Answer:
6m + 8 is the answer.
Step-by-step explanation:
( m x 6 ) + 8
= 6m + 8
g Vectors ???? and ???? are sides of an equilateral triangle whose sides have length 4. Compute ????⋅????. (Give your solution as a number to one decimal place.
Answer:
[tex]v \cdot w = 8.0[/tex]
Step-by-step explanation:
See comment for complete question
Given
[tex]|v| = |w| = 4[/tex] --- the side lengths
Required
[tex]v \cdot w[/tex]
[tex]v \cdot w = |v| \cdot |w| \cdot (cos\theta)[/tex]
From the question, we understand that v and w are sides of an equilateral triangle.
This means that:
[tex]\theta = 60^o[/tex] --- angles in an equilateral triangle
So:
[tex]v \cdot w = |v| \cdot |w| \cdot (\cos 60)[/tex]
So, we have:
[tex]v \cdot w = 4 * 4 * 0.5[/tex]
[tex]v \cdot w = 8.0[/tex]
Suppose 35.45% of small businesses experience cash flow problems in their first 5 years. A consultant takes a random sample of 530 businesses that have been opened for 5 years or less. What is the probability that between 34.2% and 39.03% of the businesses have experienced cash flow problems?
1) 0.6838
2) 20.3738
3) 0.3162
4) - 11.6695
5) 1.2313
Answer:
1) 0.6838
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
35.45% of small businesses experience cash flow problems in their first 5 years.
This means that [tex]p = 0.3545[/tex]
Sample of 530 businesses
This means that [tex]n = 530[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.3545[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.3545(1-0.3545)}{530}} = 0.0208[/tex]
What is the probability that between 34.2% and 39.03% of the businesses have experienced cash flow problems?
This is the p-value of Z when X = 0.3903 subtracted by the p-value of Z when X = 0.342.
X = 0.3903
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.3903 - 0.3545}{0.0208}[/tex]
[tex]Z = 1.72[/tex]
[tex]Z = 1.72[/tex] has a p-value of 0.9573
X = 0.342
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.342 - 0.3545}{0.0208}[/tex]
[tex]Z = -0.6[/tex]
[tex]Z = -0.6[/tex] has a p-value of 0.27425
0.9573 - 0.2743 = 0.683
With a little bit of rounding, 0.6838, so option 1) is the answer.
What iis 155 plus 33 minus 4 divided by 2
Answer:
155+33-4÷2155+33-2188-2186hope it is helpful to you
The simplified form of statement 155 plus 33 minus 4 divided by 2 is
186.
What is a numerical expression?A numerical expression is a mathematical statement written in the form of numbers and unknown variables. We can form numerical expressions from statements.
Addition is also known as the sum, subtraction is also known as the difference, multiplication is also known as the product, and division is also known as the factor.
The given statement is 155 plus 33 minus 4 divided by 2 which can be numerically expressed as,
155 + 33 - 4 ÷ 2.
PEMDAS rule states the correct order of simplifying an expression is as follows, Parenthesis, exponents, multiplications, divisions, additions, and, subtractions.
155 + 33 - 2.
= 188 - 2.
= 186.
learn more about numerical expressions here :
https://brainly.com/question/29199574
#SPJ2
When 4 times a positive number is subtracted from the square of the number, the result is 5. Find the number.
Answer:
5
Step-by-step explanation:
x² - 4x = 5
x² - 4x - 5 = 0
the solution of a quadratic equation is
x = (-b ± sqrt(b² - 4ac))/(2a)
a = 1
b = -4
c = -5
x = (4 ± sqrt(16 + 20))/2 = (4 ± sqrt(36))/2
x1 = (4 + 6)/2 = 5
x2 = (4 - 6)/2 = -1
since we are looking only for a positive number, x=5 is the answer.
what is the formula for perimeter of a square
Answer: P = 4s
Step-by-step explanation:
P = 4s where s = the length of each side.
Since each side of a square is the same length, the side length is multiplied by 4.
A triangle has vertices at L(2, 2), M(4,4), and N(1,6).
The triangle is transformed according to the rule Ro.
Which statements are true regarding the
transformation? Select three options.
180
The rule for the transformation is (x, y) (-X, -y).
The coordinates of L'are (-2,-2).
The coordinates of Mare (-4,4).
The coordinates of N' are (6,-1).
The coordinates of N'are (-1,-6).
Answer:
The rule for the transformation is (x, y) (-x, -y).
The coordinates of L'are (-2,-2).
The coordinates of N'are (-1,-6).
