Answer:
The answer is sector. B.
Good day!Help please!!! Tyyyyy
Answer:
D) 60 degree
Step-by-step explanation:
Let's connect the remaining diagonal, which forms a triangle containing angle x.
As a property of regular hexagon, all diagonals are equal.
=> The formed triangle is a regular triangle and it has three equal angles, which are 60 degrees.
Find the total surface area of the farm silo in a farmer's field. Use π = 3.14. pls help asap uwu
Answer:
A) 1236 units²
Step-by-step explanation:
Cylinder = 2[tex]\pi[/tex]h+2[tex]\pi[/tex]r²
2(3.14)(7.5)(15)+2(3.14)(7.5x7.5)
706.5+353.25=1059.75
1/2 Sphere = 1/2(4)[tex]\pi[/tex]r²
2(3.14)(7.5)(7.5)
353.25
TOTAL: 1059.75+353.25=1413
HOWEVER...you need to subtract the top of the cylinder ([tex]\pi[/tex]r²) 176.625
1413-176.625=1236.375
So the answer would be A. (Silo’s do have a bottom, or else the answer would be D)
Answer:
1,236 units²
Step-by-step explanation:
I got it correct on founders edtell and screenshot below as proof
Find the volume of the cylinder. Round your answer to the nearest tenth.
Answer:
716.75 m^3
Step-by-step explanation:
Volume of a cylinder:
=> PI x R^2 x H
H = Height
R = Radius
=> PI x 3.9^2 x 15
=> PI x 15.21 x 15
=> PI x 228.15
=> 228.15 PI
or
=> 228.15 x 3.14159
=> 716.75 m^3
Question on Statistics and Confidence Intervals
A field test for a new exam was given to randomly selected seniors. The exams were graded, and the sample mean and sample standard deviation were calculated. Based on the results, the exam creator claims that on the same exam, nine times out of ten, seniors will have an average score within 5% of 75%.
Is the confidence interval at 90%, 95%, or 99%? What is the margin of error? Calculate the confidence interval and explain what it means in terms of the situation. (10 points)
The phrasing "nine times out of ten" means 9/10 = 0.90 = 90% is the confidence level. We're confident 90% of the time that the confidence interval captures the population parameter we're after (in this case mu = population mean)
The portion "have an average score within 5% of 75%" means that 75% = 0.75 is the center of the confidence interval, and it goes as low as 0.75 - 0.05 = 0.70 and as high as 0.75 + 0.05 = 0.80
This confidence interval is from 70% to 80%, meaning that nine times out of ten, we're confident that the average score is between 70% and 80%
We write the confidence interval as (0.70, 0.80). It's common to use the notation (L, U) to indicate the lower (L) and upper (U) boundaries. You might see the notation in the form L < mu < U. If so, then it would be 0.70 < mu < 0.80; either way they mean the same thing.
The margin of error is 0.05 as its the 5% radius of the interval. It tells us how far the most distant score is from the center (75%)
=========================================
In summary, we have these answers
confidence level = 90%margin of error = 5% = 0.05confidence interval = (0.70, 0.80)interpretation = We're 90% confident that the average exam score is between 0.70 and 0.80woman has 7 coworkers' man. How many different possible groups of four people could do the project, if one out of three is women? g
Answer: 24ways
Step-by-step explanation:
Given data:
No of men in the workplace = 7
No of women in the workplace = 1
How many ways can a group of 4 people carry out a project if on out of the 3 must be a woman.
Solution.
A group of 4 can carry out the project with one be a woman
This means there must be 3 males and 1 female in the group
= 4p3
= 24ways
The project can be carried out by 4 groups in 24 ways
The number of chocolate chips in a bag of chocolate chip cookies is approximately normally distributed with a mean of 1262 chips and a standard deviation of 118 chips.
Required:
a. Determine the 26th percentile for the number of chocolate chips in a bag.
b. Determine the number of chocolate chps in a bag that make up the middle 96% of bags.
Answer:
(a) The 26th percentile for the number of chocolate chips in a bag is 1185
(b) The number of chocolate chips in a bag that makes up the middle 96% of the bags is between 1020 and 1504
Step-by-step explanation:
From the question, we have the following values:
μ =1262 and σ =118
(a) Let the value of x represents the 26th percentile. So the 26th percentile means 26% data is less than x. We can use the standard normal table to get the particular z-value that corresponds to this percentile.
