question/8120556
#SPJ2
find the equation of the line shown
Answer:
y=1/2x+1/2
Step-by-step explanation:
In order to find the slope, you can use rise/run, in this case, the slope is 1/2 and the y-intercept is at (0, 0.5)
write an equation rectangular room 3 meters longer than it is wide and its perimeter is 18 meters
width = x
length = 3 + x
perimeter = x + x + ( 3 + x ) + (3+x)
18 = x + x + ( 3 + x ) + (3+x)
x + x + ( 3 + x ) + (3+x) = 18
6 + 4x = 18
4x = 12
x = 3
•Calculate the length of
the side AB,
knowing that AC = 2, m (C) = 30 and BC = 4.
Help ..! I really need help with this problem…
There are 16 tablespoons in one cup. Which table correctly relates the number of cups to the number of tablespoons?
Answer:
The first table.
Step-by-step explanation:
1 cup = 1 * 16 = 16 tablespoons
2 = 2 * 16 = 32
3 = 3*16 = 48
4 = 4*16 = 64 and so on....
In studying the sampling distribution of the mean, you were asked to list all the different possible samples from a small population and then find the mean
of each of them. Consider the following:
Personal phone calls received in the last three days by a new employee were 2. 4, and 7. Assume that samples of size 2 are randomly selected with replacement from
this population of three values
What different samples could be chosen? What would be their sample means?
O A. Possible samples 2-4, 2-74-2: 4-7, 7-2,7-4
Sample means: 3,45,55
O B. Possible samples: 2-2.2-4,2-74-2, 4-4 4-7,7-2,7-4.7-7
Sample means: 2, 3, 4, 4.5,55,7
OC. Possible samples: 2-4 2-7, 4-7
Sample means: 3.4,45
a
Q
rd
Match the number of significant figures to the value or problem.
1
?
0.008
4
?
54
3
?
1002. 43.2
2
?
1.068
Answer:
answer is 1 2 3 and 4 respectively of given match the following
5a2 + b(a2 + 5) + b2
[tex]\rightarrow\sf {5a}^{2} + {b(a}^{2} + 5) + {b}^{2} [/tex]
Solution:[tex]\rightarrow\sf {5a}^{2} + {b(a }^{2} + 5) + {b}^{2} \\ = \sf {5a}^{2} + {ba}^{2} + b \times 5 + {b}^{2} \\ = \large\boxed{\sf{\red{ {5a}^{2} + {ba}^{2} + 5b + {b}^{2} }}}[/tex]
Answer:[tex]\rightarrow\large\boxed{\sf{\red{ {5a}^{2} + {ba}^{2} + 5b + {b}^{2} }}}[/tex]
[tex]\color{red}{==========================}[/tex]
✍︎ꕥᴍᴀᴛʜᴅᴇᴍᴏɴǫᴜᴇᴇɴꕥ
✍︎ꕥᴄᴀʀʀʏᴏɴʟᴇᴀʀɴɪɴɢꕥ
By recognizing the series as a Taylor series evaluated at a particular value of x, find the sum of each of the following convergent series
1 + 3 + 9/2! + 27/3! + 81/4! + .....
Answer:
the answer should be e^3
Step-by-step explanation:
i hope it helps you
For its grand opening, a store gives every 12th customer a calendar and every 20th customer a mug. Which guest is the first to receive both a calendar and a mug?
Answer: yes
Step-by-step explanation:
1. Write 3.3.3.3.3 as a power.
Answer:
3^5
Step-by-step explanation:
On the iPad it looks like that but the five is on the top right smaller
Answer:
3⁵
every 3 has it own power that is 1 however that .3 confused us
(7 + 10i)+(4-10i)-(7-5i)
Answer:
4 + 5i
Step-by-step explanation:
To calculate this you have to combine the like terms until they cannot be combined any further:
7 + 10i + 4 - 10i - (7 - 5i)
11 + 0i - 7 - 5i
7 & 4 are liked terms so add them together + subtract 10i and 10i
4 + 5i <--- Final answer
Hope this helps!
Answer:
4 + 5i
Step-by-step explanation:
(7 + 10i) + (4 - 10i) - (7 - 5i)
7 + 10i + 4 - 10i - (7 - 5i)
11 - 7 + 5i
4 + 51
Using each of the digits 2 through 5 only
once, write 2 two-digit whole numbers
whose product is as large as possible.
Answer:
52, 43
Step-by-step explanation:
the first instinct might be to make the first number as big as possible : 54
that leaves for the second number 2 and 3, and the largest combination here is 32 (larger than 23).
54×32 = 1728
but, the area of a rectangle (and that is what we are calculating here) is the larger, the closer the lengths of its side are.
so, a bigger difference between length and width creates a smaller area, than a smaller difference between length and width for similar lengths.
so, what if we sacrifice just a little bit of the length, and make it 53 ? that opens up 4 for the second number, giving us 42 as width. they are much closer to each other with still very similar length.
53×42 = 2226
you see ? much bigger.
let's experiment further and pick 52 as length.
that gives us 43 as width.
52×43 = 2236
and again a little bit closer and with bigger result.
you see, in the previous case we "added" comparably to this last case a 42 (53×42 instead of 52×42), and in the last case we added a 52 (52×43 instead of 52×42) creating the difference of 10.
but of course, this only works, if we don't decrease the length too much.
Answer:
Using each of the digits 2 through 5 only once, write 2 two-digit whole numbers whose product is as large as possible.
You paid $6.99 for a shirt that was 70% of what was the original price of the shirt?
Answer:
$23.3
Step-by-step explanation:
you can use ratios to solve this:
$6.99/x=0.30/0.100 then cross multiply to get 0.3x=6.99
So, 6.99 divided by 0.3 = 23.3
so the original price is $23.3
Monique made several batches of soup.