Step-by-step explanation:
Given
[tex]L = (2,2)[/tex]
[tex]M = (4,4)[/tex]
[tex]N = (1,6)[/tex]
[tex]Ro=180[/tex]
Required
Select three options
The rule to this is:
[tex](x,y) \to (-x,-y)[/tex]
So, we have:
[tex]L = (2,2)[/tex]
[tex]L' =(-2,-2)[/tex]
[tex]M = (4,4)[/tex]
[tex]M =(-4,-4)[/tex]
[tex]N = (1,6)[/tex]
[tex]N' = (-1,-6)[/tex]
Please help how to do this
Answer:
Frumpyton
Step-by-step explanation:
Since the standard deviation of Frumpyton is a lower number, this means a higher percentage of outcomes (job salaries) will be within a closer range to the mean salary. Since Frumpyton's standard deviation is $2,000 and the window your looking for is $32,000 to $36,000, if you go one interval up or down from the mean of $34,000, it falls in that range. Whereas, Dirtballville's standard deviation is $3,000 so it's more likely to fall outside of that range.
The largest angle in a triangle is six times the smallest angle. The middle angle is three times the smallest angle. Given that the sum of the angles in a triangle is , find the measure of each angle.
Answer:
Smallest: 18° Middle: 54° Largest: 108°
Step-by-step explanation:
We can start by writing out what we know in a series of equations:
s= smallest angle, m= medium angle, L= largest angle.
Since the largest is 6 times the smallest we have:
L=6s
Since the middle is 3 times the smallest we have:
m=3s
Since the 3 interior angle measures of a triangle always must equal 180°, we have:
s+m+L=180
Then we plug in our L and m into the third equation:
s+3s+6s=180
Combining like terms and solving:
10s=180
s=18
Then we plug in 18 for s into the first 2 equations to get:
L= 6* 18
L= 108
and
m= 3* 18
m= 54
So s= 18, m= 54, and L=108.
To check the answer we can:
Add the three to make sure they equal 180. Make sure the smallest is the smallest, and the largest is the largest.24. What are the intercepts of -3x + 5y - 2z = 60?
(-20, 0, 0), (0, 12,0), (0, 0, -30)
(-60, 0, 0), (0, 60, 0), (0, 0, -60)
(-180, 0, 0), (0, 300, 0), (0, 0, -120)
(-3, 0, 0), (0,5, 0), (0, 0, -2)
Tell whether the following two triangles can be
proven congruent through SAS.
A.Yes, the two triangles are congruent
because two sides and their included
angle are congruent in both triangles.
B.No, the two triangles don't have
corresponding sides marked congruent.
C. Yes, the two triangles are congruent because they’re both right triangles.
D.No, the two triangles can only be proven congruent through SSA.
Answer:
B. No, the two triangles don't have
corresponding sides marked congruent.
The sum of two numbers is 125. Their difference is 47. The two numbers are:
a)39 and 86.
b)40 and 85.
c)47 and 78.
d)None of these choices are correct.
Answer:
let x represent the bigger number
x+x-47=125
2x-47=125
2x=125+47
2x=172
2x/2=172/2
x=86
the smaller number=x-47
86-47
39
therefore the answer is a) 39 and 86
Answer:
A
Step-by-step explanation:
To find the sum of 125, you have to add the numbers.
39+86 = 125
To find the difference of 47, you have to subtract the numbers.
86-39 = 47
Which of the following is equivalent to the expression log2a=r? 2a = r logr2 = a 2r = a log2r = a
9514 1404 393
Answer:
(c) 2^r = a
Step-by-step explanation:
The relationship between log forms and exponential forms is ...
[tex]\log_2(a)=r\ \Leftrightarrow\ 2^r=a[/tex]
__
Additional comment
I find this easier to remember if I think of a logarithm as being an exponent.
Here, the log is r, so that is the exponent of the base, 2.
This equivalence can also help you remember that the rules of logarithms are very similar to the rules of exponents.
Answer: Choice C) [tex]2^r = a[/tex]
This is the same as writing 2^r = a
==========================================================
Explanation:
Assuming that '2' is the base of the log, then we'd go from [tex]\log_2(a) = r[/tex] to [tex]2^r = a[/tex]
In either equation, the 2 is a base of some kind. It's the base of the log and it's the base of the exponent.
The purpose of logs is to invert exponential operations and help isolate the exponent. A useful phrase to help remember this may be: "if the exponent is in the trees, then we need to log it down".