P( Z<-0.65 )=0.2578 which is approximately 0.26
So for 26th percentile z-score will be -0.65.
Mathematically;
z-score = (x-mean)/SD
-0.65 = (x-1262)/118
-76.7 = x -1262
x = 1262-76.7 = 1185.3
This value is approximately 1,185
(b) Using a graph of standard normal distribution curve, if middle is 96% , then at both tails 2% each.
From z-table, we can find the closest probability;
P(-2.05<z<2.05) = 0.96
So we have two x values to get from the individual z-scores
-2.05 = (x-1262)/118
x = 1020(approximately)
For 2.05, we have
2.05 = (x-1262)/118
x = 1262 + 2.05(118) = 1504 (approximately)
Which quadratic equation would be used to solve for the unknown dimensions?
0 = 2w2
512 = w2
512 = 2w2
512 = 2l + 2w
Answer:
C
Step-by-step explanation:
Answer:
C: 512 = 2w2
Step-by-step explanation:
on edge
What number must be added to the expression below to complete the square? x2-5x
Answer:
6.25
Step-by-step explanation:
(x-a)^2=x^2-2ax+a^2
2a=5
a=2.5
2.5 ^ 2 = 6.25
A rectangular city is 3 miles long and 10 miles wide. What is the distance between opposite corners of the city? The exact distance is ______ miles How far is it to the closest tenth of a mile? Answer: The distance is approximately ______ miles.
Answer:
The exact distance is [tex]\sqrt{109}[/tex] miles.
The distance is approximately 10.4 miles.
Step-by-step explanation:
It is given that a rectangular city is 3 miles long and 10 miles wide. So,
Length = 3 miles
Width = 10 miles
We need to find the distance between opposite corners of the city. It means, we need to find the length of the diagonal of the rectangle.
Using Pythagoras theorem, the length of diagonal is
[tex]d=\sqrt{l^2+w^2}[/tex]
where, l is length and w is width.
Substitute l=3 and w=10.
[tex]d=\sqrt{(3)^2+(10)^2}[/tex]
[tex]d=\sqrt{9+100}[/tex]
[tex]d=\sqrt{109}[/tex]
The exact distance is [tex]\sqrt{109}[/tex] miles.
Now,
[tex]d=\sqrt{109}[/tex]
[tex]d=10.4403065[/tex]
[tex]d\approx 10.4[/tex]
The distance is approximately 10.4 miles.
what are the like terms of the expression.
3x+8x+y+x+8
Answer:
the like terms are:
3x+8x+x+y+8
12x+y+8
Answer:
The like terms are
3x, 8x, x
Step-by-step explanation:
3x+8x+y+x+8
The like terms are
3x, 8x, x
They are the terms that are in terms of the first power of x
The data set {3, 7, 5, 4, 1} consists of the lengths, in minutes, of a sample of speeches at an awards banquet. Use a formula to find the standard deviation of the sample, and label it with the correct variable.
Answer:
Standard deviation = 2.2360679774998
Step-by-step explanation:
We are asked to find the Standard deviation of a samples of speeches as an awards.
The formula for sample standard deviation is given as:
√[(x - μ)²/N - 1 ]
Step 1
We find the mean (μ)
The mean of the sample =>
= Sum of term/ Number of terms
= (3 + 7 + 5 + 4 + 1)/5
= 20/5
= 4
Step 2
Find the Standard deviation of the sample
√[(x - μ)²/N - 1 ]
N = number of samples or terms = 5
= √[(3 - 4) ² + (7 - 4)² + (5 - 4)² +(4 - 4)² +(1 - 4)²/ 4]
= √ (1 ² + 3² + -1² + 0² + -3²/4)
= √( 1 + 9 + 1 + 0 + 9/4)
= √20/5 - 1
= √5
= 2.2360679774998
The standard deviation of the sample = 2.2360679774998
In a recent survey of drinking laws, a random sample of 1000 women showed that 65% were in favor of increasing the legal drinking age. In a random sample of 1000 men, 60% favored increasing the legal drinking age. Test the claim that the percentage of men and women favoring a higher legal drinking age is different at (alpha 0.05).