Each batch required 3/4 of a pound of potatoes. She used a total of 6 1/2 pounds. How many batches did she make?
Answer:
8 batches
in workings show whats left over but not counted.
As a batch its a whole number as the multiplier will usually be the fraction
and fraction / fraction should always show fraction but the whole number given with a remainder can be shown if not a whole number.
Step-by-step explanation:
6 1/2 = 6.5
and ;
3/4 of a pound = 0.75 of 1 pound
6.5 / 0.75 = 8.7 or in full workings write = 8.6666.....7
8.7/ 1 = 8 batches with 0.7 or 0.66667 left over
Answer In fraction for exam question given in fraction 8.7 = 8 batches
with 7/10 left over.
In a box of chocolates, 12 of the chocolates are wrapped in red foil. That is 30% of the chocolates in the box. How many chocolates are there?
Answer:
The answer is 40 chocolates in the box in total
A farmer sells four of his farm products Maize, Potatoes, carrots and tomatoes in each of 2 towns into classes of 3 customers. Consumers, Retailers, and wholesellers .
Town1 Maize, Potatoes Carrots tomatoes
consum. 4. 6. 7. 4.
Retailer. 3. 2. 1. 6.
wholesa. 4. 3. 5. 3.
Town2. Maize. Potatoes.Carrots.tomatoes
consum. 4. 5. 3. 6.
Retailer. 7. 8. 4. 4.
wholesa. 2. 4. 6. 1.
In order to sell his produce in these towns , the farmer pays commission to salesman, town managers and division managers as shown.
salesman.townmanagers.divisionmanage
6%. 5%. 2%
4%. 3%. 3%
Selling price per bag is:
Maize Sh 200
Potatoes sh 1000
Carrots sh 700
Find total sales in units by potatoes.
Answer:
Step-by-step explanation:
Solve the literal equation: -24x-12=4y-12x
Answer:
y = 3(3x - 1)
Step-by-step explanation:
Given the equation :
24x-12=4y-12x
Collect like terms
24x + 12x = 4y + 12
36x = 4y + 12
4y = 36x - 12
Divide through by 4
4y / 4 = 36x / 4 - 12 / 4
y = 9x - 3
y = 3(3x - 1)
Hence, y = 3(3x - 1)
Suppose 243 subjects are treated with a drug that is used to treat pain and 52 of them developed nausea. Use a 0.01 significance level to test the claim that more than 20% of users develop nausea.
Part A- correct answer is C.
Part B- The test statistic for this hypothesis test is ___? (Round to two decimal places as needed)
Answer:
20%?
Step-by-step explanation:
Skylar's grades on four math tests are 85, 78, 77, and 69. What does Skylar need to score on the next test in order to have a mean score of 80?
Answer:
91Step-by-step explanation:
The mean the the average of 5 numbers. If the next score is x, then the mean is:
(85 + 78 + 77 + 69 + x)/5 = 80Solve it for x:
309 + x = 80*5x = 400 - 309x = 91It is given that,
The mean is the average of 5 numbers.
Then if the,
Next score is x the mean will be.
We can solve now,
→ (85 +78 +77 + 69 + x)/5 = 80
→ (309 + x)/5 = 80
→ 309 + x = 80 × 5
→ 309 + x = 400
→ x = 400 - 309
→ x = 91
Hence, the next score is 91.
The Blacktop Speedway is a supplier of automotive parts. Included in stock are 7 speedometers that are correctly calibrated and two that are not. Three speedometers are randomly selected without replacement. Let the random variable z represent the number that are not correctly calibrated.
Complete the probability distribution table. (Report probabilities accurate to 4 decimal places.)
x P(x)
0
1
2
3
Answer:
x P(x)
0 0.4167
1 0.5
2 0.0833
3 0
Step-by-step explanation:
The speedometers are chosen without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
In this question:
7 + 2 = 9 speedometers, which means that [tex]N = 9[/tex]
2 are not correctly calibrated, which means that [tex]k = 2[/tex]
3 are chosen, which means that [tex]n = 3[/tex]
Complete the probability distribution table.
Probability of each outcome.
So
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 0) = h(0,9,3,2) = \frac{C_{2,0}*C_{7,3}}{C_{9,3}} = 0.4167[/tex]
[tex]P(X = 1) = h(1,9,3,2) = \frac{C_{2,1}*C_{7,2}}{C_{9,3}} = 0.5[/tex]
[tex]P(X = 2) = h(2,9,3,2) = \frac{C_{2,2}*C_{7,1}}{C_{9,3}} = 0.0833[/tex]
Only 2 defective, so [tex]P(X = 3) = 0[/tex]
Probability distribution table:
x P(x)
0 0.4167
1 0.5
2 0.0833
3 0
RESOLVER LOS SIGUIENTES SISTEMAS DE ECUACIONES APLICANDO EL METODO DE SUSTITUCION
2x +3y = 2
-6x + 12y = 1
Answer:
x = 1/2; y = 1/3
Step-by-step explanation:
2x + 3y = 2 Eq. 1
-6x + 12y = 1 Eq. 2
Eq. 1
2x + 3y = 2
2x = -3y + 2
x = -3/2 y + 1
Eq. 2
-6x + 12y = 1
De Eq. 1 sabemos que x = -3/2 y + 1
-6x + 12y = 1
-6(-3/2 y + 1) + 12y = 1
9y - 6 + 12y = 1
21y - 6 = 1
21y = 7
y = 7/21
y = 1/3
Eq. 1
2x + 3y = 2
2x + 3(1/3) = 2
2x + 1 = 2
2x = 1
x = 1/2
Respuesta: x = 1/2; y = 1/3