The general rule is that [tex]\log_b(y) = x[/tex] converts to [tex]y = b^x[/tex] and vice versa.
1). A population of 20 rabbits is released into a wildlife region. The population is growing at a rate of 60% per year.
A) the General Equation from the Video was: P(x) = (blank)
What is the population of rabbits after 5 years?
B) the Evaluated equation I used to get the following answer is (blank)
and After five years there will be(blank)
rabbits.
And What is the population of rabbits after 8 years?
c) the Evaluated equation I used to get the following answer is(blank)
and After eight years there will be(blank)
rabbits.
Answer:
(a) A = 20(1.6)^t
(b) 210 rabbits
Step-by-step explanation:
Initial number of rabbits = 20
rate of growth, R = 60 % annually
(A) The general equation is
[tex]A = P \left ( 1+\frac{R}{100} \right )^t\\\\A = 20\left ( 1+\frac{60}{100} \right )^t\\\\A = 20 (1.6)^t[/tex]
(B) Let the time, t = 5 years
So, the population after 5 years is
[tex]A = 20 (1.6)^5\\\\A = 209.7 = 210 rabbits[/tex]
The mean incubation time of fertilized eggs is 19 days. Suppose the incubation times are approximately normally distributed with a standard deviation of 1 day. Answer the following. For each question draw an appropriate distribution function (graph) to represent the data, shade the desired area, and show all work, including what you input into your calculator to attain your results.
(A) The 14th percentile for incubation times is __ days.
(B) The incubation times that make up the middle 97% of fertilized eggs are __ to __ days.
Answer:
a)17.92
b) 16.83 .... 21.17
Step-by-step explanation:
ρ→ z
0.14 = -1.080319341
-1.080 = (x - 19)/1 = 17.92
~~~~~~~~~~~~~~~~~~
3% / 2 = 1.5%
1.5% - 98.5%
ρ→ z
0.015 = -2.170090378 .... -2.17 = (x-19) =16.83
0.985 = 2.170090378 .... 2.17 = (x-19) =21.17
the inner diameter of the top of am ornamental cup is 7,5cm and the diameter of the inner bottom is 3,0cm.the depth of the cup is 10cm.calculate the capacity of the cup
Answer:
Frustum Volume =
[PI * height * (small radius^2 + (small radius * large radius) * + large radius^2)] / 3
Frustum Volume = PI * 10 * ( 1.5^2 + 1.5*3.75 + 3.75^2 ) / 3
Frustum Volume = 31.41592654 * (2.25 +5.625 +14.0625) / 3
Frustum Volume = (31.41592654 * 21.9375) / 3
Frustum Volume = 689.1868884713 / 3
Frustum Volume = 229.72896282 cubic cm
Source: http://www.1728.org/volcone.htm
Step-by-step explanation:
Will give brainliest if correct
Which congruence theorem can be used to prove △BDA ≅ △BDC?
Triangles B D A and B D C share side B D. Sides B C and B A are congruent. Sides A D and D C are congruent.
HL
SSA
AAS
SSS
Answer:
SSS or D on edge
Step-by-step explanation:
.
The three sides of triangle ΔBDA are equal to the three sides of triangle ΔBDC.
The congruency theorem that can be used to prove ΔBDA ≅ ΔBDC is; SSSReasons:
The given parameters are;
The common side to ΔBDA and ΔBD = BD
BC ≅ BA
AD ≅ DC
The two column proof is presented as follows;
Statement [tex]{}[/tex] Reasons
BC ≅ BA [tex]{}[/tex] Given
AD ≅ DC [tex]{}[/tex] Given
BD ≅ BD [tex]{}[/tex] By reflexive property
Therefore, we have;
ΔBDA ≅ ΔBDC [tex]{}[/tex] By Side-Side-Side SSS, congruency ruleThe congruency theorem that can be used to prove ΔBDA ≅ ΔBDC is therefore;
SSSThe Side-Side-Side congruency rule states that if three sides of on triangle are congruent to three sides of another triangle, then the two triangles are congruent.
Learn more about Side-Side-Side, SSS congruency rule here:
https://brainly.com/question/10684250
Answer the following.
(a) Find an angle between and that is coterminal with .
(b) Find an angle between and that is coterminal with . Give exact values for your answers.
I believe this is your question:
A.) find an angle between 0 degrees and 360 degrees that is coterminal with 570 degrees.
Answer:
210 degrees
Explanation:
Coterminal angles begin on the same initial side and end or terminate on the same side as an angle. Example 45 degrees and 405 degrees are coterminal angles because they both begin and end on the same side.