Answer:
Step-by-step explanation:
Given that:
Let sample size of women be [tex]n_1[/tex] = 1000
Let the proportion of the women be [tex]p_1[/tex] = 0.65
Let the sample size of the men be [tex]n_2[/tex] = 1000
Let the proportion of the mem be [tex]p_2[/tex] = 0.60
The null and the alternative hypothesis can be computed as follows:
[tex]H_0: p_1 = p_2[/tex]
[tex]H_0a: p_1 \neq p_2[/tex]
Thus from the alternative hypothesis we can realize that this is a two tailed test.
However, the pooled sample proportion p = [tex]\dfrac{p_1n_1+p_2n_2 } {n_1 +n_2}[/tex]
p =[tex]\dfrac{0.65 * 1000+0.60*1000 } {1000 +1000}[/tex]
p = [tex]\dfrac{650+600 } {2000}[/tex]
p = 0.625
The standard error of the test can be computed as follows:
[tex]SE = \sqrt{p(1-p) ( \dfrac{1} {n_1}+ \dfrac{1}{n_2} )}[/tex]
[tex]SE = \sqrt{0.625(1-0.625) ( \dfrac{1} {1000}+ \dfrac{1}{1000} )}[/tex]
[tex]SE = \sqrt{0.625(0.375) ( 0.001+0.001 )}[/tex]
[tex]SE = \sqrt{0.234375 (0.002)}[/tex]
[tex]SE = \sqrt{4.6875 * 10^{-4}}[/tex]
[tex]SE = 0.02165[/tex]
The test statistics is :
[tex]z =\dfrac{p_1-p_2}{S.E}[/tex]
[tex]z =\dfrac{0.65-0.60}{0.02165}[/tex]
[tex]z =\dfrac{0.05}{0.02165}[/tex]
[tex]z =2.31[/tex]
At level of significance of 0.05 the critical value for the z test will be in the region between - 1.96 and 1.96
Rejection region: To reject the null hypothesis if z < -1.96 or z > 1.96
Conclusion: Since the value of z is greater than 1.96, it lies in the region region. Therefore we reject the null hypothesis and we conclude that the percentage of men and women favoring a higher legal drinking age is different.
How many solutions does the system have? x+2y=2 2x+4y=−8
Answer:
Step-by-step explanation:
x + 2y = 2
2x + 4y = -8
-2x - 4y = -4
2x + 4y = -8
0 not equal to -12
no solution
in the diagram, POS,QOT and UOR are straight lines. Find the value of y.
Answer:
y = 15°
Step-by-step explanation:
Since ∠QOR and ∠UOT are vertical, they are congruent so ∠UOT = 5y. Since POS is a straight line (which has a measure of 180°) and ∠POS = ∠POU + ∠UOT + ∠TOS, we can write:
5y + 5y + 2y = 180
12y = 180
y = 15°
Which is greater 9/20 or 60%
Answer:
60%
Step-by-step explanation:
9/20 is 45%
Answer:
60 %
Step-by-step explanation: If you divide 9/20, it equals to 0.45, makes it 45% and the number 45 in general is smaller than 60. Thus, 60% is greater than 9/20. I hope this helps.
In the diagram, XY bisects ZWXZ.
1
z
2
w
(5x + 3)
(7x - Y
х
mWYZ
type your answer.
In provided diagram angle WXY = angle YXZ
Angle WXY =( 7x-7)°
Angle YXZ = ( 5x +3)°
We have to find out the value of Angle WXZ
→ 7x-7 = 5x +3
→ 7x - 5x = 7+3
→ 2x = 10
→ x = 10/2
→ x = 5 .
Putting the value of x .
→ Angle WXY = 7(2)-7
→ 14-7 = 7°
→ Angle YXZ = 5(2)+3
→ 10+3 = 13°
Angle WXZ = 13° + 7 ° → 20°
So 20° is the required answer .