To find an angle between 0 and 360 that is coterminal with 570 degrees, w simply subtract 360 degrees from 570, hence:
570-360=210 degrees
570 degrees is coterminal with 210 degrees
please help me i begging.
Answer:
The two equivalent expressions are 6(x − y) and 6x − 6y.
Step-by-step explanation:
Find all solutions of the equation in the interval [0, 2pi); sqrt(3) * csc(theta) - 2 = 0
Answer:
Step-by-step explanation:
Solution of the equation [tex]\sqrt{3} (cosec\theta) -2=0[/tex]in the [ 0, 2π) is [tex]\frac{\pi }{3}[/tex] and [tex]\frac{2\pi }{3}[/tex].
What is trigonometric ratio?" Trigonometric ratios are defined as relation of the ratio of the sides of the triangle to the acute angle of the given triangle enclosed in it."
Formula used
[tex]cosec\theta = \frac{1}{sin\theta}[/tex]
According to the question,
Given trigonometric ratio equation,
[tex]\sqrt{3} (cosec\theta) -2=0[/tex]
Replace trigonometric ratio [tex]cosec\theta[/tex] by [tex]sin\theta[/tex] in the above equation we get,
[tex]\sqrt{3} (\frac{1}{sin\theta} ) -2=0\\\\\implies \sqrt{3} (\frac{1}{sin\theta} ) = 2\\\\\implies sin\theta=\frac{\sqrt{3} }{2}[/tex]
As per given condition of the interval [ 0, 2π) we have,
[tex]\theta = sin^{-1} \frac{\sqrt{3} }{2} \\\\\ implies \theta = \frac{\pi }{3} or \frac{2\pi }{3}[/tex]
Hence, solution of the equation [tex]\sqrt{3} (cosec\theta) -2=0[/tex]in the [ 0, 2π) is
[tex]\frac{\pi }{3}[/tex] and [tex]\frac{2\pi }{3}[/tex].
Learn more about trigonometric ratio here
https://brainly.com/question/1201366
#SPJ3
tan sin^-1(-1/2)+tan^-1(3/4)
exact value!
Answer:
m
Step-by-step explanation:
vfmjj vdzaazb knkuvggb
The sum of -4 and the difference of 3 and 1
Please help bbbsbsshhdbdvdvdvsvxggddvvdgddvd
(B)
Step-by-step explanation:
The graph has zeros at x = -5 and x = 3 and passes through (4, 9). We can write the equation for the graph as
[tex]y = (x + 5)(x - 3) + c[/tex]
Since the graph passes through (4, 9), we can solve for c, which gives us c = 0. Therefore, the equation for the graph is
[tex]y = (x + 5)(x - 3) = x^2 + 2x - 15[/tex]
Answer:
Step-by-step explanation:
The answer is B) y= x^2+2x-15
for the function f(x)=5 evaluate and simplify the expression: f (a+h)-f(a)/h
Answer:
0 is the answer assuming the whole thing is a fraction where the numerator is f(a+h)-f(a) and the denominator is h.
Step-by-step explanation:
If the expression for f is really a constant, then the difference quotient will lead to an answer of 0.
If the extra for f is linear (including constant expressions), the difference quotient will be the slope of the expression.
However, let's go about it long way for fun.
If f(x)=5, then f(a)=5.
If f(x)=5, then f(a+h)=5.
If f(a)=5 and f(a+h)=5, then f(a+h)-f(a)=0.
If f(a+h)-f(a)=0, then [f(a+h)-f(a)]/h=0/h=0.
For each one of the following statements, indicate whether it is true or false.
(a) If X = Y (i.e., the two random variables always take the same values), then Van X | Y = 0.
(b) If X = Y (the two random variables always take the same values), then Var (X | Y) = Var (X).
(c) If Y takes on the value y, then the random variable Var (X | Y) takes the value E[(X – E[X | Y = y])2 |Y = y].
(d) If Y takes on the value y, then the random variable Var (X | Y) takes the value E[(X - E[X | Y])2 | Y = y].
(e) If Y takes on the value y, then the random variable Var ( X | Y) takes the value E[(X – E[X])2 | Y = y].
Solution :
a). [tex]$\text{Var} (X|Y) =E ((X-E(X|Y))^2 |Y)$[/tex]
Now, if X = Y, then :
[tex]P(X|Y)=\left\{\begin{matrix} 1,& \text{if } x=y \\ 0, & \text{otherwise }\end{matrix}\right.[/tex]
Then, E[X|Y] = x = y
So, [tex]$\text{Var} (X|Y) =E((X-X)^2 |Y)$[/tex]
[tex]$=E(0|Y)$[/tex]
= 0
Therefore, this statement is TRUE.
b). If X = Y , then Var (X) = Var (Y)
And as Var (X|Y) = 0, so Var (X|Y) ≠ Var (X), except when all the elements of Y are same.