Answer:
SI
Step-by-step explanation:
Point R divides PG in the ratio 1:3. If the x-coordinate of R is -1 and the x-coordinate of P is -3, what is the x-coordinate of Q
Answer:
option C . 5
Step-by-step explanation:
For two points (x1,y1) and (x2,y2) divided by a point p in ratio m:n then coordinates of that point is given by
p : (nx1+mx2)/(m+n), (ny1+my2)/(m+n),
Given
x coordinate of P (-3)
x coordinate of Q (a) since we have to find it , let it be a
x coordinate of R(-1)\
ratio = 1:3
_______________________________________
Using the above formula to find the point of division
we can get value of x coordinate for point Q
x coordinate of R = 3*-3 + 1*a/(1+3)
-1 = (-9 + a)/4
=> -4 = -9 +a
=>a = -4+9 = 5
Thus, x coordinate of Q is 5
If “n” is a positive integer divisible by 3 and n is less than or equal to 44, then what is the highest possible value of n?
Answer:
Step-by-step explanation:
positive integer divisible by 3 includes
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45...
less than highest possible value is 42
To the nearest tenth, what is the value of P(C|Y)? 0.4 0.5 0.7 0.8
Answer:
P(C|Y) = 0.5.
Step-by-step explanation:
We are given the following table below;
X Y Z Total
A 32 10 28 70
B 6 5 25 36
C 18 15 7 40
Total 56 30 60 146
Now, we have to find the probability of P(C/Y).
As we know that the conditional probability formula of P(A/B) is given by;
P(A/B) = [tex]\frac{P(A \bigcap B)}{P(B)}[/tex]
So, according to our question;
P(C/Y) = [tex]\frac{P(C \bigcap Y)}{P(Y)}[/tex]
Here, P(Y) = [tex]\frac{30}{146}[/tex] and P(C [tex]\bigcap[/tex] Y) = [tex]\frac{15}{146}[/tex] {by seeing third row and second column}
Hence, P(C/Y) = [tex]\frac{\frac{15}{146} }{\frac{30}{146} }[/tex]
= [tex]\frac{15}{30}[/tex] = 0.5.
Answer: 0.5
Step-by-step explanation:
edge
1/3 of a shipment of books weights 28 pounds
Answer:
84 pounds
Step-by-step explanation:
If 1/3 of a book is equal to 28 pounds then 28*3 will give you your answer
Calculate the derivative of the function. Then find the value of the derivative as specified:
f(x) = 5x + 9; f "(2)
A) f "(x) 0,f , (2)-0
B) f , (x)-9; f , (2) = 9
C)f"(x) = 5; f "(2) = 5
D) f '(x) 5x; f '(2) 10
The correct question is;
Calculate the derivative of the function. Then find the value of the derivative as specified:
f(x) = 5x + 9; f '(2)
A) f'(x) = 0; f'(2) = 0
B) f'(x) = 9; f '(2) = 9
C)f'(x) = 5; f'(2) = 5
D) f '(x) = 5x; f '(2) = 10
Answer:
Option C: f'(x) = 5 and f '(2) = 5
Step-by-step explanation:
We want to find the derivative of f(x) = 5x + 9.
Now, the derivative with respect to x will be;
f'(x) = 5
Now,we also want to find out f'(2)
This means we are to put 2 for x in the derivative function.
In the derivative function, we don't have x as we have just 5.
Thus,f'(2) = 5
Can someone please help me ASAP:(
Answer:
3 =x
Step-by-step explanation:
(segment piece) x (segment piece) = (segment piece) x (segment piece)
3x(x+1) = 4x*x
Divide each side by x
3(x+1) = 4x
Distribute
3x+3 = 4x
Subtract 3x from each side
3x-3x +3 = 4x-3x
3 =x
If Company X has 1600 employees and 80% of those employees have attended the warehouse training course how many employees have yet to attend?
Answer:
320
Step-by-step explanation:
Total no of employees = 1600
% of employees attended the training = 80%
no. of employee who attended the training = 80/100* 1600 = 1280
No. of employees who are yet to attend the training = Total no of employees - no. of employee who attended the training = 1600-1280 = 320
Thus, 320 employees have yet to attend the training
point estimate A sample of 81 observations is taken from a normal population with a standard deviation of 5. The sample mean is 40. Determine the 95% confidence interval for the population mean
Answer:
The 95 percent Confidence Interval is for the population is (38.911 , 41.089)
Step-by-step explanation:
To solve the above question, we would be making use of the confidence interval formula:
Confidence Interval = Mean ± z score × σ/√n
In the above question,
Mean = 40
σ = Standard deviation = 5
n = number of samples = 81
Confidence Interval = 95%
The z score for a 95% confidence interval = 1.96
Therefore, the confidence interval =
= 40 ± 1.96 (5/√81)
= 40 ± 1.96(5/9)
= 40 ± 1.0888888889
Confidence Interval
a)40 + 1.0888888889
= 41.0888888889
Approximately = 41.089
b ) 40 - 1.0888888889
= 38.911111111
Approximately = 38.911
Therefore, the 95 percent Confidence Interval is for the population is (38.911 , 41.089)
Put the following equation of a line into slope-intercept form, simplifying all
fractions.