So this statement is FALSE.
c). As defined earlier,
[tex]$\text{Var} (X|Y) =E ((X-E(X|Y))^2 |Y=y)$[/tex]
So, this statement is also TRUE.
d). The statement is TRUE because [tex]$\text{Var} (X|Y) =E ((X-E(X|Y))^2 |Y=y)$[/tex].
e). FALSE
Because, [tex]$\text{Var} (X|Y) =E ((X-E(X|Y=y))^2 |Y=y)$[/tex]
Sorry to ask so many questions but I need help in MATH
PLZZZ HELPPP
Answer:
24 26 27 94 is the answer 45
Answer:
the correct answer is 45
By recognizing each series below as a Taylor series evaluated at a particular value of x, find the sum of each convergent series.
A. 1 + 1/5 + (1/5)^2 + (1/5)^3 + (1/5)^4 +.....+ (1/5)^n + .... = _____.
B. 1 + 5 + 5^2/2! + 5^3/3! + 5^4/4! +....+ 5^n/n! +....= _____.
The first sum is a geometric series:
[tex]1+\dfrac15+\dfrac1{5^2}+\dfrac1{5^3}+\cdots+\dfrac1{5^n}+\cdots=\displaystyle\sum_{n=0}^\infty\frac1{5^n}[/tex]
Recall that for |x| < 1, we have
[tex]\dfrac1{1-x}=\displaystyle\sum_{n=0}^\infty x^n[/tex]
Here we have |x| = |1/5| = 1/5 < 1, so the first sum converges to 1/(1 - 1/5) = 5/4.
The second sum is exponential:
[tex]1+5+\dfrac{5^2}{2!}+\dfrac{5^3}{3!}+\cdots+\dfrac{5^n}{n!}+\cdots=\displaystyle\sum_{n=0}^\infty \frac{5^n}{n!}[/tex]
Recall that
[tex]\exp(x)=\displaystyle\sum_{n=0}^\infty\frac{x^n}{n!}[/tex]
which converges everywhere, so the second sum converges to exp(5) or e⁵.
Of the at-home games, what proportion of games were wins? (Note: Some answers are rounded to two decimal places
Answer:
0.33
Step-by-step explanation:
See comment for complete question
Given
[tex]H = 60\%[/tex]
[tex]W=25\%[/tex]
[tex]HW = 20\%[/tex] --- at-home wins
Required
The proportion of at-home games that were wins
This proportion is represented as:
[tex]Pr = HW : H[/tex]
Substitute values for HW and H
[tex]Pr = 20\% : 60\%[/tex]
Divide by 20%
[tex]Pr = 1 : 3[/tex]
Express as fraction
[tex]Pr = 1 /3[/tex]
[tex]Pr = 0.33[/tex]
The list shows the ages of first-year teachers in one school system. What is the mode of the ages? 23, 42, 21, 25, 23, 24, 23, 24, 37, 23, 39, 51, 63, 24, 55
Answer:
La moda es 23
Step-by-step explanation:
23 es el numero que mas se repite es decir la moda
This one is tricky! Imagine that you meet a new friend who is also a beginner, and she can run the 5k in 23.5 minutes. You wonder what percentage of the beginner running population could run the 5k faster than your new friend (that is, what percentage of the population has a time that is less than your new friend
Answer:
38.74%
Step-by-step explanation:
Given the data:
21 21 22 22 23 23 23 24 24 24 24 24 25 25 25 26 26 27 27
We obtain the beginner running population and standard deviation
Population mean, μ = Σx/n = 456/19 = 24
Standard deviation, σ = 1.747 (using calculator)
Friend's Runtime, x = 23.5 minutes
Obtaining the friend's Zscore :
Z = (x - μ) / σ
Z = (23.5 - 24) / 1.747
Z = - 0.286
Obtaining the Pvalue :
Using a standard normal distribution table :
P(Z < - 0.286) = 0.38744
Hence. Percentage of population that has lesser time :
0.38744 * 100% = 38.74%
Complete the sentences below:
The value of________ is negative because 240 is in quadrant III. The reference angle is___________. and the exact value of 240 degrees is_________.
Answer Deleted
404 Not Found