3x + 3y = -9
Answer:
[tex]y = -x - 3[/tex]
Step-by-step explanation:
We are trying to get the equation [tex]3x + 3y = -9[/tex] into the form [tex]y = mx+b[/tex], aka slope-intercept form.
To do this we are trying to isolate y.
[tex]3x + 3y = -9[/tex]
Subtract 3x from both sides:
[tex]3y = -9 - 3x[/tex]
Rearrange the terms:
[tex]3y = -3x - 9[/tex]
Divide both sides by 3:
[tex]y = -x - 3[/tex]
Hope this helped!
If we were to make a poset of the form (A, |), where is the symbol for divisibility, which of the following sets A would yield a poset that is a total ordering?
I. A- (1, 4, 16, 64)
II. A- (1.2,3, 4, 6, 12)
III. A 1,2,3, 4, 6, 12, 18, 24)
IV. A+{1 , 2, 3, 6, 12)
Answer:
IV. A+{1, 2, 3, 6, 12}
Step-by-step explanation:
The set of natural numbers form a poset number under relation of > or =. The discrete variables are used to form a poset. The symbols for divisibility in poset form are when an integer is divided by the variable without integer. The correct answer is therefore 4th option.
Help us plazz this is mathematics IGCSE fast as you can
Answer:
Step-by-step explanation:
y varies direcrtly with √(x+5) wich can be expressed mathematically as:
● y = k*√(x+5)
Let's calculate k khowing that y=4 and x=-1
● 4 = k*√(-1+5)
● 4 = k*√(4)
● 4 = k * 2
● k = 4/2
● k = 2
■■■■■■■■■■■■■■■■■■■■■■■■■■
Let's calculate y khowing that x = 11
● y = k*√(x+5)
● y = 2×√(11+5)
● y = 2× √(16)
● y = 2× 4
● y = 8
Answer:
The value of y is 8.
Step-by-step explanation:
Given that y is directly proportional to √(x+5) so the equation is y = k√(x+5) where k is constant. First, you have to find the value of k with given values :
[tex]y = k \sqrt{x + 5} [/tex]
[tex]let \: x = - 1,y = 4[/tex]
[tex]4 = k \sqrt{ - 1 + 5} [/tex]
[tex]4 = k \sqrt{4} [/tex]
[tex]4 = k(2)[/tex]
[tex]4 \div 2 = k[/tex]
[tex]k = 2[/tex]
So the equation is y = 2√(x+5). In order to find the value of y, you have to substitute x = 11 into the equation :
[tex]y = 2 \sqrt{x + 5} [/tex]
[tex]let \: x = 11[/tex]
[tex]y = 2 \sqrt{11 + 5} [/tex]
[tex]y = 2 \sqrt{16} [/tex]
[tex]y = 2(4)[/tex]
[tex]y = 8[/tex]
Find the value of x to the nearest tenth. A) 5 B) 9.2 C) 3.3 D) 2.9
Answer:
B) 9.2
Step-by-step explanation:
tan(57)=x/6 multiply 6 on both sides
6.tan(57)=x use calculator to find answer
9.2 rounded
Answer:9.2 is correct
Step-by-step explanation:
PLEASE HELP ! (2/4) - 50 POINTS -
Answer:
The correct answer would be 15.5 or C.
plz someone help me with this question
Answer:
(x+3)^2=-4(y-3)
Step-by-step explanation:
(x-h)^2 = 4p(y-k)
P is the distance between the focus and vertex
P = 1 --> used distance formula for the points of -3,2 -3,3
Vertex is -3,3 --> according to picture
(x+3)^2=-4(y-3)
P is negative since it goes downwards in the picture.